Evaluating the Risk of Hypophosphatemia with Ferric Carboxymaltose and the Recommended Approaches for Management: A Consensus Statement
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Clinical Implications of Hypophosphatemia
3.2. Hypophosphatemia Risk Evaluation
3.3. Clinical Sequelae of Hypophosphatemia
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- GBD 2021 Anaemia Collaborators. Prevalence, years lived with disability, and trends in anaemia burden by severity and cause, 1990–2021: Findings from the Global Burden of Disease Study 2021. Lancet Haematol. 2023, 10, e713. [Google Scholar] [CrossRef] [PubMed]
- Pasricha, S.R.; Tye-Din, J.; Muckenthaler, M.U.; Swinkels, D.W. Iron deficiency. Lancet 2021, 397, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.; Cacoub, P.; Macdougall, I.C.; Peyrin-Biroulet, L. Iron deficiency anaemia. Lancet 2016, 387, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Camaschella, C. Iron deficiency. Blood 2019, 133, 30–39. [Google Scholar] [CrossRef]
- Tawfik, Y.M.K.; Billingsley, H.; Bhatt, A.S.; Aboelsaad, I.; Al-Khezi, O.S.; Lutsey, P.L.; Buckley, L.F. Absolute and Functional Iron Deficiency in the US, 2017–2020. JAMA Netw. Open. 2024, 7, e2433126. [Google Scholar] [CrossRef]
- Marques, O.; Weiss, G.; Muckenthaler, M.U. The role of iron in chronic inflammatory diseases: From mechanisms to treatment options in anemia of inflammation. Blood 2022, 140, 2011–2023. [Google Scholar] [CrossRef]
- Iolascon, A.; Andolfo, I.; Russo, R.; Sanchez, M.; Busti, F.; Swinkels, D.; Martinez, P.A.; Bou-Fakhredin, R.; Muckenthaler, M.U.; Unal, S.; et al. Recommendations for diagnosis, treatment, and prevention of iron deficiency and iron deficiency anemia. HemaSphere 2024, 8, e108. [Google Scholar] [CrossRef]
- KDIGO Anemia Workgroup. KDIGO Clinical Practice Guideline for Anemia in Chronic Kidney Disease. Kidney Int. Suppl. 2012, 2, 279–335. [Google Scholar]
- Dignass, A.U.; Gasche, C.; Bettenworth, D.; Birgegård, G.; Danese, S.; Gisbert, J.P.; Gomollon, F.; Iqbal, T.; Katsanos, K.; Koutroubakis, I.; et al. European consensus on the diagnosis and management of iron deficiency and anaemia in inflammatory bowel diseases. J. Crohns Colitis. 2015, 9, 211–222. [Google Scholar] [CrossRef]
- Gordon, H.; Burisch, J.; Ellul, P.; Katsanos, K.; Allocca, M.; Bamias, G.; Acosta, M.B.-D.; Braithwaite, T.; Greuter, T.; Harwood, C.; et al. ECCO Guidelines on Extraintestinal Manifestations in Inflammatory Bowel Disease. J. Crohns Colitis. 2024, 18, 1–37. [Google Scholar] [CrossRef]
- DeLoughery, T.G.; Jackson, C.S.; Ko, C.W.; Rockey, D.C. AGA Clinical Practice Update on Management of Iron Deficiency Anemia: Expert Review. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2024, 22, 1575–1583. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e895–e1032. [Google Scholar] [CrossRef] [PubMed]
- Mansour, D.; Hofmann, A.; Gemzell-Danielsson, K. A Review of Clinical Guidelines on the Management of Iron Deficiency and Iron-Deficiency Anemia in Women with Heavy Menstrual Bleeding. Adv. Ther. 2021, 38, 201–225. [Google Scholar] [CrossRef]
