Comprehensive Assessment of Biventricular and Biatrial Myocardial Strain Parameters at Six Years Postpartum in a Cohort of Women with Previous Hypertensive Disorders of Pregnancy
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Clinical and Instrumental Parameters
2.3. Statistical Analysis
3. Results
3.1. Clinical Findings
3.2. Instrumental Findings
3.3. Follow-Up Data
3.4. Measurement Variability
4. Discussion
4.1. Main Findings of the Present Study
4.2. Comparison with Previous Studies and Interpretation of Results
4.3. Implications for Clinical Practice
4.4. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hypertension in Pregnancy: Diagnosis and Management; National Institute for Health and Care Excellence (NICE): London, UK, 2019.
- Regitz-Zagrosek, V.; Roos-Hesselink, J.W.; Bauersachs, J.; Blomström-Lundqvist, C.; Cífková, R.; De Bonis, M.; Iung, B.; Johnson, M.R.; Kintscher, U.; Kranke, P.; et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy. Eur. Heart J. 2018, 39, 3165–3241. [Google Scholar] [CrossRef] [PubMed]
- Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin; Number 222. Obstet. Gynecol. 2020, 135, e237–e260. [CrossRef]
- Maas, A.H.E.M.; Rosano, G.; Cifkova, R.; Chieffo, A.; van Dijken, D.; Hamoda, H.; Kunadian, V.; Laan, E.; Lambrinoudaki, I.; Maclaran, K.; et al. Cardiovascular health after menopause transition; pregnancy disorders; and other gynaecologic conditions: A consensus document from European cardiologists; gynaecologists; and endocrinologists. Eur. Heart J. 2021, 42, 967–984. [Google Scholar] [CrossRef]
- Grandi, S.M.; Filion, K.B.; Yoon, S.; Ayele, H.T.; Doyle, C.M.; Hutcheon, J.A.; Smith, G.N.; Gore, G.C.; Ray, J.G.; Nerenberg, K.; et al. Cardiovascular Disease-Related Morbidity and Mortality in Women with a History of Pregnancy Complications. Circulation 2019, 139, 1069–1079. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Arvizu, M.; Rich-Edwards, J.W.; Wang, L.; Rosner, B.; Stuart, J.J.; Rexrode, K.M.; Chavarro, J.E. Hypertensive Disorders of Pregnancy and Subsequent Risk of Premature Mortality. J. Am. Coll. Cardiol. 2021, 77, 1302–1312. [Google Scholar] [CrossRef] [PubMed]
- Ying, W.; Catov, J.M.; Ouyang, P. Hypertensive Disorders of Pregnancy and Future Maternal Cardiovascular Risk. J. Am. Heart Assoc. 2018, 7, e009382. [Google Scholar] [CrossRef]
- Kestenbaum, B.; Seliger, S.L.; Easterling, T.R.; Gillen, D.L.; Critchlow, C.W.; Stehman-Breen, C.O.; Schwartz, S.M. Cardiovascular and thromboembolic events following hypertensive pregnancy. Am. J. Kidney Dis. 2003, 42, 982–989. [Google Scholar] [CrossRef]
- Cain, M.A.; Salemi, J.L.; Tanner, J.P.; Kirby, R.S.; Salihu, H.M.; Louis, J.M. Pregnancy as a window to future health: Maternal placental syndromes and short-term cardiovascular outcomes. Am. J. Obstet. Gynecol. 2016, 215, e1–e484. [Google Scholar] [CrossRef]
- Egeland, G.M.; Skurtveit, S.; Staff, A.C.; Eide, G.E.; Daltveit, A.K.; Klungsøyr, K.; Trogstad, L.; Magnus, P.M.; Brantsæter, A.L.; Haugen, M. Pregnancy-Related Risk Factors Are Associated with a Significant Burden of Treated Hypertension Within 10 Years of Delivery: Findings from a Population-Based Norwegian Cohort. J. Am. Heart Assoc. 2018, 7, e008318. [Google Scholar] [CrossRef]
- Jarvie, J.L.; Metz, T.D.; Davis, M.B.; Ehrig, J.C.; Kao, D.P. Short-term risk of cardiovascular readmission following a hypertensive disorder of pregnancy. Heart 2018, 104, 1187–1194. [Google Scholar] [CrossRef]
- Luis, S.A.; Chan, J.; Pellikka, P.A. Echocardiographic Assessment of Left Ventricular Systolic Function: An Overview of Contemporary Techniques; Including Speckle-Tracking Echocardiography. Mayo Clin. Proc. 2019, 94, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Voigt, J.U.; Cvijic, M. 2- and 3-Dimensional Myocardial Strain in Cardiac Health and Disease. JACC Cardiovasc. Imaging 2019, 12, 1849–1863. [Google Scholar] [CrossRef] [PubMed]
