Glucose Homeostasis, Metabolomics, and Pregnancy Outcomes After Bariatric Surgery (GLORIA): Protocol for a Multicentre Prospective Cohort Study
Abstract
1. Background
2. Methods
2.1. Study Design and Setting
2.2. Modifications to the Study Protocol
2.3. Objectives
- To compare glucose metabolisms between pregnant women after MBS and age- and BMI-matched pregnant women without MBS.
- To determine whether metabolic alterations are associated with delayed foetal growth in pregnant women after MBS compared to pregnant women without MBS, and, in particular, which metabolites are related to adverse outcomes in pregnancy.
- To determine whether there are differences in glucose metabolism and other metabolites (by using metabolomics) between RYBG and SG.
- To determine the impact of MBS on the body composition of newborns.
- To determine the accuracy of CGM compared to the self-monitoring of capillary blood glucose (SMBG) to screen for GDM in pregnant women with MBS.
2.3.1. Primary Outcome
2.3.2. Secondary Outcomes
2.3.3. Exploratory Outcomes
- -
- Maternal glycaemic outcomes: percentage of time < 54 mg/dL (ADA recommendations of the definition of hypoglycaemia) [24]; glycaemic variability metrics: standard deviation (SD), Coefficient of Variation (CV) and Mean Amplitude of Glucose Excursions (MAGE); percentage of time > 120 mg/dL; percentage of time > 140 mg/dL; percentage of time > 180 mg/dL; percentage of time < 70 mg/dL; percentage of time < 63 mg/dL; percentage of time < 50 mg/dL; low blood glucose index (LBGI)
- -
- Maternal pregnancy outcomes: duration of pregnancy; time from surgery to conception; prevalence of micro- and macronutrient deficiencies; body composition in early pregnancy as assessed by bio-impedance measurement, prevalence of GDM; gestational weight gain (GWG); prevalence of caesarean section; prevalence of pre-eclampsia and eclampsia, prevalence of gestational hypertension; surgery-related complications during pregnancy; type of labour; type of delivery; complications during delivery
- -
- Foetal growth and body composition outcomes: prevalence of SGA; large for gestational age (LGA); prevalence of intra-uterine growth retardation (IUGR); FASTT; pregnancy loss
- -
- Neonatal outcomes: body composition of the newborn assessed by skin fold thickness measurements, according to [25]; prevalence of preterm delivery; prevalence of neonatal hypoglycaemia; prevalence of neonatal intensive care unit (NICU) admission; foetal malformation; complications during delivery; sex of the infant; birth weight, length, and percentile; neonatal death
- -
- Identification of new biomarkers: metabolomics on maternal plasma collected at 30–34 weeks: lipid omics platform and metabolism and energy platform. We will prioritise analyses for the surgical group.
- -
- Patient-reported outcomes: certain potential confounders, such as smoking status, will be derived from survey data. Additionally, other patient-reported outcomes collected through the surveys will be analysed as independent outcomes in the exploratory comparisons between subgroups. The following questionnaires will be completed at the different study visits:
- A self-designed questionnaire on general habits and socio-economic background previously used in the Belgian Diabetes in Pregnancy study (BEDIP) to extensively collect information on socio-economic status and habits [22].
- Frequency Food questionnaire (FFQ), including questions on frequency and portion size of consumed foods and beverages validated for the Belgian population [29].
- International Physical Activity Questionnaire (IPAQ, full version) validated for use in the Belgian population and as used in the BEDIP study [22]. This questionnaire assesses various domains of physical activity, including job-related tasks, caregiving, and time spent sitting.
- The 36-Item Short Form Health Survey (SF-36) includes a set of generic, coherent, and easily administered quality of life measures and is validated for use in the maternity context [30].
- The 20-item Centre for Epidemiologic Studies-Depression (CES-D) questionnaire, which is validated in pregnancy to asses symptoms of clinical depression over the past seven days [31].
