Non-Invasive Assessment of Metabolic Dysfunction-Associated Steatotic Liver Disease and Cardiovascular Risk in Acromegaly Indicates Persistence of Cardiac Risks Despite Biochemical Disease Control
Abstract
1. Introduction
2. Materials and Methods
2.1. Setting and Population
2.2. Data Collection
2.2.1. Diagnosis and Classification of Acromegaly
2.2.2. Anthropometric Measurements
2.2.3. Laboratory Measurements and Related Variables
2.2.4. Calculation of Insulin Resistance and Liver Fibrosis Scores
2.2.5. Liver Ultrasonography Assessment
2.2.6. Cardiovascular Measurements and Indices
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ciresi, A.; Guarnotta, V.; Campo, D.; Giordano, C. Hepatic steatosis index in acromegaly: Correlation with insulin resistance regardless of the disease control. Int. J. Endocrinol. 2018, 2018, 5421961. [Google Scholar] [CrossRef]
- Burton, T.; Le Nestour, E.; Neary, M.; Ludlam, W.H. Incidence and prevalence of acromegaly in a large US health plan database. Pituitary 2016, 19, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Rizza, R.A.; Mandarino, L.J.; Gerich, J.E. Effects of growth hormone on insulin action in man: Mechanisms of insulin resistance, impaired suppression of glucose production, and impaired stimulation of glucose utilization. Diabetes 1982, 31, 663–669. [Google Scholar] [CrossRef]
- Eroğlu, İ.; Iremli, B.G.; Idilman, I.S.; Yuce, D.; Lay, I.; Akata, D.; Erbas, T. Nonalcoholic fatty liver disease, Liver fibrosis, and utility of noninvasive scores in patients with acromegaly. J. Clin. Endocrinol. Metab. 2024, 109, e119–e129. [Google Scholar] [CrossRef]
- Bartsch, L.; Bredella, M.; Chicote, M.L.; Colling, C.; Corey, K.; Drescher, H.; Haines, M.; Husseini, J.; Kimball, A.; Lauer, G. OR27-2 growth hormone reduces hepatic steatosis, inflammation and fibrosis in adults with overweight/obesity and nonalcoholic fatty liver disease. J. Endocr. Soc. 2022, 6, A525. [Google Scholar] [CrossRef]
- Xue, J.; Liang, S.; Ma, J.; Xiao, Y. Effect of growth hormone therapy on liver enzyme and other cardiometabolic risk factors in boys with obesity and nonalcoholic fatty liver disease. BMC Endocr. Disord. 2022, 22, 49. [Google Scholar] [CrossRef] [PubMed]
- McPherson, S.; Stewart, S.F.; Henderson, E.; Burt, A.D.; Day, C.P. Simple non-invasive fibrosis scoring systems can reliably exclude advanced fibrosis in patients with non-alcoholic fatty liver disease. Gut 2010, 59, 1265–1269. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Xu, C.; Yu, C.; Miao, M.; Zhang, X.; Zhu, Z.; Ding, X.; Li, Y. Association between serum growth hormone levels and nonalcoholic fatty liver disease: A cross-sectional study. PLoS ONE 2012, 7, e44136. [Google Scholar] [CrossRef]
- Fellinger, P.; Wolf, P.; Pfleger, L.; Krumpolec, P.; Krssak, M.; Klavins, K.; Wolfsberger, S.; Micko, A.; Carey, P.; Gürtl, B. Increased ATP synthesis might counteract hepatic lipid accumulation in acromegaly. JCI Insight 2020, 5, e134638. [Google Scholar] [CrossRef]