- Clemmensen, T.S.; Christensen, M.; Kronborg, C.J.S.; Knudsen, U.B.; Løgstrup, B.B. Long-term follow-up of women with early onset pre-eclampsia shows subclinical impairment of the left ventricular function by two-dimensional speckle tracking echocardiography. Pregnancy Hypertens. 2018, 14, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Boardman, H.; Lamata, P.; Lazdam, M.; Verburg, A.; Siepmann, T.; Upton, R.; Bilderbeck, A.; Dore, R.; Smedley, C.; Kenworthy, Y.; et al. Variations in Cardiovascular Structure; Function; and Geometry in Midlife Associated with a History of Hypertensive Pregnancy. Hypertension 2020, 75, 1542–1550. [Google Scholar] [CrossRef]
- Levine, L.D.; Ky, B.; Chirinos, J.A.; Koshinksi, J.; Arany, Z.; Riis, V.; Elovitz, M.A.; Koelper, N.; Lewey, J. Prospective Evaluation of Cardiovascular Risk 10 Years After a Hypertensive Disorder of Pregnancy. J. Am. Coll. Cardiol. 2022, 79, 2401–2411. [Google Scholar] [CrossRef]
- Gronningsaeter, L.; Skulstad, H.; Quattrone, A.; Langesaeter, E.; Estensen, M.E. Reduced left ventricular function and sustained hypertension in women seven years after severe preeclampsia. Scand. Cardiovasc. J. 2022, 56, 292–301. [Google Scholar] [CrossRef]
- Al-Nashi, M.; Eriksson, M.J.; Östlund, E.; Bremme, K.; Kahan, T. Cardiac structure and function; and ventricular-arterial interaction 11 years following a pregnancy with preeclampsia. J. Am. Soc. Hypertens. 2016, 10, 297–306. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Lonati, C.; Lombardo, M.; Rigamonti, E.; Binda, G.; Vincenti, A.; Nicolosi, G.L.; Bianchi, S.; Harari, S.; Anzà, C. Incremental prognostic value of global left atrial peak strain in women with new-onset gestational hypertension. J. Hypertens. 2019, 37, 1668–1675. [Google Scholar] [CrossRef]
- Sjaus, A.; McKeen, D.M.; George, R.B. Hypertensive disorders of pregnancy. Can. J. Anaesth. 2016, 63, 1075–1097. (In English) [Google Scholar] [CrossRef]
- Magee, L.A.; Pels, A.; Helewa, M.; Rey, E.; von Dadelszen, P.; Canadian Hypertensive Disorders of Pregnancy (HDP) Working Group. Diagnosis; evaluation; and management of the hypertensive disorders of pregnancy. Pregnancy Hypertens. 2014, 4, 105–145. [Google Scholar] [CrossRef]
- Casiglia, E. AND, OR, AND/OR in hypertension guidelines. J. Hypertens. 2024, 42, 934–935. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 233–271. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Respir. J. 2023, 61, 2200879. [Google Scholar] [CrossRef]
- Tello, K.; Wan, J.; Dalmer, A.; Vanderpool, R.; Ghofrani, H.A.; Naeije, R.; Roller, F.; Mohajerani, E.; Seeger, W.; Herberg, U.; et al. Validation of the Tricuspid Annular Plane Systolic Excursion/Systolic Pulmonary Artery Pressure Ratio for the Assessment of Right Ventricular-Arterial Coupling in Severe Pulmonary Hypertension. Circ. Cardiovasc. Imaging 2019, 12, e009047. [Google Scholar] [CrossRef]
- Zheng, L.; Sun, Z.; Li, J.; Zhang, R.; Zhang, X.; Liu, S.; Li, J.; Xu, C.; Hu, D.; Sun, Y. Pulse pressure and mean arterial pressure in relation to ischemic stroke among patients with uncontrolled hypertension in rural areas of China. Stroke 2008, 39, 1932–1937. [Google Scholar] [CrossRef]
- Franklin, S.S.; Wong, N.D. Pulse Pressure: How Valuable as a Diagnostic and Therapeutic Tool? J. Am. Coll. Cardiol. 2016, 67, 404–406. [Google Scholar] [CrossRef]
- Sattin, M.; Burhani, Z.; Jaidka, A.; Millington, S.J.; Arntfield, R.T. Stroke Volume Determination by Echocardiography. Chest 2022, 161, 1598–1605. [Google Scholar] [CrossRef]
- Hill, L.K.; Sollers Iii, J.J.; Thayer, J.F. Resistance reconstructed estimation of total peripheral resistance from computationally derived cardiac output—Biomed. Biomed. Sci. Instrum. 2013, 49, 216–223. [Google Scholar]
- Redfield, M.M.; Jacobsen, S.J.; Borlaug, B.A.; Rodeheffer, R.J.; Kass, D.A. Age- and gender-related ventricular-vascular stiffening: A community-based study. Circulation 2005, 112, 2254–2262. [Google Scholar] [CrossRef] [PubMed]