- The State-Trait Anxiety Inventory (STAI) questionnaire, a validated six-item short-form on anxiety, which is validated for the Dutch speaking population [32].
2.4. Recruitment and Eligibility
2.4.1. Inclusion Criteria
- -
- age 18–45 years
- -
- singleton pregnancy with ultrasound-confirmed gestational age up to eleven weeks and six days
- -
- for the group with MBS: history of SG or RYGB
- -
- participants need to speak and understand Flemish, French, or English and have e-mail access
2.4.2. Exclusion Criteria
- -
- multiple pregnancy
- -
- pregnancy beyond 12 weeks at time of inclusion
- -
- other types of MBS than SG or RYGB
- -
- known pregestational diabetes mellitus
- -
- medications known to interfere with glucose metabolism, at time of inclusion
- -
- a physical or psychological disease likely to interfere with the conduct of the study
2.5. Groups
2.5.1. After Metabolic Bariatric Surgery
2.5.2. Control
2.6. Safety
2.7. Discontinuation of Participation
2.8. Study Visits and Data Collection
2.8.1. Screening Visit
2.8.2. Visit 1 to 4
2.8.3. Delivery and Early Postpartum
2.8.4. Biochemical Parameters and GDM Screening
2.8.5. Clinical Measurements
2.8.6. Food Diary
2.8.7. Biobank
2.8.8. Cord Blood
2.8.9. CGM
2.8.10. Ultrasound Measurements
2.8.11. Metabolomics
2.9. Statistics
2.9.1. Sample Size and Power Calculation
2.9.2. Statistical Methods
Primary and Secondary Analyses (MBS Group)
Exploratory Comparative Analyses
2.9.3. Trial Management
2.9.4. Data Management
2.9.5. Datatypes Collection and Preservation of Data
3. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Abdominal Circumference |
ADA | American Diabetes Association |
BEDIP | Belgian Diabetes in Pregnancy study |
BMI | Body Mass Index |
CBGM | Capillary Blood Glucose Monitoring |
CV | Coefficient of Variation |
CGM | Continuous Glucose Monitoring |
CSF | Case Report Form |
FASTT | Foetal Abdominal Subcutaneous Tissue Thickness |
FPG | Fasting Plasma Glucose |
GDM | Gestational Diabetes Mellitus |
GEE | Generalised Estimating Equations |
GWG | Gestational Weight Gain |
HAPO | Hyperglycaemia and Adverse Pregnancy Outcomes |
ICC | Interclass Correlation |
IOM | Institute of Medicine |
IUGR | Intra-Uterine Growth Retardation |
LGA | Large for Gestational Age |
LBGI | Low Blood Glucose Index |
MARD | Mean Absolute Relative Difference |
MAGE | Mean Amplitude of Glucose Excursions |
MBS | Metabolic and Bariatric Surgery |
NICU | Neonatal Intensive Care Unit |
OGTT | Oral Glucose Tolerance Test |
PBH | Post-bariatric hypoglycaemia |
REDCap | Research Electronic Data Capture |
RYGB | Roux-en-Y Gastric Bypass |
SAE | Serious Adverse Event |
SD | Standard Deviation |
SMBG | Self-Monitoring of Capillary Blood Glucose |
SMDs | Standardised Mean Differences |
SG | Sleeve Gastrectomy |
SGA | Small for Gestational Age |
SOPs | Standard Operating Procedures |
TIR | Time In Range |
WHO | World Health Organization |
References