- Bhandari, S.; Pereira, D.I.A.; Chappell, H.F.; Drakesmith, H. Intravenous Irons: From Basic Science to Clinical Practice. Pharma-ceuticals 2018, 11, 82. [Google Scholar] [CrossRef]
- Avni, T.; Bieber, A.; Grossman, A.; Green, H.; Leibovici, L.; Gafter-Gvili, A. The Safety of Intravenous Iron Preparations: Systematic Review and Meta-analysis. Mayo Clin. Proc. 2015, 90, 12–23. [Google Scholar] [CrossRef]
- Glaspy, J.A.; Wolf, M.; Strauss, W.E. Intravenous Iron-Induced Hypophosphatemia: An Emerging Syndrome. Adv. Ther. 2021, 38, 3531–3549. [Google Scholar] [CrossRef]
- Bellos, I.; Frountzas, M.; Pergialiotis, V. Comparative Risk of Hypophosphatemia Following the Administration of Intravenous Iron Formulations: A Network Meta-Analysis. Transfus. Med. Rev. 2020, 34, 188–194. [Google Scholar] [CrossRef]
- Wolf, M.; Rubin, J.; Achebe, M.; Econs, M.J.; Peacock, M.; Imel, E.A.; Thomsen, L.L.; Carpenter, T.O.; Weber, T.; Brandenburg, V.; et al. Effects of Iron Isomaltoside vs. Ferric Carboxymaltose on Hypophosphatemia in Iron-Deficiency Anemia: Two Randomized Clinical Trials. JAMA 2020, 323, 432–443. [Google Scholar] [CrossRef]
- Zoller, H.; Wolf, M.; Blumenstein, I.; Primas, C.; Lindgren, S.; Thomsen, L.L.; Reinisch, W.; Iqbal, T. Hypophosphataemia following ferric derisomaltose and ferric carboxymaltose in pa-tients with iron deficiency anaemia due to inflammatory bowel disease (PHOSPHARE-IBD): A randomised clinical trial. Gut 2023, 72, 644–653. [Google Scholar] [CrossRef]
- Detlie, T.E.; Lindstrøm, J.C.; Jahnsen, M.E.; Finnes, E.; Zoller, H.; Moum, B.; Jahnsen, J. Incidence of hypophosphatemia in patients with inflammatory bowel disease treated with ferric carboxymaltose or iron isomaltoside. Aliment. Pharmacol. Ther. 2019, 50, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Makharadze, T.; Boccia, R.; Krupa, A.; Blackman, N.; Henry, D.H.; Gilreath, J.A. Efficacy and safety of ferric carboxymaltose infusion in reducing anemia in patients receiving chemotherapy for nonmyeloid malignancies: A randomized, placebo-controlled study (IRON-CLAD). Am. J. Hematol. 2021, 96, 1639–1646. [Google Scholar] [CrossRef] [PubMed]
- Kirk, S.E.; Scheurer, M.E.; Brooke Bernhardt, M.; Mahoney, D.H.; Powers, J.M. Phosphorus levels in children treated with intravenous ferric carboxymaltose. Am. J. Hematol. 2021, 96, E215–E218. [Google Scholar] [CrossRef] [PubMed]
- Fragkos, K.C.; Sehgal, V.; Rogers, J.; Arulrajan, S.; Pavanerathan, P.; Barragry, J.; Sebepos-Rogers, G.M.; Mehta, S.J.; Di Caro, S.; Rahman, F. Hypophosphataemia after intravenous iron therapy with ferric carboxymaltose—Real world experience from a tertiary centre in the UK. GastroHep 2020, 2, 205–214. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Ganz, T.; Trumbo, H.; Seid, M.H.; Goodnough, L.T.; Levine, M.A. Parenteral iron therapy and phosphorus ho-meostasis: A review. Am. J. Hematol. 2021, 96, 606–616. [Google Scholar] [CrossRef]
- Kaserer, A.; Braun, J.; Mair, A.; Akbas, S.; Rössler, J.; Bischoff-Ferrari, H.A.; Turina, M.; Clavien, P.-A.; Opitz, I.; Hülsmeier, A.; et al. Ferric carboxymaltose with or without phosphate substitution in iron deficiency or iron deficiency anemia before elective surgery—The DeFICIT trial. J. Clin. Anesth. 2025, 101, 111727. [Google Scholar] [CrossRef]