- Chantler, P.D.; Lakatta, E.G.; Najjar, S.S. Arterial-ventricular coupling: Mechanistic insights into cardiovascular performance at rest and during exercise. J. Appl. Physiol. (1985) 2008, 105, 1342–1351. [Google Scholar] [CrossRef] [PubMed]
- Voigt, J.U.; Pedrizzetti, G.; Lysyansky, P.; Marwick, T.H.; Houle, H.; Baumann, R.; Pedri, S.; Ito, Y.; Abe, Y.; Metz, S.; et al. Definitions for a common standard for 2D speckle tracking echocardiography: Consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Espersen, C.; Skaarup, K.G.; Lassen, M.C.H.; Johansen, N.D.; Hauser, R.; Jensen, G.B.; Schnohr, P.; Møgelvang, R.; Biering-Sørensen, T. Right ventricular free wall and four-chamber longitudinal strain in relation to incident heart failure in the general population. Eur. Heart J. Cardiovasc. Imaging 2024, 25, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Voigt, J.U.; Mălăescu, G.G.; Haugaa, K.; Badano, L. How to do LA strain. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 715–717. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Vincenti, A.; Baravelli, M.; Rigamonti, E.; Tagliabue, E.; Bassi, P.; Nicolosi, G.L.; Anzà, C.; Lombardo, M. Prognostic value of global left atrial peak strain in patients with acute ischemic stroke and no evidence of atrial fibrillation. Int. J. Cardiovasc. Imaging 2019, 35, 603–613. [Google Scholar] [CrossRef]
- Galderisi, M.; Cosyns, B.; Edvardsen, T.; Cardim, N.; Delgado, V.; Di Salvo, G.; Donal, E.; Sade, L.E.; Ernande, L.; Garbi, M.; et al. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification; diastolic function; and heart valve disease recommendations: An expert consensus document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1301–1310. [Google Scholar] [CrossRef]
- Yingchoncharoen, T.; Agarwal, S.; Popović, Z.B.; Marwick, T.H. Normal ranges of left ventricular strain: A meta-analysis. J. Am. Soc. Echocardiogr. 2013, 26, 185–191. [Google Scholar] [CrossRef]
- Muraru, D.; Onciul, S.; Peluso, D.; Soriani, N.; Cucchini, U.; Aruta, P.; Romeo, G.; Cavalli, G.; Iliceto, S.; Badano, L.P. Sex- and Method-Specific Reference Values for Right Ventricular Strain by 2-Dimensional Speckle-Tracking Echocardiography. Circ. Cardiovasc. Imaging 2016, 9, e003866. [Google Scholar] [CrossRef]
- Pathan, F.; D’Elia, N.; Nolan, M.T.; Marwick, T.H.; Negishi, K. Normal Ranges of Left Atrial Strain by Speckle-Tracking Echocardiography: A Systematic Review and Meta-Analysis. J. Am. Soc. Echocardiogr. 2017, 30, 59–70.e8. [Google Scholar] [CrossRef]
- Krittanawong, C.; Maitra, N.S.; Hassan Virk, H.U.; Farrell, A.; Hamzeh, I.; Arya, B.; Pressman, G.S.; Wang, Z.; Marwick, T.H. Normal Ranges of Right Atrial Strain: A Systematic Review and Meta-Analysis. JACC Cardiovasc. Imaging 2023, 16, 282–294. [Google Scholar] [CrossRef] [PubMed]
- Stein, J.H.; Korcarz, C.E.; Hurst, R.T.; Lonn, E.; Kendall, C.B.; Mohler, E.R.; Najjar, S.S.; Rembold, C.M.; Post, W.S.; American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: A consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Endorsed by the Society for Vascular Medicine. J. Am. Soc. Echocardiogr. 2008, 21, 93–111, quiz 189–190. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, M.W.; von Kegler, S.; Steinmetz, H.; Markus, H.S.; Sitzer, M. Carotid intima-media thickening indicates a higher vascular risk across a wide age range: Prospective data from the Carotid Atherosclerosis Progression Study (CAPS). Stroke 2006, 37, 87–92. [Google Scholar] [CrossRef]
- Randrianarisoa, E.; Rietig, R.; Jacob, S.; Blumenstock, G.; Haering, H.U.; Rittig, K.; Balletshofer, B. Normal values for intima-media thickness of the common carotid artery—An update following a novel risk factor profiling. Vasa 2015, 44, 444–450. [Google Scholar] [CrossRef]