- Devlieger, R.; Benhalima, K.; Damm, P.; Van Assche, A.; Mathieu, C.; Mahmood, T.; Dunne, F.; Bogaerts, A. Maternal obesity in Europe: Where do we stand and how to move forward?: A scientific paper commissioned by the European Board and College of Obstetrics and Gynaecology (EBCOG). Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 201, 203–208. [Google Scholar] [CrossRef]
- Buchwald, H.; Avidor, Y.; Braunwald, E.; Jensen, M.D.; Pories, W.; Fahrbach, K.; Schoelles, K. Bariatric surgery: A systematic review and meta-analysis. JAMA 2004, 292, 1724–1737. [Google Scholar] [CrossRef]
- Maggard, M.A.; Yermilov, I.; Li, Z.; Maglione, M.; Newberry, S.; Suttorp, M.; Hilton, L.; Santry, H.P.; Morton, J.M.; Livingston, E.H.; et al. Pregnancy and fertility following bariatric surgery: A systematic review. JAMA 2008, 300, 2286–2296. [Google Scholar] [CrossRef]
- Johansson, K.; Cnattingius, S.; Näslund, I.; Roos, N.; Trolle Lagerros, Y.; Granath, F.; Stephansson, O.; Neovius, M. Outcomes of Pregnancy after Bariatric Surgery. N. Engl. J. Med. 2015, 372, 814–824. [Google Scholar] [CrossRef]
- Roos, N.; Neovius, M.; Cnattingius, S.; Trolle Lagerros, Y.; Sääf, M.; Granath, F.; Stephansson, O. Perinatal outcomes after bariatric surgery: Nationwide population based matched cohort study. BMJ 2013, 347, f6460. [Google Scholar] [CrossRef]
- Kjaer, M.M.; Lauenborg, J.; Breum, B.M.; Nilas, L. The risk of adverse pregnancy outcome after bariatric surgery: A nationwide register-based matched cohort study. Am. J. Obstet. Gynecol. 2013, 208, 464.e1–464.e5. [Google Scholar] [CrossRef]
- Kwong, W.; Tomlinson, G.; Feig, D.S. Maternal and neonatal outcomes after bariatric surgery; a systematic review and meta-analysis: Do the benefits outweigh the risks? Am. J. Obstet. Gynecol. 2018, 218, 573–580. [Google Scholar] [CrossRef]
- Akhter, Z.; Rankin, J.; Ceulemans, D.; Ngongalah, L.; Ackroyd, R.; Devlieger, R.; Vieira, R.; Heslehurst, N. Pregnancy after bariatric surgery and adverse perinatal outcomes: A systematic review and meta-analysis. PLoS Med. 2019, 16, e1002866. [Google Scholar] [CrossRef]
- Mericq, V.; Martinez-Aguayo, A.; Uauy, R.; Iniguez, G.; Van der Steen, M.; Hokken-Koelega, A. Long-term metabolic risk among children born premature or small for gestational age. Nat. Rev. Endocrinol. 2017, 13, 50–62. [Google Scholar] [CrossRef]
- Feichtinger, M.; Falcone, V.; Schoenleitner, T.; Stopp, T.; Husslein, P.W.; Eppel, W.; Chalubinski, K.M.; Göbl, C.S. Intrauterine Fetal Growth Delay During Late Pregnancy After Maternal Gastric Bypass Surgery. Ultraschall Med. 2018, 41, 52–59. [Google Scholar] [CrossRef]
- Yerlikaya-Schatten, G.; Feichtinger, M.; Stopp, T.; Huhn, E.A.; Chalubinski, K.; Husslein, P.; Eppel, W.; Schatten, C.; Göbl, C.S. Trajectories of Fetal Adipose Tissue Thickness in Pregnancies After Gastric Bypass Surgery. Obes. Surg. 2020, 30, 96–101. [Google Scholar] [CrossRef]
- Maric, T.; Kanu, C.; Muller, D.C.; Tzoulaki, I.; Johnson, M.R.; Savvidou, M.D. Fetal growth and feto-placental circulation in pregnancies following bariatric surgery: A prospective study. BJOG 2020, 127, 839–846. [Google Scholar] [CrossRef]