- Rosano, G.; Schiefke, I.; Göhring, U.M.; Fabien, V.; Bonassi, S.; Stein, J. A Pooled Analysis of Serum Phosphate Measurements and Potential Hypophosphataemia Events in 45 Interventional Trials with Ferric Carboxymaltose. J. Clin. Med. 2020, 9, 3587. [Google Scholar] [CrossRef]
- Rosano, G.M.; Kalantar-Zadeh, K.; Jankowska, E.A. Hypophosphataemia risk associated with ferric carboxymaltose in heart failure: A pooled analysis of clinical trials. ESC Heart Fail. 2023, 10, 1294–1304. [Google Scholar] [CrossRef]
- Injectafer® (Ferric Carboxymaltose Injection), for Intravenous Use. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/203565s027lbl.pdf (accessed on 7 April 2025).
- Ferinject 50 mg iron/mL Dispersion for Injection/Infusion—Summary of Product Characteristics (SmPC). Available online: https://www.medicines.org.uk/emc/product/5910/smpc#gref (accessed on 15 December 2024).
- Imel, E.A.; Econs, M.J. Approach to the Hypophosphatemic Patient. J. Clin. Endocrinol. Metab. 2012, 97, 696. [Google Scholar] [CrossRef]
- Felsenfeld, A.J.; Levine, B.S. Approach to Treatment of Hypophosphatemia. Am. J. Kidney Dis. 2012, 60, 655–661. [Google Scholar] [CrossRef]
- Manghat, P.; Sodi, R.; Swaminathan, R. Phosphate homeostasis and disorders. Ann. Clin. Biochem. 2014, 51, 631–656. [Google Scholar] [CrossRef] [PubMed]
- Sadot, E.; Zheng, J.; Srouji, R.; Strong, V.E.; Gönen, M.; Balachandran, V.P.; D’aNgelica, M.I.; Allen, P.J.; DeMatteo, R.P.; Kingham, T.P.; et al. Hypophosphatemia as a Predictor of Organ-Specific Complications Following Gastrointestinal Surgery: Analysis of 8034 Patients. World J. Surg. 2019, 43, 385–394. [Google Scholar] [CrossRef]
- Puente-Ruiz, N.; Docio, P.; Unzueta, M.T.G.; Lavín, B.A.; Maiztegi, A.; Vega, A.I.; Piedra, M.; Riancho-Zarrabeitia, L.; Mateos, F.; Gonzalez-Lamuño, D.; et al. Uncovering genetic causes of hypophosphatemia. J. Intern. Med. 2023, 293, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Amanzadeh, J.; Reilly, R.F. Hypophosphatemia: An evidence-based approach to its clinical consequences and management. Nat. Clin. Pract. Nephrol. 2006, 2, 136–148. [Google Scholar] [CrossRef]
- Lederer, E. Regulation of serum phosphate. J. Physiol. 2014, 592 Pt 18, 3985. [Google Scholar] [CrossRef]
- Portale, A.A.; Halloran, B.P.; Morris, R.C. Dietary intake of phosphorus modulates the circadian rhythm in serum concentration of phosphorus. Implications for the renal production of 1,25-dihydroxyvitamin D. J. Clin. Investig. 1987, 80, 1147–1154. [Google Scholar] [CrossRef]
- Tebben, P.J. Hypophosphatemia: A Practical Guide to Evaluation and Management. Endocr. Pract. 2022, 28, 1091–1099. [Google Scholar] [CrossRef]
- Gaasbeek, A.; Meinders, A.E. Hypophosphatemia: An update on its etiology and treatment. Am. J. Med. 2005, 118, 1094–1101. [Google Scholar] [CrossRef]
- Shiber, J.R.; Mattu, A. Serum phosphate abnormalities in the emergency department. J. Emerg. Med. 2002, 23, 395–400. [Google Scholar] [CrossRef]
