Predictors of Long-Term Desensitization in Children Treated with Oral Immunotherapy for Food Allergy: A Real-World Cohort Study
Abstract
1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Oral Immunotherapy Protocol
2.3. Clinical Outcome
2.4. Baseline Allergen-Specific IgE
2.5. Treatment-Emergent Adverse Events (TEAE)
2.6. Statistical Analysis
3. Results
3.1. Study Population
3.2. Participants’ Characteristics
3.3. Safety
3.4. OIT Outcomes
3.5. Factors Associated with Full Desensitization
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TEAE | Treatment-Emergent Adverse Events |
sIgE | Specific Immunoglobulin E |
OIT | Oral Immunotherapy |
DBPCFC | Double-Blind Placebo-Controlled Oral Food Challenge |
EPIES | Food Protein-Induced Enterocolitis Syndrome |
WAO | World Allergy Organization |
References
- Sampath, V.; Abrams, E.M.; Adlou, B.; Akdis, C.; Akdis, M.; Brough, H.A.; Chan, S.; Chatchatee, P.; Chinthrajah, R.S.; Cocco, R.R.; et al. Food allergy across the globe. J. Allergy Clin. Immunol. 2021, 148, 1347–1364. [Google Scholar] [CrossRef] [PubMed]
- Spolidoro, G.C.I.; Ali, M.M.; Amera, Y.T.; Nyassi, S.; Lisik, D.; Ioannidou, A.; Rovner, G.; Khaleva, E.; Venter, C.; van Ree, R.; et al. Prevalence estimates of eight big food allergies in Europe: Updated systematic review and meta-analysis. Allergy 2023, 78, 2361–2417. [Google Scholar] [CrossRef] [PubMed]
- Ebisawa, M.; Ito, K.; Fujisawa, T. Japanese guidelines for food allergy 2020. Allergol. Int. 2020, 69, 370–386. [Google Scholar] [CrossRef] [PubMed]
- Savage, J.; Sicherer, S.; Wood, R. The Natural History of Food Allergy. J. Allergy Clin. Immunol. Pract. 2016, 4, 196–203. [Google Scholar] [CrossRef]
- Golding, M.A.; Batac, A.L.R.; Gunnarsson, N.V.; Ahlstedt, S.; Middelveld, R.; Protudjer, J.L.P. The burden of food allergy on children and teens: A systematic review. Pediatr. Allergy Immunol. 2022, 33, e13743. [Google Scholar] [CrossRef]
- Begin, P.; Chan, E.S.; Kim, H.; Wagner, M.; Cellier, M.S.; Favron-Godbout, C.; Abrams, E.M.; Ben-Shoshan, M.; Cameron, S.B.; Carr, S.; et al. CSACI guidelines for the ethical, evidence-based and patient-oriented clinical practice of oral immunotherapy in IgE-mediated food allergy. Allergy Asthma Clin. Immunol. 2020, 16, 20. [Google Scholar] [CrossRef]
- Muraro, A.; Werfel, T.; Hoffmann-Sommergruber, K.; Roberts, G.; Beyer, K.; Bindslev-Jensen, C.; Cardona, V.; Dubois, A.; duToit, G.; Eigenmann, P.; et al. EAACI Food Allergy and Anaphylaxis Guidelines: Diagnosis and management of food allergy. Allergy 2014, 69, 1008–1025. [Google Scholar] [CrossRef]
- Bognanni, A.; Chu, D.K.; Firmino, R.T.; Arasi, S.; Waffenschmidt, S.; Agarwal, A.; Dziechciarz, P.; Horvath, A.; Jebai, R.; Mihara, H.; et al. World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow’s Milk Allergy (DRACMA) guideline update—XIII—Oral immunotherapy for CMA—Systematic review. World Allergy Organ. J. 2022, 15, 100682. [Google Scholar] [CrossRef]
- Vickery, B.P. Egg oral immunotherapy. Curr. Opin. Allergy Clin. Immunol. 2012, 12, 278–282. [Google Scholar] [CrossRef]