- Winhofer, Y.; Wolf, P.; Krššák, M.; Wolfsberger, S.; Tura, A.; Pacini, G.; Gessl, A.; Raber, W.; Kukurova, I.J.; Kautzky-Willer, A. No evidence of ectopic lipid accumulation in the pathophysiology of the acromegalic cardiomyopathy. J. Clin. Endocrinol. Metab. 2014, 99, 4299–4306. [Google Scholar] [CrossRef]
- Bredella, M.A.; Schorr, M.; Dichtel, L.E.; Gerweck, A.V.; Young, B.J.; Woodmansee, W.W.; Swearingen, B.; Miller, K.K. Body composition and ectopic lipid changes with biochemical control of acromegaly. J. Clin. Endocrinol. Metab. 2017, 102, 4218–4225. [Google Scholar] [CrossRef] [PubMed]
- Arlien-Søborg, M.C.; Madsen, M.A.; Dal, J.; Krusenstjerna-Hafstrøm, T.; Ringgaard, S.; Skou, N.; Høgild, M.; Jørgensen, J.O.L. Ectopic lipid deposition and insulin resistance in patients with GH disorders before and after treatment. Eur. J. Endocrinol. 2023, 188, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Vidal, C.M.; Mojahed, H.; Shen, W.; Jin, Z.; Arias-Mendoza, F.; Fernandez, J.C.; Gallagher, D.; Bruce, J.N.; Post, K.D.; Freda, P.U. Adipose tissue redistribution and ectopic lipid deposition in active acromegaly and effects of surgical treatment. J. Clin. Endocrinol. Metab. 2015, 100, 2946–2955. [Google Scholar] [CrossRef] [PubMed]
- Koutsou-Tassopoulou, A.; Papapostoli-Sklavounou, I.; Krawczyk, M.; Friesenhahn-Ochs, B.; Weber, S.N.; Lammert, F.; Stokes, C.S. Hepatic steatosis in patients with acromegaly. Endocrinol. Diabetes Metab. 2019, 2, e00090. [Google Scholar] [CrossRef]
- Saleem, S.; Ahmad, M.; Andrabi, W.I.; Syed, F.N.; Kamran, A.; Gulzar, R.; Fatima, R. Assessment of Liver Steatosis and Fibrosis in Newly Diagnosed Acromegaly: An Integrated Approach Utilizing Quantitative Ultrasound, Histological Analysis and Biochemical Markers. Pak. J. Med. Health Sci. 2023, 17, 129. [Google Scholar] [CrossRef]
- Melmed, S.; Bronstein, M.D.; Chanson, P.; Klibanski, A.; Casanueva, F.F.; Wass, J.A.; Strasburger, C.J.; Luger, A.; Clemmons, D.R.; Giustina, A. A Consensus Statement on acromegaly therapeutic outcomes. Nat. Rev. Endocrinol. 2018, 14, 552–561. [Google Scholar] [CrossRef]
- Giustina, A.; Barkan, A.; Beckers, A.; Biermasz, N.; Biller, B.M.; Boguszewski, C.; Bolanowski, M.; Bonert, V.; Bronstein, M.D.; Casanueva, F.F. A consensus on the diagnosis and treatment of acromegaly comorbidities: An update. J. Clin. Endocrinol. Metab. 2020, 105, e937–e946. [Google Scholar] [CrossRef]
- Berg, C.; Petersenn, S.; Lahner, H.; Herrmann, B.L.; Buchfelder, M.; Droste, M.; Stalla, G.K.; Strasburger, C.J.; Roggenbuck, U.; Lehmann, N. Cardiovascular risk factors in patients with uncontrolled and long-term acromegaly: Comparison with matched data from the general population and the effect of disease control. J. Clin. Endocrinol. Metab. 2010, 95, 3648–3656. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.; Treacher, D.F.; Turner, R. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Goel, A.; Campos, A.; Knipe, H. Diffuse Hepatic Steatosis (Grading). Available online: https://radiopaedia.org/articles/diffuse-hepatic-steatosis-grading (accessed on 2 March 2025).