- Laaban, J.P.; Marsal, L.; Waked, M.; Vuong, T.K.; Rochemaure, J. Seizures related to severe hypophosphataemia induced by me-chanical ventilation. Intensive Care Med. 1990, 16, 135–136. [Google Scholar] [CrossRef]
- Ariyoshi, N.; Nogi, M.; Ando, A.; Watanabe, H.; Umekawa, S. Hypophosphatemia-induced Cardiomyopathy. Am. J. Med. Sci. 2016, 352, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Detlie, T.E.; Lindstrøm, J.C.; Jahnsen, M.E.; Finnes, E.; Zoller, H.; Moum, B.; Jahnsen, J. Hypophosphatemia after high-dose intravenous iron treatment in patients with inflammatory bowel disease: Mechanisms and possible clinical impact. World J. Gastroenterol. 2021, 27, 2039–2053. [Google Scholar] [CrossRef] [PubMed]
- Frazier, R.; Hodakowski, A.; Cai, X.; Lee, J.; Zakarija, A.; Stein, B.; David, V.; Wolf, M.; Isakova, T.; Mehta, R. Effects of ferric carboxymaltose on markers of mineral and bone metabolism: A sin-gle-center prospective observational study of women with iron deficiency. Bone 2020, 141, 115559. [Google Scholar] [CrossRef] [PubMed]
- Nouhravesh, N.; Garg, J.; Rockhold, F.W.; De Pasquale, C.G.; O’MEara, E.; Lewis, G.D.; Butler, J.; Harrington, J.; Ezekowitz, J.A.; Ponikowski, P.; et al. Characterization of serum phosphate levels over time with intravenous ferric carboxymaltose versus placebo as treatment for heart failure with reduced ejection fraction and iron deficiency: An exploratory prospective substudy from HEART-FID. Eur. J. Heart Fail. 2024, 27, 872–880. [Google Scholar] [CrossRef]
- Fang, W.; Kenny, R.; Rizvi Qul, A.; McMahon, L.P.; Garg, M. Hypophosphataemia after ferric carboxymaltose is unrelated to symptoms, intestinal inflammation or vitamin D status. BMC Gastroenterol. 2020, 20, 183. [Google Scholar] [CrossRef]
- Abdel-Razeq, H.; Saadeh, S.S.; Malhis, R.; Yasser, S.; Abdulelah, H.; Eljaber, R.; Kleib, A.; Ismael, R. Treatment of anemia in cancer patients undergoing chemotherapy with intra-venous ferric carboxymaltose without erythropoiesis-stimulating agents. Ther. Adv. Med. Oncol. 2020, 12, 1758835920953292. [Google Scholar] [CrossRef]
- Hardy, S.; Vandemergel, X. Intravenous Iron Administration and Hypophosphatemia in Clinical Practice. Int. J. Rheumatol. 2015, 2015, 468675. [Google Scholar] [CrossRef]
- Struppe, A.; Schanda, J.E.; Baierl, A.; Watzl, P.; Muschitz, C. Impact of Intravenous Iron Substitution on Serum Phosphate Levels and Bone Turnover Markers-An Open-Label Pilot Study. Nutrients 2023, 15, 2693. [Google Scholar] [CrossRef]
- Emrich, I.E.; Lizzi, F.; Siegel, J.D.; Seiler-Mussler, S.; Ukena, C.; Kaddu-Mulindwa, D.; D’aMelio, R.; Wagenpfeil, S.; Brandenburg, V.M.; Böhm, M.; et al. Hypophosphatemia after high-dose iron repletion with ferric carboxymaltose and ferric derisomaltose-the randomized controlled HOMe aFers study. BMC Med. 2020, 18, 178. [Google Scholar] [CrossRef]
- Favrat, B.; Balck, K.; Breymann, C.; Hedenus, M.; Keller, T.; Mezzacasa, A.; Gasche, C.; Collins, J.F. Evaluation of a Single Dose of Ferric Carboxymaltose in Fatigued, Iron-Deficient Women—PREFER a Randomized, Placebo-Controlled Study. PLoS ONE 2014, 9, e94217. [Google Scholar] [CrossRef]