- Holm, H.; Magnusson, M.; Jujić, A.; Pugliese, N.R.; Bozec, E.; Lamiral, Z.; Huttin, O.; Zannad, F.; Rossignol, P.; Girerd, N. Ventricular-arterial coupling (VAC) in a population-based cohort of middle-aged individuals: The STANISLAS cohort. Atherosclerosis 2023, 374, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Galderisi, M.; Lomoriello, V.S.; Santoro, A.; Esposito, R.; Olibet, M.; Raia, R.; Di Minno, M.N.; Guerra, G.; Mele, D.; Lombardi, G. Differences of myocardial systolic deformation and correlates of diastolic function in competitive rowers and young hypertensives: A speckle-tracking echocardiography study. J. Am. Soc. Echocardiogr. 2010, 23, 1190–1198. [Google Scholar] [CrossRef]
- Kornev, M.; Caglayan, H.A.; Kudryavtsev, A.V.; Malyutina, S.; Ryabikov, A.; Schirmer, H.; Rösner, A. Influence of hypertension on systolic and diastolic left ventricular function including segmental strain and strain rate. Echocardiography 2023, 40, 623–633. [Google Scholar] [CrossRef]
- Ikonomidis, I.; Aboyans, V.; Blacher, J.; Brodmann, M.; Brutsaert, D.L.; Chirinos, J.A.; De Carlo, M.; Delgado, V.; Lancellotti, P.; Lekakis, J.; et al. The role of ventricular-arterial coupling in cardiac disease and heart failure: Assessment; clinical implications and therapeutic interventions. A consensus document of the European Society of Cardiology Working Group on Aorta & Peripheral Vascular Diseases; European Association of Cardiovascular Imaging; and Heart Failure Association. Eur. J. Heart Fail. 2019, 21, 402–424. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Lin, Y.; Zhu, Y.; Gao, L.; Ji, M.; Zhang, L.; Xie, M.; Li, Y. Clinical Usefulness of Right Ventricle-Pulmonary Artery Coupling in Cardiovascular Disease. J. Clin. Med. 2023, 12, 2526. [Google Scholar] [CrossRef]
- Cañon-Montañez, W.; Santos, A.B.S.; Nunes, L.A.; Pires, J.C.G.; Freire, C.M.V.; Ribeiro, A.L.P.; Mill, J.G.; Bessel, M.; Duncan, B.B.; Schmidt, M.I.; et al. Central Obesity is the Key Component in the Association of Metabolic Syndrome with Left Ventricular Global Longitudinal Strain Impairment. Rev. Esp. Cardiol. (Engl. Ed.) 2018, 71, 524. (In English) (In Spanish) [Google Scholar] [CrossRef]
- Sawada, N.; Nakanishi, K.; Daimon, M.; Yoshida, Y.; Ishiwata, J.; Hirokawa, M.; Nakao, T.; Morita, H.; Di Tullio, M.R.; Homma, S.; et al. Influence of visceral adiposity accumulation on adverse left and right ventricular mechanics in the community. Eur. J. Prev. Cardiol. 2020, 27, 2006–2015. [Google Scholar] [CrossRef] [PubMed]
- Sonaglioni, A.; Esposito, V.; Caruso, C.; Nicolosi, G.L.; Bianchi, S.; Lombardo, M.; Gensini, G.F.; Ambrosio, G. Chest conformation spuriously influences strain parameters of myocardial contractile function in healthy pregnant women. J. Cardiovasc. Med. 2021, 22, 767–779. [Google Scholar] [CrossRef] [PubMed]
- Sonaglioni, A.; Ferrulli, A.; Nicolosi, G.L.; Lombardo, M.; Luzi, L. The Influence of Anthropometrics on Cardiac Mechanics in Healthy Women with Opposite Obesity Phenotypes (Android vs Gynoid). Cureus 2024, 16, e51698. [Google Scholar] [CrossRef] [PubMed]
- Sonaglioni, A.; Fagiani, V.; Nicolosi, G.L.; Lombardo, M. Echocardiographic assessment of left ventricular mechanics in individuals with mitral valve prolapse: A systematic review and meta-analysis. Int. J. Cardiovasc. Imaging 2024, 40, 1617–1629. [Google Scholar] [CrossRef] [PubMed]
- Andersgaard, A.B.; Acharya, G.; Mathiesen, E.B.; Johnsen, S.H.; Straume, B.; Øian, P. Recurrence and long-term maternal health risks of hypertensive disorders of pregnancy: A population-based study. Am. J. Obstet. Gynecol. 2012, 206, 143.e1–143.e8. [Google Scholar] [CrossRef]
- Goynumer, G.; Yucel, N.; Adali, E.; Tan, T.; Baskent, E.; Karadag, C. Vascular risk in women with a history of severe preeclampsia. J. Clin. Ultrasound. 2013, 41, 145–150. [Google Scholar] [CrossRef]
- Aykas, F.; Solak, Y.; Erden, A.; Bulut, K.; Dogan, S.; Sarli, B.; Acmaz, G.; Afsar, B.; Siriopol, D.; Covic, A.; et al. Persistence of cardiovascular risk factors in women with previous preeclampsia: A long-term follow-up study. J. Investig. Med. 2015, 63, 641–645. [Google Scholar] [CrossRef]