- Hadaegh, F.; Shafiee, G.; Hatami, M.; Azizi, F. Systolic and diastolic blood pressure, mean arterial pressure and pulse pressure for prediction of cardiovascular events and mortality in a Middle Eastern population. Blood Press. 2012, 21, 12–18. [Google Scholar] [CrossRef]
- White, W.B. Systolic versus diastolic blood pressure versus pulse pressure. Curr. Cardiol. Rep. 2002, 4, 463–467. [Google Scholar] [CrossRef]
- Safar, M.E. Pulse pressure, arterial stiffness and wave reflections (augmentation index) as cardiovascular risk factors in hypertension. Ther. Adv. Cardiovasc. Dis. 2008, 2, 13–24. [Google Scholar] [CrossRef]
- Møller, N.; Jørgensen, J.O.L. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr. Rev. 2009, 30, 152–177. [Google Scholar] [CrossRef]
- Coskun, M.; Sendur, H.; Babayeva, A.; Cerit, M.; Cerit, E.; Yalcin, M.; Altinova, A.; Akturk, M.; Karakoc, M.; Toruner, F. Quantitative ultrasound techniques and biochemical markers to assess liver steatosis and fibrosis in newly diagnosed acromegaly. J. Endocrinol. Investig. 2024, 47, 2823–2833. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.-a.; Lee, H.W.; Ahn, S.H.; Lee, E.J.; Ku, C.R.; Kim, S.U. Positive association between nonalcoholic fatty liver disease and growth hormone deficiency in patients with nonfunctioning pituitary adenoma. Front. Endocrinol. 2023, 13, 1057769. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.; Ricolfi, F.; Lemogne, B.; Aho, S.; Lemaire, S.; Bouillet, B.; Duvillard, L.; Denimal, D.; Fourmont, C.; Loffroy, R. Liver fat content in people with pituitary diseases: Influence of serum IGF1 levels. Horm. Metab. Res. 2018, 50, 303–307. [Google Scholar] [CrossRef]
- Hu, Y.; Yuan, C.; Abdulnaimu, M.; Memetmin, J.; Jie, Z.; Tuhuti, A.; Abudueini, H.; Guo, Y. U-Shaped relationship of insulin-like growth factor I and incidence of nonalcoholic fatty liver in patients with pituitary neuroendocrine tumors: A cohort study. Front. Endocrinol. 2024, 15, 1290007. [Google Scholar] [CrossRef] [PubMed]
- Kuker, A.P.; Shen, W.; Jin, Z.; Chen, J.; Bruce, J.N.; Freda, P.U. Long-term outcome of body composition, ectopic lipid, and insulin resistance changes with surgical treatment of acromegaly. J. Endocr. Soc. 2023, 7, bvad028. [Google Scholar] [CrossRef]
- Nishizawa, H.; Iguchi, G.; Murawaki, A.; Fukuoka, H.; Hayashi, Y.; Kaji, H.; Yamamoto, M.; Suda, K.; Takahashi, M.; Seo, Y. Nonalcoholic fatty liver disease in adult hypopituitary patients with GH deficiency and the impact of GH replacement therapy. Eur. J. Endocrinol. 2012, 167, 67–74. [Google Scholar] [CrossRef]