- Huang, L.L.; Lee, D.; Troster, S.M.; Kent, A.B.; A Roberts, M.; Macdougall, I.C.; McMahon, L.P. A controlled study of the effects of ferric carboxymaltose on bone and haematinic bi-omarkers in chronic kidney disease and pregnancy. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc—Eur. Ren. Assoc. 2018, 33, 1628–1635. [Google Scholar] [CrossRef]
- Chu, Z.; Cushway, T.; Wong, M.; Lim, K.; Peh, W.; Ng, C.; Lim, W.; Ong, S.G.K.; Tey, T.; Foo, F.; et al. Incidence and predictors of hypophosphataemia after ferric carboxymaltose use-A 3-year experience from a single institution in Singapore. Br. J. Haematol. 2023, 202, 1199–1204. [Google Scholar] [CrossRef]
- Decruyenaere, A.; Kortbeek, K.; Delanghe, S.; Rottey, S.; Denys, H.; Lapeire, L. Incidence, evolution and risk factors of hypophos-phatemia in patients with solid tumors receiving ferric carboxymaltose: A retrospective cohort study. Acta Clin. Belg. 2023, 78, 298–307. [Google Scholar] [CrossRef]
- Schaefer, B.; Tobiasch, M.; Wagner, S.; Glodny, B.; Tilg, H.; Wolf, M.; Zoller, H. Hypophosphatemia after intravenous iron therapy: Comprehensive review of clinical findings and recommendations for management. Bone 2022, 154, 116202. [Google Scholar] [CrossRef]
- Michigami, T. Roles of osteocytes in phosphate metabolism. Front. Endocrinol. 2022, 13, 967774. [Google Scholar] [CrossRef]
- Simic, P.; Babitt, J.L. Regulation of FGF23: Beyond Bone. Curr. Osteoporos. Rep. 2021, 19, 563–573. [Google Scholar] [CrossRef]
- Nishida, Y.; Taketani, Y.; Yamanaka-Okumura, H.; Imamura, F.; Taniguchi, A.; Sato, T.; Shuto, E.; Nashiki, K.; Arai, H.; Yamamoto, H.; et al. Acute effect of oral phosphate loading on serum fibroblast growth factor 23 levels in healthy men. Kidney Int. 2006, 70, 2141–2147. [Google Scholar] [CrossRef]
- Liamis, G.; Milionis, H.J.; Elisaf, M. Medication-induced hypophosphatemia: A review. QJM Int. J. Med. 2010, 103, 449–459. [Google Scholar] [CrossRef]
- Thillard, E.M.; Sade, P.; Michot, J.; Bres, V.; Jonville-Bera, A.P. Drug-related hypophosphatemia: Descriptive study and case/non-case analysis of the French national pharmacovigilance database. Therapie 2024, 79, 371–378. [Google Scholar] [CrossRef]
- Arboleya, L.; Braña, I.; Pardo, E.; Loredo, M.; Queiro, R. Osteomalacia in Adults: A Practical Insight for Clinicians. J. Clin. Med. 2023, 12, 2714. [Google Scholar] [CrossRef]
- Muhandiramge, J.; Lee, V.; Tran, M.; Ho, L. Interaction between ferric carboxymaltose and denosumab causing severe hy-pocalcaemia and hypophosphataemia in a patient without chronic kidney disease. Intern. Med. J. 2023, 53, 1273–1276. [Google Scholar] [CrossRef]
- Ye, S.; Grill, V.; Luo, J.; Nguyen, H.H. Concurrent Denosumab and Parenteral Iron Therapy Precipitating Severe Hypocalcemia and Hypophosphatemia. JCEM Case Rep. 2024, 2, luae005. [Google Scholar] [CrossRef]
- Dashwood, A.; Vale, C.; Laher, S.; Chui, F.; Hay, K.; Wong, Y.W. Hypophosphatemia Is Common After Intravenous Ferric Car-boxymaltose Infusion Among Patients With Symptomatic Heart Failure With Reduced Ejection Fraction. J. Clin. Pharmacol. 2021, 61, 515–521. [Google Scholar] [CrossRef]