- Nurmatov, U.; Dhami, S.; Arasi, S.; Pajno, G.B.; Fernandez-Rivas, M.; Muraro, A.; Roberts, G.; Akdis, C.; Alvaro-Lozano, M.; Beyer, K.; et al. Allergen immunotherapy for IgE-mediated food allergy: A systematic review and meta-analysis. Allergy 2017, 72, 1133–1147. [Google Scholar] [CrossRef]
- Pajno, G.B.; Fernandez-Rivas, M.; Arasi, S.; Roberts, G.; Akdis, C.A.; Alvaro-Lozano, M.; Beyer, K.; Bindslev-Jensen, C.; Burks, W.; Ebisawa, M.; et al. EAACI Guidelines on allergen immunotherapy: IgE-mediated food allergy. Allergy 2018, 73, 799–815. [Google Scholar] [CrossRef] [PubMed]
- de Silva, D.; Rodriguez Del Rio, P.; de Jong, N.W.; Khaleva, E.; Singh, C.; Nowak-Wegrzyn, A.; Muraro, A.; Begin, P.; Pajno, G.; Fiocchi, A.; et al. Allergen immunotherapy and/or biologicals for IgE-mediated food allergy: A systematic review and meta-analysis. Allergy 2022, 77, 1852–1862. [Google Scholar] [CrossRef] [PubMed]
- Keet, C.A.; Frischmeyer-Guerrerio, P.A.; Thyagarajan, A.; Schroeder, J.T.; Hamilton, R.G.; Boden, S.; Steele, P.; Driggers, S.; Burks, A.W.; Wood, R.A. The safety and efficacy of sublingual and oral immunotherapy for milk allergy. J. Allergy Clin. Immunol. 2012, 129, 448–455.e5. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Utsunomiya, T.; Imai, T.; Yanagida, N.; Asaumi, T.; Ogura, K.; Koike, Y.; Hayashi, N.; Okada, Y.; Shukuya, A.; et al. Wheat oral immunotherapy for wheat-induced anaphylaxis. J. Allergy Clin. Immunol. 2015, 136, 1131–1133.e1137. [Google Scholar] [CrossRef]
- Burks, A.W.; Jones, S.M.; Wood, R.A.; Fleischer, D.M.; Sicherer, S.H.; Lindblad, R.W.; Stablein, D.; Henning, A.K.; Vickery, B.P.; Liu, A.H.; et al. Oral immunotherapy for treatment of egg allergy in children. N. Engl. J. Med. 2012, 367, 233–243. [Google Scholar] [CrossRef]
- De Schryver, S.; Mazer, B.; Clarke, A.E.; St Pierre, Y.; Lejtenyi, D.; Langlois, A.; Torabi, B.; Zhao, W.W.; Chan, E.S.; Baerg, I.; et al. Adverse Events in Oral Immunotherapy for the Desensitization of Cow’s Milk Allergy in Children: A Randomized Controlled Trial. J. Allergy Clin. Immunol. Pract. 2019, 7, 1912–1919. [Google Scholar] [CrossRef]
- Grzeskowiak, L.E.; Tao, B.; Knight, E.; Cohen-Woods, S.; Chataway, T. Adverse events associated with peanut oral immunotherapy in children—A systematic review and meta-analysis. Sci. Rep. 2020, 10, 659. [Google Scholar] [CrossRef]
- Blumchen, K.; Trendelenburg, V.; Ahrens, F.; Gruebl, A.; Hamelmann, E.; Hansen, G.; Heinzmann, A.; Nemat, K.; Holzhauser, T.; Roeder, M.; et al. Efficacy, Safety, and Quality of Life in a Multicenter, Randomized, Placebo-Controlled Trial of Low-Dose Peanut Oral Immunotherapy in Children with Peanut Allergy. J. Allergy Clin. Immunol. Pract. 2019, 7, 479–491.e410. [Google Scholar] [CrossRef]
- Yanagida, N.; Okada, Y.; Sato, S.; Ebisawa, M. New approach for food allergy management using low-dose oral food challenges and low-dose oral immunotherapies. Allergol. Int. 2016, 65, 135–140. [Google Scholar] [CrossRef]