- Ichikawa, T.; Hamasaki, K.; Ishikawa, H.; Ejima, E.; Eguchi, K.; Nakao, K. Non-alcoholic steatohepatitis and hepatic steatosis in patients with adult onset growth hormone deficiency. Gut 2003, 52, 914. [Google Scholar] [CrossRef]
- Dichtel, L.E.; Corey, K.E.; Haines, M.S.; Chicote, M.L.; Kimball, A.; Colling, C.; Simon, T.G.; Long, M.T.; Husseini, J.; Bredella, M.A. The GH/IGF-1 axis is associated with intrahepatic lipid content and hepatocellular damage in overweight/obesity. J. Clin. Endocrinol. Metab. 2022, 107, e3624–e3632. [Google Scholar] [CrossRef] [PubMed]
- Cansu, G.B.; Yılmaz, N.; Yanıkoğlu, A.; Özdem, S.; Yıldırım, A.B.; Süleymanlar, G.; Altunbaş, H.A. Assessment of diastolic dysfunction, arterial stiffness, and carotid intima-media thickness in patients with acromegaly. Endocr. Pract. 2017, 23, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Abreu, A.; Tovar, A.P.; Castellanos, R.; Valenzuela, A.; Giraldo, C.M.G.; Pinedo, A.C.; Guerrero, D.P.; Barrera, C.A.B.; Franco, H.I.; Ribeiro-Oliveira, A. Challenges in the diagnosis and management of acromegaly: A focus on comorbidities. Pituitary 2016, 19, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Paisley, A.N.; Banerjee, M.; Rezai, M.; Schofield, R.; Balakrishnannair, S.; Herbert, A.; Lawrance, J.A.; Trainer, P.J.; Cruickshank, J. Changes in arterial stiffness but not carotid intimal thickness in acromegaly. J. Clin. Endocrinol. Metab. 2011, 96, 1486–1492. [Google Scholar] [CrossRef]
- Kartal, I.; Oflaz, H.; Pamukcu, B.; Meriç, M.; Aral, F.; Özbey, N.; Alagöl, F. Investigation of early atherosclerotic changes in acromegalic patients. Int. J. Clin. Pract. 2010, 64, 39–44. [Google Scholar] [CrossRef]
- Smith, J.C.; Lane, H.; Davies, N.; Evans, L.; Cockcroft, J.; Scanlon, M.F.; Davies, J. The effects of depot long-acting somatostatin analog on central aortic pressure and arterial stiffness in acromegaly. J. Clin. Endocrinol. Metab. 2003, 88, 2556–2561. [Google Scholar] [CrossRef]
- McEniery, C.M.; Yasmin, n.; Maki-Petaja, K.M.; McDonnell, B.J.; Munnery, M.; Hickson, S.S.; Franklin, S.S.; Cockcroft, J.R.; Wilkinson, I.B. The impact of cardiovascular risk factors on aortic stiffness and wave reflections depends on age: The Anglo-Cardiff Collaborative Trial (ACCT III). Hypertension 2010, 56, 591–597. [Google Scholar] [CrossRef]
- Tovoli, F.; Negrini, G.; Farì, R.; Guidetti, E.; Faggiano, C.; Napoli, L.; Granito, A. Increased risk of nonalcoholic fatty liver disease in patients with coeliac disease on a gluten-free diet: Beyond traditional metabolic factors. Aliment. Pharmacol. Ther. 2018, 48, 538–546. [Google Scholar] [CrossRef]