- Mentz, R.J.; Garg, J.; Rockhold, F.W.; Butler, J.; De Pasquale, C.G.; Ezekowitz, J.A.; Lewis, G.D.; O’mEara, E.; Ponikowski, P.; Troughton, R.W.; et al. Ferric Carboxymaltose in Heart Failure with Iron Deficiency. N. Engl. J. Med. 2023, 389, 975–986. [Google Scholar] [CrossRef]
- Hruska, K.A.; Mathew, S.; Lund, R.; Qiu, P.; Pratt, R. Hyperphosphatemia of Chronic Kidney Disease. Kidney Int. 2008, 74, 148–157. [Google Scholar] [CrossRef]
- Fukumoto, S. Phosphate metabolism and vitamin D. BoneKEy Rep. 2014, 3, 497. [Google Scholar] [CrossRef]
- Kassianides, X.; Bhandari, S. The differential effect of modern intravenous iron on fibroblast growth factor 23 and phosphate in non-dialysis dependent CKD—The exploratory randomized controlled double-blind ExplorIRON-CKD study. BMC Nephrol. 2024, 25, 54. [Google Scholar] [CrossRef]
- Minisola, S.; Colangelo, L.; Pepe, J.; Diacinti, D.; Cipriani, C.; Rao, S.D. Osteomalacia and Vitamin D Status: A Clinical Update 2020. JBMR Plus. 2021, 5, e10447. [Google Scholar] [CrossRef]
- Fukumoto, S.; Ozono, K.; Michigami, T.; Minagawa, M.; Okazaki, R.; Sugimoto, T.; Takeuchi, Y.; Matsumoto, T. Pathogenesis and diagnostic criteria for rickets and osteomalacia--proposal by an expert panel supported by the Ministry of Health, Labour and Welfare, Japan, the Japanese Society for Bone and Mineral Research, and the Japan Endocrine Society. J. Bone Miner. Metab. 2015, 33, 467–473. [Google Scholar] [CrossRef]
- Uday, S.; Högler, W. Spot the silent sufferers: A call for clinical diagnostic criteria for solar and nutritional osteomalacia. J. Steroid Biochem. Mol. Biol. 2019, 188, 141–146. [Google Scholar] [CrossRef]
- Priemel, M.; von Domarus, C.; Klatte, T.O.; Kessler, S.; Schlie, J.; Meier, S.; Proksch, N.; Pastor, F.; Netter, C.; Streichert, T.; et al. Bone mineralization defects and vitamin D deficiency: Histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2010, 25, 305–312. [Google Scholar] [CrossRef]
- Vilaca, T.; Velmurugan, N.; Smith, C.; Abrahamsen, B.; Eastell, R. Osteomalacia as a Complication of Intravenous Iron Infusion: A Systematic Review of Case Reports. J. Bone Miner. Res. 2022, 37, 1188–1199. [Google Scholar] [CrossRef]
- Klein, K.; Asaad, S.; Econs, M.; Rubin, J.E. Severe FGF23-based hypophosphataemic osteomalacia due to ferric carboxymaltose administration. BMJ Case Rep. 2018, 2018, bcr2017222851. [Google Scholar] [CrossRef]
- Bartko, J.; Roschger, P.; Zandieh, S.; Brehm, A.; Zwerina, J.; Klaushofer, K. Hypophosphatemia, Severe Bone Pain, Gait Disturbance, and Fatigue Fractures After Iron Substitution in Inflammatory Bowel Disease: A Case Report. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2018, 33, 534–539. [Google Scholar] [CrossRef]
- Martens, K.L.; Wolf, M. Incidence, mechanism, and consequences of IV iron–induced hypophosphatemia. Hematol. Am. Soc. Hematol. Educ. Program. 2023, 2023, 636–639. [Google Scholar] [CrossRef]
- Ferinject–CSL Vifor Pro. Available online: https://pro.cslvifor.ch/en/products/ferinject/Ferinject.php (accessed on 24 June 2025).