- Christensen, M.; Kronborg, C.S.; Carlsen, R.K.; Eldrup, N.; Knudsen, U.B. Early gestational age at preeclampsia onset is associated with subclinical atherosclerosis 12 years after delivery. Acta Obstet. Gynecol. Scand. 2017, 96, 1084–1092. [Google Scholar] [CrossRef]
- Garrido-Gimenez, C.; Mendoza, M.; Cruz-Lemini, M.; Galian-Gay, L.; Sanchez-Garcia, O.; Granato, C.; Rodriguez-Sureda, V.; Rodriguez-Palomares, J.; Carreras-Moratonas, E.; Cabero-Roura, L.; et al. Angiogenic Factors and Long-Term Cardiovascular Risk in Women That Developed Preeclampsia During Pregnancy. Hypertension 2020, 76, 1808–1816. [Google Scholar] [CrossRef]
- Amor, A.J.; Vinagre, I.; Valverde, M.; Alonso, N.; Urquizu, X.; Meler, E.; López, E.; Giménez, M.; Codina, L.; Conget, I.; et al. Novel glycoproteins identify preclinical atherosclerosis among women with previous preeclampsia regardless of type 1 diabetes status. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 3407–3414. [Google Scholar] [CrossRef]
- Fraser, A.; Nelson, S.M.; Macdonald-Wallis, C.; Cherry, L.; Butler, E.; Sattar, N.; Lawlor, D.A. Associations of pregnancy complications with calculated cardiovascular disease risk and cardiovascular risk factors in middle age: The Avon Longitudinal Study of Parents and Children. Circulation 2012, 125, 1367–1380. [Google Scholar] [CrossRef] [PubMed]
- Romundstad, P.R.; Magnussen, E.B.; Smith, G.D.; Vatten, L.J. Hypertension in pregnancy and later cardiovascular risk: Common antecedents? Circulation 2010, 122, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Staff, A.C.; Johnsen, G.M.; Dechend, R.; Redman, C.W.G. Preeclampsia and uteroplacental acute atherosis: Immune and inflammatory factors. J. Reprod. Immunol. 2014, 101–102, 120–126. [Google Scholar] [CrossRef]
- Veerbeek, J.H.; Brouwers, L.; Koster, M.P.; Koenen, S.V.; van Vliet, E.O.; Nikkels, P.G.; Franx, A.; van Rijn, B.B. Spiral artery remodeling and maternal cardiovascular risk: The spiral artery remodeling (SPAR) study. J. Hypertens. 2016, 34, 1570–1577. [Google Scholar] [CrossRef] [PubMed]
- Agatisa, P.K.; Ness, R.B.; Roberts, J.M.; Costantino, J.P.; Kuller, L.H.; McLaughlin, M.K. Impairment of endothelial function in women with a history of preeclampsia: An indicator of cardiovascular risk. Am. J. Physiol. Heart Circ. Physiol. 2004, 286, H1389–H1393. [Google Scholar] [CrossRef]
- Kvehaugen, A.S.; Dechend, R.; Ramstad, H.B.; Troisi, R.; Fugelseth, D.; Staff, A.C. Endothelial function and circulating biomarkers are disturbed in women and children after preeclampsia. Hypertension 2011, 58, 63–69. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Obstetrics. ACOG Practice Bulletin No. 203: Chronic Hypertension in Pregnancy. Obstet. Gynecol. 2019, 133, e26–e50. [Google Scholar] [CrossRef]
- Mureddu, G.F. How much does hypertension in pregnancy affect the risk of future cardiovascular events? Eur. Heart J. Suppl. 2023, 25, B111–B113. [Google Scholar] [CrossRef]
- Negishi, T.; Negishi, K.; Thavendiranathan, P.; Cho, G.Y.; Popescu, B.A.; Vinereanu, D.; Kurosawa, K.; Penicka, M.; Marwick, T.H.; SUCCOUR Investigators. Effect of Experience and Training on the Concordance and Precision of Strain Measurements. JACC Cardiovasc. Imaging 2017, 10, 518–522. [Google Scholar] [CrossRef]
- Rösner, A.; Barbosa, D.; Aarsæther, E.; Kjønås, D.; Schirmer, H.; D’hooge, J. The influence of frame rate on two-dimensional speckle-tracking strain measurements: A study on silico-simulated models and images recorded in patients. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 1137–1147. [Google Scholar] [CrossRef]
- Mirea, O.; Pagourelias, E.D.; Duchenne, J.; Bogaert, J.; Thomas, J.D.; Badano, L.P.; Voigt, J.U.; EACVI-ASE-Industry Standardization Task Force. Intervendor Differences in the Accuracy of Detecting Regional Functional Abnormalities: A Report From the EACVI-ASE Strain Standardization Task Force. JACC Cardiovasc. Imaging 2018, 11, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Sonaglioni, A.; Fagiani, V.; Nicolosi, G.L.; Lombardo, M. The influence of pectus excavatum on biventricular mechanics: A systematic review and meta-analysis. Minerva Cardiol. Angiol. 2024. [Google Scholar] [CrossRef] [PubMed]