- Boicean, A.; Ichim, C.; Sasu, S.M.; Todor, S.B. Key Insights into Gut Alterations in Metabolic Syndrome. J. Clin. Med. 2025, 14, 2678. [Google Scholar] [CrossRef]
- Popa, M.L.; Ichim, C.; Anderco, P.; Todor, S.B.; Pop-Lodromanean, D. MicroRNAs in the Diagnosis of Digestive Diseases: A Comprehensive Review. J. Clin. Med. 2025, 14, 2054. [Google Scholar] [CrossRef]
Acromegaly Group | Control Group | |
---|---|---|
Inclusion | Diagnosis of acromegaly (confirmed by IGF-1/GH levels and pituitary imaging) | Age 18–65 years |
Age 18–65 years | No history of endocrine disorders | |
Treatment-naïve or currently treated patients | No chronic diseases (HT, CKD, CVD) | |
Exclusion | Age <18 or >65 years | Age <18 or >65 years |
Missing key data | Missing key data | |
Alcohol consumption (current/history) | Alcohol consumption (current/history) | |
Known liver disease | Known liver disease | |
Any chronic metabolic condition |
Groups | |||
---|---|---|---|
Acromegaly (n = 58) | Control (n = 58) | p | |
Age | 47.5 (39–57) | 42 (40–48) | 0.041 ‡ |
Sex | |||
Female | 36 (62.07%) | 39 (67.24%) | 0.698 § |
Male | 22 (37.93%) | 19 (32.76%) | |
Height, cm | 165 (161–174) | 162 (157–168) | 0.043 ‡ |
Weight, kg | 87.5 (73–98) | 80 (71–97) | 0.224 ‡ |
Body mass index, kg/m2 | 30.61 (27.16–34.67) | 30.25 (26.29–35.64) | 0.971 ‡ |
Obesity | 31 (53.45%) | 30 (51.72%) | 0.852 § |
Extreme obesity | 4 (6.90%) | 10 (17.24%) | 0.154 § |
Waist circumference, cm | 91.00 ± 12.31 | 92.16 ± 15.02 | 0.651 † |
Hip circumference, cm | 102 (97–109) | 105 (98–118) | 0.200 ‡ |
Waist to hip ratio | 0.88 ± 0.06 | 0.85 ± 0.08 | 0.058 † |
Normal | 29 (50.00%) | 41 (70.69%) | 0.037 § |
High | 29 (50.00%) | 17 (29.31%) | |
Smoking | 9 (15.52%) | 0 (0.00%) | 0.003 # |
Hypertension | 22 (37.93%) | 0 (0.00%) | <0.001 § |
Diabetes mellitus | 17 (29.31%) | 0 (0.00%) | <0.001 § |
Cardiovascular disease | 29 (50.00%) | 0 (0.00%) | <0.001 § |
Disease activity | |||
Active | 24 (41.38%) | - | - |
Biochemical remission | 26 (44.83%) | - | |
Newly diagnosed | 8 (13.79%) | - | |
Type of adenoma | |||
Macroadenoma | 45 (77.59%) | - | - |
Microadenoma | 13 (22.41%) | - | |
Duration of disease, years | 8 (1–14) | - | - |
IGF-1 | 240.1 (155–348) | - | - |
GH | 1.48 (0.49–4.00) | - | - |
IGF-1, peak | 727.39 ± 347.09 | - | - |
GH, peak | 6.08 (3.72–21.62) | - | - |
Glucose | 100.7 (92.3–120.1) | 93.95 (88.8–99.4) | 0.002 ‡ |
Insulin | 9.86 (6.70–15.91) | 11.85 (8.24–16.82) | 0.131 ‡ |