- Tabish, M.; Agarwal, S.; Gopi, S.; Rana, R.; Ahmed, S.; Gunjan, D.; Sharma, S.; Saraya, A. Randomized Controlled Trial of Intravenous Ferric Carboxymaltose vs Oral Iron to Treat Iron Deficiency Anemia After Variceal Bleed in Patients With Cirrhosis. Am. J. Gastroenterol. 2024, 119, 2061–2069. [Google Scholar] [CrossRef]
- Ponikowski, P.; Van Veldhuisen, D.J.; Comin-Colet, J.; Ertl, G.; Komajda, M.; Mareev, V.; McDonagh, T.; Parkhomenko, A.; Tavazzi, L.; Levesque, V.; et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur. Heart J. 2015, 36, 657–668. [Google Scholar] [CrossRef]
Consensus Statements |
---|
|
|
|
|
|
Bisphosphonates Denosumab Diuretics Carbonic anhydrase inhibitors Corticosteroids Acetaminophen overdose Anti-androgens Anticonvulsants Antineoplastics mTOR inhibitors Calcineurin inhibitors Alcohol use |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosano, G.; Ezekowitz, J.; Nemeth, E.; Ponikowski, P.; Rauner, M.; Seid, M.; Spahn, D.R.; Stein, J.; Wish, J.; Mentz, R.J. Evaluating the Risk of Hypophosphatemia with Ferric Carboxymaltose and the Recommended Approaches for Management: A Consensus Statement. J. Clin. Med. 2025, 14, 4861. https://doi.org/10.3390/jcm14144861
Rosano G, Ezekowitz J, Nemeth E, Ponikowski P, Rauner M, Seid M, Spahn DR, Stein J, Wish J, Mentz RJ. Evaluating the Risk of Hypophosphatemia with Ferric Carboxymaltose and the Recommended Approaches for Management: A Consensus Statement. Journal of Clinical Medicine. 2025; 14(14):4861. https://doi.org/10.3390/jcm14144861
Chicago/Turabian StyleRosano, Giuseppe, Justin Ezekowitz, Elizabeta Nemeth, Piotr Ponikowski, Martina Rauner, Melvin Seid, Donat R. Spahn, Jurgen Stein, Jay Wish, and Robert J. Mentz. 2025. "Evaluating the Risk of Hypophosphatemia with Ferric Carboxymaltose and the Recommended Approaches for Management: A Consensus Statement" Journal of Clinical Medicine 14, no. 14: 4861. https://doi.org/10.3390/jcm14144861
APA StyleRosano, G., Ezekowitz, J., Nemeth, E., Ponikowski, P., Rauner, M., Seid, M., Spahn, D. R., Stein, J., Wish, J., & Mentz, R. J. (2025). Evaluating the Risk of Hypophosphatemia with Ferric Carboxymaltose and the Recommended Approaches for Management: A Consensus Statement. Journal of Clinical Medicine, 14(14), 4861. https://doi.org/10.3390/jcm14144861