Demographic, anthropometric, obstetrical, and clinical parameters | Age, ethnicity, BSA, BMI, parity, gestational week of hypertension onset, gestational age at delivery, prevalence of smoking, dyslipidemia and family history of hypertension, relevant comorbidities, electrocardiographic data, serum levels of haemoglobin, creatinine and eGFR [23], fasting glucose, lipid profile and uric acid, previous evidence of proteinuria, and both the previous and the current antihypertensive therapy. |
Conventional echoDoppler parameters by using Philips Sparq ultrasound machine (Philips, Andover, MA, USA) with a 2.5 MHz transducer | Aortic root and ascending aorta; RWT = 2PWT/LVEDD; LVMi; LVEF [24]; LAVi; RVIT; TAPSE; E/A ratio; E/average e’ ratio [25]; sPAP = 4TRV2 + RAP [26]; TAPSE/sPAP ratio [27]. |
Hemodynamic indices | Brachial SBP and DBP; MAP = DBP + [(SBP-DBP/3)] [28]; PP = SBP-DBP [29]; SV = LVOT area X LVOT VTI [30]; CO = SV X HR [30]; TPR = MAP/CO X 80 [31]; ESP = 0.9 X SBP [32]; EaI = ESP/SVindex ratio [33]; EesI = ESP/LVESVi [33]; VAC = EaI/EesI ratio [33]. |
Myocardial strain parameters by using Philips QLAB 10.3.1 ultrasound software and Q-Analysis module [34]. | LV-GLS; LV-GCS [34]; RV-GLS; RV-FWLS [35]; LASr = LAScd + LASct (biplane method); LA-GSR+, LA-GSRE and LA-GSRL [36]; LA stiffness = LASr/E/average e’ ratio [37]; RASr = RAScd + RASct; RA-GSR+, RA-GSRE and RA-GSRL. Absolute values inferior to 20% for LV-GLS [38], 23.3% for LV-GCS [39], 20% for RV-GLS [40], 39% for LASr [41], and 35% for RASr [42] were considered to be abnormal. |
Carotid ultrasound parameters by using Philips Sparq ultrasound machine with a 12 MHz transducer. | Av. left and right CCA-IMT; av. left and right CCA-EDD; av. left and right carotid RWT = 2 × average IMT/average CCA-EDD; av. left and right CCA-CSA = [π × (2 × average IMT + average CCA-EDD)/2)2 − π × (average CCA-EDD/2)2] [43]. Based on the accepted reference ranges for age and sex [44,45], CCA-IMT values ≥ 0.7 mm were considered to be abnormal. |
HDP Women (n = 31) | Controls (n = 30) | p-Value | |
---|---|---|---|
Demographics, anthropometrics, cardiovascular risk factors, and obstetrics | |||
Age (yrs) | 36.6 ± 5.9 | 36.7 ± 2.9 | 0.93 |
Age ≥ 35 yrs (%) | 22 (70.9) | 20 (66.6) | 0.72 |
Caucasian ethnicity (%) | 27 (87.1) | 26 (86.7) | 0.96 |
BSA (m2) | 1.87 ± 0.16 | 1.85 ± 0.11 | 0.57 |
BMI (kg/m2) | 28.0 ± 4.7 | 27.5 ± 2.8 | 0.61 |
Smoking | 2 (6.4) | 4 (13.3) | 0.37 |
Dyslipidemia | 10 (32.3) | 1 (3.3) | 0.003 |
Obesity (BMI ≥ 30 kg/m2) (%) | 8 (25.8) | 5 (16.7) | 0.38 |
Family history of hypertension (%) | 18 (58.1) | 6 (20.0) | 0.002 |
Previous pregnancies (n) | 1.7 ± 1.1 | 1.6 ± 1.0 | 0.71 |
Gestational age at enrollment (weeks) | 32.0 ± 8.1 | 34.5 ± 3.8 | 0.13 |
Gestational week at delivery (weeks) | 37.7 ± 1.5 | 39.2 ± 1.4 | <0.001 |
Hemodynamics | |||
HR (bpm) | 81.8 ± 12.6 | 78.3 ± 12.1 | 0.27 |
SBP (mmHg) | 132.4 ± 14.7 | 110.0 ± 7.2 | <0.001 |
DBP (mmHg) | 85.4 ± 7.2 | 66.7 ± 5.8 | <0.001 |
PP (mmHg) | 47.1 ± 11.4 | 43.3 ± 7.3 | 0.13 |
MAP (mmHg) | 101.1 ± 8.8 | 81.1 ± 5.2 | <0.001 |
Laboratory tests | |||
Serum hemoglobin (g/dL) | 11.6 ± 1.7 | 11.2 ± 1.5 | 0.33 |
eGFR (ml/min/m2) | 138.4 ± 48.3 | 136.6 ± 30.1 | 0.86 |
Serum glucose (mg/dL) | 83.6 ± 13.1 | 86.4 ± 13.8 | 0.42 |
Serum total cholesterol (mg/dL) | 197.6 ± 25.5 | 171.2 ± 10.5 | <0.001 |
Serum uric acid (mg/dL) | 4.2 ± 0.4 | 4.1 ± 0.5 | 0.39 |
Proteinuria (%) | 19 (61.3) | / | / |
Medical treatment during pregnancy | |||
Calcium channel blockers (%) | 11 (35.5) | / | / |
Alpha2-agonists (%) | 8 (25.8) | / | / |
Alpha-beta blockers (%) | 2 (6.5) | / | / |
Dual therapy (%) | 9 (29.0) | / | / |
No therapy (%) | 4 (12.9) | 30 (100) | <0.001 |
pHDP Women (n = 31) | Controls (n = 30) | p-Value | |
---|---|---|---|
Demographics and anthropometrics | |||
Age (yrs) | 42.3 ± 5.9 | 40.8 ± 5.0 | 0.29 |