HOMA-IR | 2.48 (1.74–3.81) | 2.59 (1.89–3.79) | 0.623 ‡ |
HbA1c | 5.9 (5.5–6.3) | 5.4 (5.1–5.6) | <0.001 ‡ |
CRP | 1.67 (0.67–3.54) | 2.31 (1.02–3.99) | 0.389 ‡ |
Total cholesterol | 201.57 ± 33.74 | 190.36 ± 31.69 | 0.069 † |
HDL-C | 47.49 ± 12.57 | 47.19 ± 10.14 | 0.886 † |
LDL-C | 115.32 ± 32.22 | 112.17 ± 28.42 | 0.579 † |
Triglyceride | 175.0 (132.9–252.0) | 153.65 (87.8–208.1) | 0.014 ‡ |
AST | 25 (21–30) | 16.35 (14–20) | <0.001 ‡ |
ALT | 16 (12.2–20) | 17.45 (14.1–23.2) | 0.210 ‡ |
GGT | 17 (11–24.35) | 17 (12–23) | 0.874 ‡ |
ALP | 79 (66.5–95) | 68 (55–82) | 0.003 ‡ |
Albumin | 4.13 ± 0.42 | 4.53 ± 0.27 | <0.001 † |
WBC (×103) | 6.71 ± 1.80 | 6.82 ± 1.48 | 0.710 † |
Neutrophil (×103) | 3.54 (3.00–4.46) | 3.76 (3.02–4.65) | 0.540 ‡ |
Lymphocyte (×103) | 2.15 ± 0.54 | 2.23 ± 0.51 | 0.432 † |
Monocyte (×103) | 0.47 (0.39–0.55) | 0.42 (0.37–0.50) | 0.089 ‡ |
RDW-CV | 13.5 (13–14.3) | 13.4 (13–14) | 0.759 ‡ |
Hemoglobin | 13.17 ± 1.27 | 13.83 ± 1.47 | 0.011 † |
Platelet (×103) | 199.59 ± 42.70 | 275.98 ± 63.09 | <0.001 † |
APRI | 0.32 (0.27–0.39) | 0.15 (0.13–0.19) | <0.001 ‡ |
FIB-4 | 1.46 (1.19–1.75) | 0.60 (0.50–0.81) | <0.001 ‡ |
MASLD fibrosis score | 0.11 ± 1.14 | −2.78 ± 0.89 | <0.001 † |
BARD score | 3 (3–4) | 2.5 (1–3) | <0.001 ‡ |
Liver USG | |||
Normal | 8 (21.62%) | 31 (81.58%) | <0.001 |
Grade 1 | 21 (56.76%) | 6 (15.79%) | |
Grade 2 | 8 (21.62%) | 1 (2.63%) | |
Systolic blood pressure | 123 (114–136) | 120.5 (112–130) | 0.162 ‡ |
Diastolic blood pressure | 84.81 ± 13.57 | 78.74 ± 12.77 | 0.015 † |
Mean arterial pressure | 95 (89–108.33) | 93.66 (85.33–99) | 0.054 ‡ |
Pulse pressure | 40 (36–52) | 41 (35–50) | 0.801 ‡ |
Heart rate | 79.52 ± 11.28 | 80.84 ± 11.24 | 0.527 † |
CIMT | 0.06 (0.05–0.07) | 0.06 (0.05–0.06) | 0.442 ‡ |
Augmentation pressure | 6 (4–9) | 8.5 (5–11) | 0.045 ‡ |
Augmentation index | 20.32 ± 10.71 | 25.98 ± 10.21 | 0.005 † |
Pulse wave velocity | 7.25 (5.9–8.2) | 6.3 (5.9–6.9) | 0.012 ‡ |
β Coefficient | Standard Error | p | Exp (β) | 95% CI for Exp (β) | ||
---|---|---|---|---|---|---|
Height, cm | 0.238 | 0.112 | 0.033 | 1.268 | 1.019 | 1.578 |
Glucose | 0.107 | 0.055 | 0.049 | 1.113 | 1.000 | 1.240 |
MASLD fibrosis score | 5.722 | 2.037 | 0.005 | 305.607 | 5.635 | 16,574.949 |
Constant | −41.585 | 20.128 | 0.039 | 0.000 |
Disease Activity | |||
---|---|---|---|
Active (n = 24) | Biochemical Remission (n = 26) | p | |
Age | 46.5 (37–58.5) | 50.5 (43–55) | 0.984 ‡ |
Sex | |||
Female | 18 (75.00%) | 15 (57.69%) | 0.321 § |
Male | 6 (25.00%) | 11 (42.31%) | |