- Kadakia, R.; Nodzenski, M.; Talbot, O.; Kuang, A.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Ilkayeva, O.R.; O’Neal, S.K.; Lowe, L.P.; et al. Maternal metabolites during pregnancy are associated with newborn outcomes and hyperinsulinaemia across ancestries. Diabetologia 2019, 62, 473–484. [Google Scholar] [CrossRef]
- Di Giulio, A.M.; Carelli, S.; Castoldi, R.E.; Gorio, A.; Taricco, E.; Cetin, I. Plasma amino acid concentrations throughout normal pregnancy and early stages of intrauterine growth restricted pregnancy. J. Matern. Fetal Neonatal Med. 2004, 15, 356–362. [Google Scholar] [CrossRef]
- Leite, D.F.B.; Morillon, A.C.; Melo Júnior, E.F.; Souza, R.T.; McCarthy, F.P.; Khashan, A.; Baker, P.; Kenny, L.C.; Cecatti, J.G. Examining the predictive accuracy of metabolomics for small-for-gestational-age babies: A systematic review. BMJ Open 2019, 9, e031238. [Google Scholar] [CrossRef]
- West, K.A.; Kanu, C.; Maric, T.; McDonald, J.A.K.; Nicholson, J.K.; Li, J.V.; Johnson, M.R.; Holmes, E.; Savvidou, M.D. Longitudinal metabolic and gut bacterial profiling of pregnant women with previous bariatric surgery. Gut 2020, 69, 1452–1459. [Google Scholar] [CrossRef]
- Group HSCR; Metzger, B.E.; Lowe, L.P.; Dyer, A.R.; Trimble, E.R.; Chaovarindr, U.; Coustan, D.R.; Hadden, D.R.; McCance, D.R.; Hod, M.; et al. Hyperglycemia and adverse pregnancy outcomes. N. Engl. J. Med. 2008, 358, 1991–2002. [Google Scholar]
- Lupoli, R.; Lembo, E.; Rainone, C.; Schiavo, L.; Iannelli, A.; Di Minno, M.N.D.; Capaldo, B. Rate of post-bariatric hypoglycemia using continuous glucose monitoring: A meta-analysis of literature studies. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 32–39. [Google Scholar] [CrossRef]
- Nayak, A.U.; Vijay, A.M.A.; Indusekhar, R.; Kalidindi, S.; Katreddy, V.M.; Varadhan, L. Association of hypoglycaemia in screening oral glucose tolerance test in pregnancy with low birth weight fetus. World J. Diabetes 2019, 10, 304–310. [Google Scholar] [CrossRef]
- Rottenstreich, A.; Elazary, R.; Ezra, Y.; Kleinstern, G.; Beglaibter, N.; Elchalal, U. Hypoglycemia during oral glucose tolerance test among post–bariatric surgery pregnant patients: Incidence and perinatal significance. Surg. Obes. Relat. Dis. 2018, 14, 347–353. [Google Scholar] [CrossRef]
- Stentebjerg, L.L.; Madsen, L.R.; Støving, R.K.; Andersen, L.L.T.; Vinter, C.A.; Juhl, C.B.; Jensen, D.M. Roux-en-Y Gastric Bypass Increases Glycemic Excursions During Pregnancy and Postpartum: A Prospective Cohort Study. Diabetes Care 2023, 46, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Benhalima, K.; Van Crombrugge, P.; Verhaeghe, J.; Vandeginste, S.; Verlaenen, H.; Vercammen, C.; Dufraimont, E.; De Block, C.; Jacquemyn, Y.; Mekahli, F.; et al. The Belgian Diabetes in Pregnancy Study (BEDIP-N), a multi-centric prospective cohort study on screening for diabetes in pregnancy and gestational diabetes: Methodology and design. BMC Pregnancy Childbirth 2014, 14, 226. [Google Scholar] [CrossRef] [PubMed]