Age ≥ 40 yrs (%) | 23 (74.2) | 19 (63.3) | 0.36 |
BSA (m2) | 1.68 ± 0.17 | 1.66 ± 0.14 | 0.62 |
BMI (kg/m2) | 23.2 ± 5.2 | 22.2 ± 2.8 | 0.36 |
Normal weight (BMI 18.5–24.9 kg/m2) (%) | 24 (77.4) | 24 (80.0) | 0.80 |
Ethnicity | |||
Caucasian (%) | 27 (87.1) | 26 (86.7) | 0.96 |
Asiatic (%) | 2 (6.5) | 2 (6.7) | 0.97 |
African (%) | 1 (3.2) | 1 (3.3) | 0.98 |
Latin American (%) | 1 (3.2) | 1 (3.3) | 0.98 |
Cardiovascular risk factors | |||
Smoking (%) | 2 (6.5) | 6 (20.0) | 0.12 |
Type 2 diabetes mellitus (%) | 2 (6.5) | 1 (3.3) | 0.57 |
Dyslipidemia (%) | 7 (22.6) | 1 (3.3) | 0.02 |
Obesity (%) | 7 (22.6) | 1 (3.3) | 0.02 |
Blood pressure parameters | |||
SBP (mmHg) | 127.5 ± 16.8 | 113.2 ± 11.1 | <0.001 |
DBP (mmHg) | 78.4 ± 13.7 | 70.4 ± 9.4 | 0.01 |
PP (mmHg) | 49.2 ± 9.9 | 42.8 ± 9.4 | 0.01 |
MAP (mmHg) | 94.4 ± 13.7 | 84.6 ± 8.9 | <0.001 |
BP ≥ 140/90 mmHg at clinical visit (%) | 11 (35.5) | 2 (6.7) | 0.006 |
Blood tests | |||
Serum Hb (g/dL) | 12.9 ± 0.8 | 12.7 ± 1.2 | 0.44 |
Serum creatinine (mg/dL) | 0.77 ± 0.13 | 0.72 ± 0.16 | 0.18 |
eGFR (ml/min/m2) | 95.2 ± 16.3 | 101.1 ± 18.1 | 0.18 |
Serum glucose (mg/dL) | 87.1 ± 6.2 | 86.3 ± 7.1 | 0.64 |
Serum total cholesterol (mg/dL) | 195.8 ± 13.7 | 192.0 ± 8.1 | 0.19 |
Serum HDL-cholesterol (mg/dL) | 68.7 ± 8.2 | 75.2 ± 6.5 | 0.001 |
Serum LDL-cholesterol (mg/dL) | 113.8 ± 11.4 | 108.2 ± 7.1 | 0.02 |
Serum triglycerides (mg/dL) | 66.1 ± 15.4 | 68.7 ± 11.5 | 0.46 |
Serum uric acid (mg/dL) | 4.3 ± 1.1 | 4.7 ± 1.4 | 0.22 |
Comorbidities | |||
Hypothyroidism (%) | 4 (12.9) | 8 (26.7) | 0.18 |
Current medical treatment | |||
pHDP women in medical therapy (%) | 10 (32.3) | / | / |
ACE-i/ARBs (%) | 6 (19.3) | / | / |
Calcium channel blockers (%) | 5 (16.1) | / | / |
Beta blockers (%) | 2 (6.5) | / | / |
Diuretics (%) | 1 (3.2) | / | / |
Statins (%) | 1 (3.2) | / | / |
Thyroid hormone therapy (%) | 4 (12.9) | 8 (26.7) | 0.18 |
pHDP Women (n = 31) | Controls (n = 30) | p-Value | |
---|---|---|---|
Yrs postpartum at echocardiographic assessment | 6.1 ± 1.3 | 6.0 ± 0.3 | 0.68 |
Conventional echoDoppler parameters | |||
IVS (mm) | 9.4 ± 1.7 | 7.6 ± 1.2 | <0.001 |
LV-PW (mm) | 7.4 ± 1.1 | 6.6 ± 1.0 | 0.004 |
LV-EDD (mm) | 42.6 ± 3.8 | 44.4 ± 2.7 | 0.04 |
RWT | 0.35 ± 0.05 | 0.30 ± 0.05 | <0.001 |
LVMi (g/m2) | 66.6 ± 13.9 | 57.7 ± 9.7 | 0.005 |
Normal LV geometric pattern (%) | 27 (87.1) | 28 (93.4) | 0.41 |
LV concentric remodeling (%) | 3 (9.7) | 1 (3.3) | 0.32 |
LV eccentric remodeling (%) | 1 (3.2) | 1 (3.3) | 0.98 |
LVEDVi (ml/m2) | 35.7 ± 6.6 | 35.3 ± 5.6 | 0.79 |
LVESVi (ml/m2) | 11.6 ± 2.4 | 11.9 ± 2.5 | 0.63 |
LVEF (%) | 66.9 ± 3.1 | 65.9 ± 4.8 | 0.33 |
E/A ratio | 1.14 (0.67–1.76) | 1.34 (0.71–2.1) | 0.02 |
E/e’ ratio | 8.02 ± 2.32 | 5.14 ± 1.34 | <0.001 |
LA A-P diameter (mm) | 34.3 ± 5.4 | 33.6 ± 4.1 | 0.57 |
LA longitudinal diameter (mm) | 44.8 ± 6.1 | 46.4 ± 4.9 | 0.26 |
LAVi (ml/m2) | 29.0 ± 7.5 | 27.4 ± 7.3 | 0.40 |
Mild MR (n, %) | 12 (38.7) | 9 (30.0) | 0.95 |
Mild TR (n, %) | 19 (61.3) | 17 (56.6) | 0.71 |
RVIT (mm) | 28.9 (24–36) | 29.7 (23.5–34) | 0.31 |
TAPSE (mm) | 24.6 (20–30) | 26.4 (19–32) | 0.04 |
IVC (mm) | 15.2 ± 4.1 | 17.0 ± 3.9 | 0.08 |
sPAP (mmHg) | 23.9 ± 3.1 | 22.8 ± 2.2 | 0.12 |
TAPSE/sPAP ratio | 1.05 ± 0.18 | 1.17 ± 0.18 | 0.01 |
Aortic root (mm) | 30.8 ± 2.6 | 29.1 ± 2.6 | 0.01 |
Ascending aorta (mm) | 29.5 ± 4.1 | 28.8 ± 3.1 | 0.46 |
Hemodynamic indices | |||
Heart rate (bpm) | 79.6 (58–103) | 75.5 (62–100) | 0.19 |
ESP (mmHg) | 114.1 ± 14.8 | 101.9 ± 10.0 | <0.001 |
SVi (mL/m2) | 35.2 ± 6.9 | 39.5 ± 9.1 | 0.04 |
COi (L/min/m2) | 2.81 ± 0.74 | 2.93 ± 0.67 | 0.51 |
TPRi (dyne.sec/cm5)/m2 | 2863.3 ± 837.6 | 2427.5 ± 620.6 | 0.02 |
EaI (mmHg/mL/m2) | 3.4 ± 0.9 | 2.7 ± 0.7 | 0.001 |
EesI (mmHg/mL/m2) | 10.1 ± 2.1 | 9.0 ± 2.4 | 0.06 |
EaI/EesI ratio | 0.34 ± 0.10 | 0.32 ± 0.09 | 0.41 |
Carotid parameters | |||
Av. CCA-EDD (mm) | 6.64 ± 0.53 | 6.64 ± 0.44 | >0.99 |
Av. CCA-IMT (mm) | 0.90 ± 0.21 | 0.62 ± 0.19 | <0.001 |