Height, cm | 163 (158–169) | 168.5 (162–174) | 0.093 ‡ |
Weight, kg | 79.5 (72–89) | 90.5 (79–100) | 0.066 ‡ |
Body mass index, kg/m2 | 29.52 (27.02–33.61) | 31.36 (27.75–35.06) | 0.404 ‡ |
Obesity | 11 (45.83%) | 17 (65.38%) | 0.269 § |
Extreme obesity | 2 (8.33%) | 1 (3.85%) | 0.602 # |
Waist circumference, cm | 88.25 ± 11.09 | 94.12 ± 12.55 | 0.087 † |
Hip circumference, cm | 102 (96–106.5) | 105 (101–110) | 0.224 ‡ |
Waist to hip ratio | 0.87 ± 0.06 | 0.89 ± 0.06 | 0.159 † |
Normal | 11 (45.83%) | 10 (38.46%) | 0.810 § |
High | 13 (54.17%) | 16 (61.54%) | |
Smoking | 4 (16.67%) | 2 (7.69%) | 0.409 # |
Hypertension | 8 (33.33%) | 9 (34.62%) | 1.000 § |
Diabetes mellitus | 8 (33.33%) | 6 (23.08%) | 0.623 § |
Cardiovascular disease | 12 (50.00%) | 12 (46.15%) | 1.000 § |
Type of adenoma | |||
Macroadenoma | 20 (83.33%) | 17 (65.38%) | 0.261 § |
Microadenoma | 4 (16.67%) | 9 (34.62%) | |
Duration of disease, years | 8 (5–13.5) | 13.5 (4–15) | 0.185 ‡ |
IGF-1 | 292.2 (193.6–556.0) | 152.25 (106.7–238.4) | <0.001 ‡ |
GH | 2.71 (1.88–4.46) | 0.36 (0.13–0.91) | <0.001 ‡ |
IGF-1, peak | 774.03 ± 325.64 | 680.13 ± 384.89 | 0.358 † |
GH, peak | 8.59 (3.70–19.41) | 5.11 (1.77–11.24) | 0.193 ‡ |
Glucose | 103.05 (92.55–123.2) | 96.3 (86.1–104) | 0.145 ‡ |
Insulin | 8.86 (5.76–13.58) | 9.67 (6.70–13.10) | 0.573 ‡ |
HOMA-IR | 2.26 (1.58–3.46) | 2.26 (1.55–3.52) | 0.884 ‡ |
HbA1c | 6.0 (5.6–6.3) | 5.75 (5.4–6.2) | 0.228 ‡ |
CRP | 0.97 (0.40–3.87) | 2.10 (1.58–3.44) | 0.064 ‡ |
Total cholesterol | 203.21 ± 29.13 | 201.84 ± 40.15 | 0.892 † |
HDL-C | 48.26 ± 12.90 | 47.83 ± 13.62 | 0.908 † |
LDL-C | 118.64 ± 30.15 | 112.87 ± 37.32 | 0.552 † |
Triglyceride | 154.05 (121.8–208.75) | 206.4 (140.4–270) | 0.095 ‡ |
AST | 25 (20–27.75) | 26.5 (22–31.9) | 0.142 ‡ |
ALT | 14.5 (12.55–17) | 19 (15.6–25) | 0.015 ‡ |
GGT | 14 (11–26) | 17 (11–21) | 0.877 ‡ |
ALP | 75 (60–89) | 76 (65–95) | 0.466 ‡ |
Albumin | 4.04 ± 0.52 | 4.16 ± 0.34 | 0.316 † |
WBC (×103) | 7.15 ± 2.15 | 6.34 ± 1.41 | 0.121 † |
Neutrophil (×103) | 3.68 (3.27–4.83) | 3.51 (2.90–4.29) | 0.225 ‡ |
Lymphocyte (×103) | 2.22 ± 0.55 | 2.08 ± 0.52 | 0.367 † |
Monocyte (×103) | 0.50 (0.39–0.60) | 0.48 (0.39–0.50) | 0.320 ‡ |
RDW-CV | 13.5 (13.0–14.35) | 13.5 (12.8–14.3) | 0.634 ‡ |
Hemoglobin | 12.87 ± 1.43 | 13.36 ± 1.02 | 0.170 † |
Platelet (×103) | 205.58 ± 42.07 | 199.62 ± 42.14 | 0.619 † |
APRI | 0.30 (0.21–0.35) | 0.34 (0.27–0.38) | 0.085 ‡ |
FIB-4 | 1.35 (1.15–1.65) | 1.49 (1.16–1.93) | 0.478 ‡ |
MASLD fibrosis score | 0.05 ± 1.33 | 0.07 ± 1.01 | 0.942 † |
BARD score | 3.5 (3–4) | 3 (3–4) | 0.871 ‡ |