- Jans, G.; Matthys, C.; Bel, S.; Ameye, L.; Lannoo, M.; Van der Schueren, B.; Dillemans, B.; Lemmens, L.; Saey, J.P.; van Nieuwenhove, Y.; et al. AURORA: Bariatric surgery registration in women of reproductive age—A multicenter prospective cohort study. BMC Pregnancy Childbirth 2016, 16, 195. [Google Scholar] [CrossRef]
- International Hypoglycaemia Study Group. Glucose concentrations of less than 3.0 mmol/L (54 mg/dL) should be reported in clinical trials: A joint position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 2017, 60, 3–6. [Google Scholar] [CrossRef]
- Catalano, P.M.; Thomas, A.J.; Avallone, D.A.; Amini, S.B. Anthropometric estimation of neonatal body composition. Am. J. Obstet. Gynecol. 1995, 173, 1176–1181. [Google Scholar] [CrossRef]
- Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Validation of measures of satisfaction with and impact of continuous and conventional glucose monitoring. Diabetes Technol. Ther. 2010, 12, 679–684. [Google Scholar] [CrossRef]
- Polonsky, W.H.; Fisher, L.; Hessler, D.; Edelman, S.V. Development of a New Measure for Assessing Glucose Monitoring Device-Related Treatment Satisfaction and Quality of Life. Diabetes Technol. Ther. 2015, 17, 657–663. [Google Scholar] [CrossRef]
- Speight, J.; Holmes-Truscott, E.; Singh, H.; Little, S.; Shaw, J.A.M. Development and Psychometric Validation of the Novel Glucose Monitoring Experiences Questionnaire Among Adults with Type 1 Diabetes. Diabetes Technol. Ther. 2019, 21, 691–701. [Google Scholar] [CrossRef]
- Matthys, C.; Meulemans, A.; Van der Schueren, B. Development and validation of general FFQ for use in clinical practice. Ann. Nutr. Metab. 2015, 67, 239. [Google Scholar]
- Petrou, S.; Morrell, J.; Spiby, H. Assessing the empirical validity of alternative multi-attribute utility measures in the maternity context. Health Qual. Life Outcomes 2009, 7, 40. [Google Scholar] [CrossRef]
- Dalfra, M.G.; Nicolucci, A.; Bisson, T.; Bonsembiante, B.; Lapolla, A.; QLISG. Quality of life in pregnancy and post-partum: A study in diabetic patients. Qual. Life Res. 2012, 21, 291–298. [Google Scholar] [CrossRef] [PubMed]
- van der Bij, A.K.; de Weerd, S.; Cikot, R.J.; Steegers, E.A.; Braspenning, J.C. Validation of the dutch short form of the state scale of the Spielberger State-Trait Anxiety Inventory: Considerations for usage in screening outcomes. Community Genet. 2003, 6, 84–87. [Google Scholar] [CrossRef] [PubMed]
- International Association of Diabetes and Pregnancy Study Groups Consensus Panel; Metzger, B.E.; Gabbe, S.G.; Persson, B.; Buchanan, T.A.; Catalano, P.A.; Damm, P.; Dyer, A.R.; de Leiva, A.; Hod, M.; et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010, 33, 676–682. [Google Scholar] [CrossRef]
- Benhalima, K.; Minschart, C.; Ceulemans, D.; Bogaerts, A.; Van Der Schueren, B.; Mathieu, C.; Devlieger, R. Screening and Management of Gestational Diabetes Mellitus After Bariatric Surgery. Nutrients 2018, 10, 1479. [Google Scholar] [CrossRef]