Av. CCA-IMT ≥ 0.7 mm (%) | 27 (87.1) | 7 (23.3) | <0.001 |
Av. CCA-RWT | 0.28 ± 0.08 | 0.19 ± 0.06 | <0.001 |
Av. CCA-CSA (mm2) | 22.90 ± 7.91 | 14.20 ± 4.94 | <0.001 |
STE Variables | pHDP Women (n = 31) | Controls (n = 30) | p-Value |
---|---|---|---|
LV-GLS (%) | 19.5 ± 2.6 | 22.3 ± 2.3 | <0.001 |
LV-GLSR (s−1) | 1.1 ± 0.1 | 1.2 ± 0.1 | <0.001 |
LV-GCS (%) | 24.5 ± 5.5 | 26.7 ± 4.4 | 0.09 |
LV-GCSR (s−1) | 1.6 ± 0.3 | 1.7 ± 0.2 | 0.13 |
LAScd (%) | 30.1 ± 7.3 | 36.3 ± 7.7 | 0.002 |
LASct (%) | 7.7 ± 4.8 | 9.4 ± 4.1 | 0.14 |
LASr (%) | 37.8 ± 8.0 | 45.7 ± 8.0 | <0.001 |
LASr/E/e’ | 5.1 ± 1.8 | 9.5 ± 3.2 | <0.001 |
LA-GSR+ (s−1) | 2.0 ± 0.5 | 2.3 ± 0.5 | 0.02 |
LA-GSRE (s−1) | 2.4 ± 0.8 | 3.1 ± 0.8 | 0.001 |
LA-GSRL (s−1) | 2.7 ± 0.7 | 2.8 ± 0.5 | 0.52 |
RV-FWLS (%) | 19.8 ± 3.6 | 22.0 ± 3.5 | 0.02 |
RV-GLS (%) | 18.6 ± 3.3 | 20.9 ± 3.4 | 0.01 |
RV-GLSR (s−1) | 1.2 ± 0.2 | 1.3 ± 0.2 | 0.06 |
RAScd (%) | 28.0 ± 8.2 | 34.6 ± 10.1 | 0.007 |
RASct (%) | 7.2 ± 4.7 | 7.5 ± 5.4 | 0.82 |
RASr (%) | 35.2 ± 7.7 | 42.1 ± 9.9 | 0.004 |
RA-GSR+ (s−1) | 2.2 ± 0.5 | 2.4 ± 0.6 | 0.16 |
RA-GSRE (s−1) | 1.9 (1.1–3.0) | 2.3 (1.3–3.5) | 0.02 |
RA-GSRL (s−1) | 2.3 (1.1–4.0) | 2.5 (1.3–5.0) | 0.30 |
Percentage of Women with Impaired STE Parameters Compared to Reference Values | |||
LV-GLS < 20% (%) | 18 (58.1) | 4 (13.3) | <0.001 |
LV-GCS < 23.3% (%) | 12 (38.7) | 7 (23.3) | 0.19 |
LASr < 39% (%) | 17 (54.8) | 5 (16.7) | 0.002 |
RV-GLS < 20% (%) | 22 (71.0) | 11 (36.7) | 0.007 |
RASr < 35% (%) | 18 (58.1) | 8 (26.7) | 0.01 |
Univariate Cox Regression Analysis | Multivariate Cox Regression Analysis | |||||
---|---|---|---|---|---|---|
Variables | HR | 95% CI | p-Value | HR | 95% CI | p-Value |
Third-trimester age (yrs) | 1.00 | 0.89–1.06 | 0.47 | |||
Third-trimester BMI (kg/m2) | 1.12 | 1.02–1.22 | 0.02 | 1.05 | 0.95–1.16 | 0.36 |
Previous PE | 5.09 | 1.47–17.6 | 0.01 | 4.01 | 1.05–15.3 | 0.03 |
Chronic antihypertensive treatment | 0.97 | 0.34–2.77 | 0.96 |
Univariate Cox Regression Analysis | Multivariate Cox Regression Analysis | |||||
---|---|---|---|---|---|---|
Variables | HR | 95% CI | p-Value | HR | 95% CI | p-Value |
Third-trimester age (yrs) | 1.01 | 0.93–1.09 | 0.86 | |||
Third-trimester BMI (kg/m2) | 1.14 | 1.04–1.24 | 0.004 | 1.21 | 1.07–1.38 | 0.003 |
Previous PE | 4.49 | 1.31–15.4 | 0.02 | 6.38 | 1.50–27.2 | 0.01 |
Current HDL-cholesterol (mg/dl) | 0.99 | 0.94–1.05 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sonaglioni, A.; Napoli, F.; Dell’Anna, R.; Nicolosi, G.L.; Bianchi, S.; Lombardo, M.; Harari, S.; Lonati, C. Comprehensive Assessment of Biventricular and Biatrial Myocardial Strain Parameters at Six Years Postpartum in a Cohort of Women with Previous Hypertensive Disorders of Pregnancy. J. Clin. Med. 2025, 14, 4767. https://doi.org/10.3390/jcm14134767
Sonaglioni A, Napoli F, Dell’Anna R, Nicolosi GL, Bianchi S, Lombardo M, Harari S, Lonati C. Comprehensive Assessment of Biventricular and Biatrial Myocardial Strain Parameters at Six Years Postpartum in a Cohort of Women with Previous Hypertensive Disorders of Pregnancy. Journal of Clinical Medicine. 2025; 14(13):4767. https://doi.org/10.3390/jcm14134767
Chicago/Turabian StyleSonaglioni, Andrea, Federico Napoli, Rebecca Dell’Anna, Gian Luigi Nicolosi, Stefano Bianchi, Michele Lombardo, Sergio Harari, and Chiara Lonati. 2025. "Comprehensive Assessment of Biventricular and Biatrial Myocardial Strain Parameters at Six Years Postpartum in a Cohort of Women with Previous Hypertensive Disorders of Pregnancy" Journal of Clinical Medicine 14, no. 13: 4767. https://doi.org/10.3390/jcm14134767
APA StyleSonaglioni, A., Napoli, F., Dell’Anna, R., Nicolosi, G. L., Bianchi, S., Lombardo, M., Harari, S., & Lonati, C. (2025). Comprehensive Assessment of Biventricular and Biatrial Myocardial Strain Parameters at Six Years Postpartum in a Cohort of Women with Previous Hypertensive Disorders of Pregnancy. Journal of Clinical Medicine, 14(13), 4767. https://doi.org/10.3390/jcm14134767