Liver USG | |||
Normal | 5 (29.41%) | 1 (7.69%) | 0.273 ¶ |
Grade 1 | 10 (58.82%) | 8 (61.54%) | |
Grade 2 | 2 (11.76%) | 4 (30.77%) | |
Systolic blood pressure | 123 (110.5–138.5) | 122.5 (115–134) | 0.938 ‡ |
Diastolic blood pressure | 84.67 ± 13.13 | 84.46 ± 14.38 | 0.958 † |
Mean arterial pressure | 96.16 (89.33–106.50) | 94.00 (88.33–108.33) | 0.734 ‡ |
Pulse pressure | 41.5 (32.5–51.5) | 39 (38–43) | 1.000 ‡ |
Heart rate | 81.00 ± 11.76 | 75.50 ± 9.31 | 0.072 † |
CIMT | 0.06 (0.05–0.07) | 0.06 (0.05–0.07) | 0.518 ‡ |
Augmentation pressure | 6 (4–7) | 8 (5–11) | 0.151 ‡ |
Augmentation index | 19.04 ± 10.42 | 20.64 ± 10.51 | 0.595 † |
Pulse wave velocity | 7.15 (5.6–8.55) | 7.3 (6.1–8.1) | 0.969 ‡ |
IGF-1 | GH | IGF-1, Peak | GH, Peak | ||
---|---|---|---|---|---|
APRI | r | 0.132 | 0.079 | 0.066 | 0.090 |
p | 0.322 | 0.554 | 0.623 | 0.501 | |
FIB-4 | r | 0.042 | 0.140 | −0.070 | −0.104 |
p | 0.754 | 0.294 | 0.599 | 0.435 | |
MASLD fibrosis score | r | −0.001 | 0.020 | 0.027 | −0.048 |
p | 0.993 | 0.882 | 0.840 | 0.721 | |
BARD score | r | −0.081 | −0.162 | 0.078 | −0.112 |
p | 0.547 | 0.225 | 0.563 | 0.403 | |
Liver USG | r | −0.100 | −0.096 | 0.154 | −0.015 |
p | 0.556 | 0.571 | 0.363 | 0.928 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karadeniz, Y.; Karakose, M. Non-Invasive Assessment of Metabolic Dysfunction-Associated Steatotic Liver Disease and Cardiovascular Risk in Acromegaly Indicates Persistence of Cardiac Risks Despite Biochemical Disease Control. J. Clin. Med. 2025, 14, 4822. https://doi.org/10.3390/jcm14144822
Karadeniz Y, Karakose M. Non-Invasive Assessment of Metabolic Dysfunction-Associated Steatotic Liver Disease and Cardiovascular Risk in Acromegaly Indicates Persistence of Cardiac Risks Despite Biochemical Disease Control. Journal of Clinical Medicine. 2025; 14(14):4822. https://doi.org/10.3390/jcm14144822
Chicago/Turabian StyleKaradeniz, Yusuf, and Melia Karakose. 2025. "Non-Invasive Assessment of Metabolic Dysfunction-Associated Steatotic Liver Disease and Cardiovascular Risk in Acromegaly Indicates Persistence of Cardiac Risks Despite Biochemical Disease Control" Journal of Clinical Medicine 14, no. 14: 4822. https://doi.org/10.3390/jcm14144822
APA StyleKaradeniz, Y., & Karakose, M. (2025). Non-Invasive Assessment of Metabolic Dysfunction-Associated Steatotic Liver Disease and Cardiovascular Risk in Acromegaly Indicates Persistence of Cardiac Risks Despite Biochemical Disease Control. Journal of Clinical Medicine, 14(14), 4822. https://doi.org/10.3390/jcm14144822