- Benhalima, K.; Minschart, C.; Van Crombrugge, P.; Calewaert, P.; Verhaeghe, J.; Vandamme, S.; Theetaert, K.; Devlieger, R.; Pierssens, L.; Ryckeghem, H.; et al. The 2019 Flemish consensus on screening for overt diabetes in early pregnancy and screening for gestational diabetes mellitus. Acta Clin. Belg. 2019, 75, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Moreno, L.A.; Kersting, M.; de Henauw, S.; González-Gross, M.; Sichert-Hellert, W.; Matthys, C.; Mesana, M.I.; Ross, N. How to measure dietary intake and food habits in adolescence: The European perspective. Int. J. Obes. 2005, 29 (Suppl. S2), S66–S77. [Google Scholar] [CrossRef]
- Castorino, K.; Polsky, S.; O’Malley, G.; Levister, C.; Nelson, K.; Farfan, C.; Brackett, S.; Puhr, S.; Levy, C.J. Performance of the Dexcom G6 Continuous Glucose Monitoring System in Pregnant Women with Diabetes. Diabetes Technol. Ther. 2020, 22, 943–947. [Google Scholar] [CrossRef]
- Tofte, N.; Suvitaival, T.; Trost, K.; Mattila, I.M.; Theilade, S.; Winther, S.A.; Ahluwalia, T.S.; Frimodt-Møller, M.; Legido-Quigley, C.; Rossing, P. Metabolomic Assessment Reveals Alteration in Polyols and Branched Chain Amino Acids Associated with Present and Future Renal Impairment in a Discovery Cohort of 637 Persons with Type 1 Diabetes. Front. Endocrinol. 2019, 10, 818. [Google Scholar] [CrossRef]
- Horgan, R.P.; Broadhurst, D.I.; Walsh, S.K.; Dunn, W.B.; Brown, M.; Roberts, C.T.; North, R.A.; McCowan, L.M.; Kell, D.B.; Baker, P.N.; et al. Metabolic profiling uncovers a phenotypic signature of small for gestational age in early pregnancy. J. Proteome Res. 2011, 10, 3660–3673. [Google Scholar] [CrossRef]
- Bonis, C.; Lorenzini, F.; Bertrand, M.; Parant, O.; Gourdy, P.; Vaurs, C.; Cazals, L.; Ritz, P.; Hanaire, H. Glucose Profiles in Pregnant Women After a Gastric Bypass: Findings from Continuous Glucose Monitoring. Obes. Surg. 2016, 26, 2150–2155. [Google Scholar] [CrossRef]
- Leutner, M.; Klimek, P.; Göbl, C.; Bozkurt, L.; Harreiter, J.; Husslein, P.; Eppel, W.; Baumgartner-Parzer, S.; Pacini, G.; Thurner, S.; et al. Glucagon-like peptide 1 (GLP-1) drives postprandial hyperinsulinemic hypoglycemia in pregnant women with a history of Roux-en-Y gastric bypass operation. Metabolism 2019, 91, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Donald, B.R. Inference and missing data. Biometrika 1976, 63, 581–592. [Google Scholar]
- Chrzanowski, J.; Grabia, S.; Michalak, A.; Wielgus, A.; Wykrota, J.; Mianowska, B.; Szadkowska, A.; Fendler, W. GlyCulator 3.0: A Fast, Easy-to-Use Analytical Tool for CGM Data Analysis, Aggregation, Center Benchmarking, and Data Sharing. Diabetes Care 2023, 46, e3–e5. [Google Scholar] [CrossRef] [PubMed]
- Gohier, H.; Guyard-Boileau, B.; Tuyeras, G.; Bertrand, M.; Coustols, M.; Guerby, P.; Parant, O.; Ritz, P.; Hanaire, H. Glucose Abnormalities and Inappropriate Weight Gain Predict Negative Pregnancy Outcomes After Gastric Bypass Surgery. Obes. Surg. 2021, 31, 3123–3129. [Google Scholar] [CrossRef]
- Alexiadou, K.; Ansari, S.; Jones, B.; Yu, C.; Dornhorst, A.; Oliver, N.; Tsironis, C.; Purkayastha, S.; Ahmed, A.; Agha-Jaffar, R.; et al. Increased glycemic variability in pregnant women with Roux-en-Y gastric bypass compared with sleeve gastrectomy. BMJ Open Diabetes Res. Care 2024, 12, e003642. [Google Scholar] [CrossRef]
STUDY PERIOD | |||||||
---|---|---|---|---|---|---|---|
TIMEPOINTS in Pregnancy and Early Postpartum | Screening <12 Weeks | Study Visit 1 <12 Weeks | Study Visit 2 18–22 Weeks | Study Visit 2 24–28 Weeks | Study Visit 3 30–34 Weeks | Delivery and Early Postpartum | |
ENROLMENT | Eligibility screening | X | |||||
Matching control group | X | ||||||
Informed consent | X | ||||||
INTERVENTIONS | Masked CGM for 10 days | X | X | X | X | ||
ASSESSMENTS | Outcomes collected from medical records: | ||||||
Demographic data | X | ||||||
Data collection from electronic medical records (medical, surgical, obstetrical) | X | X | X | X | X | X | |
Clinical and biochemical outcomes: | |||||||
Physical examination | X | X | X | X | X | ||
BIA measurement mother | X | ||||||
(S)AE collection | X | X | X | X | X | ||
foetal ultrasound | X | X | X | ||||
SMBG for 1 week surgical cohort | X | ||||||
50 g GCT or 75 g OGTT control group | X | ||||||
Skinfold measurements newborn | X | ||||||
Lab with micronutrients measurement | X | X | X | ||||
Lab with fasting plasma glucose or HbA1c | X | ||||||
Metabolomics on maternal plasma | X | X | X | X | X cord blood | ||
Patient-reported outcomes: | |||||||
Three-day food diary | X | ||||||
Self-administered questionnaires | X | X | X | X | |||
Concomitant medication | X | X | X | X | X | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deleus, E.; Bochanen, N.; Ceulemans, D.; Debunne, H.; Denys, B.; Devlieger, R.; Geerts, I.; Laenen, A.; Jochems, L.; Lannoey, E.; et al. Glucose Homeostasis, Metabolomics, and Pregnancy Outcomes After Bariatric Surgery (GLORIA): Protocol for a Multicentre Prospective Cohort Study. J. Clin. Med. 2025, 14, 4782. https://doi.org/10.3390/jcm14134782
Deleus E, Bochanen N, Ceulemans D, Debunne H, Denys B, Devlieger R, Geerts I, Laenen A, Jochems L, Lannoey E, et al. Glucose Homeostasis, Metabolomics, and Pregnancy Outcomes After Bariatric Surgery (GLORIA): Protocol for a Multicentre Prospective Cohort Study. Journal of Clinical Medicine. 2025; 14(13):4782. https://doi.org/10.3390/jcm14134782
Chicago/Turabian StyleDeleus, Ellen, Niels Bochanen, Dries Ceulemans, Hanne Debunne, Bénédicte Denys, Roland Devlieger, Ina Geerts, Annouschka Laenen, Lisbeth Jochems, Els Lannoey, and et al. 2025. "Glucose Homeostasis, Metabolomics, and Pregnancy Outcomes After Bariatric Surgery (GLORIA): Protocol for a Multicentre Prospective Cohort Study" Journal of Clinical Medicine 14, no. 13: 4782. https://doi.org/10.3390/jcm14134782
APA StyleDeleus, E., Bochanen, N., Ceulemans, D., Debunne, H., Denys, B., Devlieger, R., Geerts, I., Laenen, A., Jochems, L., Lannoey, E., Lannoo, M., Loccufier, A., Maes, T., Marlier, J., Morrens, A., Myngheer, N., Tierens, L., Vandenberghe, G., Van den Bruel, A., ... Benhalima, K. (2025). Glucose Homeostasis, Metabolomics, and Pregnancy Outcomes After Bariatric Surgery (GLORIA): Protocol for a Multicentre Prospective Cohort Study. Journal of Clinical Medicine, 14(13), 4782. https://doi.org/10.3390/jcm14134782