- Kauppila, T.K.; Paassilta, M.; Kukkonen, A.K.; Kuitunen, M.; Pelkonen, A.S.; Makela, M.J. Outcome of oral immunotherapy for persistent cow’s milk allergy from 11 years of experience in Finland. Pediatr. Allergy Immunol. 2019, 30, 356–362. [Google Scholar] [CrossRef]
- Keet, C.A.; Seopaul, S.; Knorr, S.; Narisety, S.; Skripak, J.; Wood, R.A. Long-term follow-up of oral immunotherapy for cow’s milk allergy. J. Allergy Clin. Immunol. 2013, 132, 737–739.e736. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.J.; Ansotegui, I.J.; Campbell, D.E.; Cardona, V.; Carr, S.; Custovic, A.; Durham, S.; Ebisawa, M.; Geller, M.; Gonzalez-Estrada, A.; et al. Updated grading system for systemic allergic reactions: Joint Statement of the World Allergy Organization Anaphylaxis Committee and Allergen Immunotherapy Committee. World Allergy Organ. J. 2024, 17, 100876. [Google Scholar] [CrossRef] [PubMed]
- Manabe, T.; Sato, S.; Yanagida, N.; Hayashi, N.; Nishino, M.; Takahashi, K.; Nagakura, K.I.; Asaumi, T.; Ogura, K.; Ebisawa, M. Long-term outcomes after sustained unresponsiveness in patients who underwent oral immunotherapy for egg, cow’s milk, or wheat allergy. Allergol. Int. 2019, 68, 527–528. [Google Scholar] [CrossRef] [PubMed]
- Lodge, C.J.; Waidyatillake, N.; Peters, R.L.; Netting, M.; Dai, X.; Burgess, J.; Hornung, C.J.; Perrett, K.P.; Tang, M.L.K.; Koplin, J.J.; et al. Efficacy and safety of oral immunotherapy for peanut, cow’s milk, and hen’s egg allergy: A systematic review of randomized controlled trials. Clin. Transl. Allergy 2023, 13, e12268. [Google Scholar] [CrossRef]
- Nagakura, K.I.; Yanagida, N.; Miura, Y.; Itonaga, T.; Nishino, M.; Takahashi, K.; Ogura, K.; Sato, S.; Ebisawa, M. Long-term follow-up of fixed low-dose oral immunotherapy for children with wheat-induced anaphylaxis. J. Allergy Clin. Immunol. Pract. 2022, 10, 1117–1119.e1112. [Google Scholar] [CrossRef]
- Monian, B.; Tu, A.A.; Ruiter, B.; Morgan, D.M.; Petrossian, P.M.; Smith, N.P.; Gierahn, T.M.; Ginder, J.H.; Shreffler, W.G.; Love, J.C. Peanut oral immunotherapy differentially suppresses clonally distinct subsets of T helper cells. J. Clin. Investig. 2022, 132, e150634. [Google Scholar] [CrossRef]
- Le Blanc, V.; Samaan, K.; Paradis, L.; Lacombe-Barrios, J.; Graham, F.J.; Des Roches, A.; Begin, P. Treatment expectations in food-allergic patients referred for oral immunotherapy. J. Allergy Clin. Immunol. Pract. 2021, 9, 2087–2089. [Google Scholar] [CrossRef]
- Warren, C.; Bartell, T.; Nimmagadda, S.R.; Bilaver, L.A.; Koplin, J.; Gupta, R.S. Socioeconomic determinants of food allergy burden: A clinical introduction. Ann. Allergy Asthma. Immunol. 2022, 129, 407–416. [Google Scholar] [CrossRef]
- Mack, D.P.; Greenhawt, M.; Bukstein, D.A.; Golden, D.B.K.; Settipane, R.A.; Davis, R.S. Decisions With Patients, Not for Patients: Shared Decision-Making in Allergy and Immunology. J. Allergy Clin. Immunol. Pract. 2024, 12, 2625–2633. [Google Scholar] [CrossRef]
- Flom, J.D.; Shreffler, W.G.; Perrett, K.P. Moving Beyond Desensitization to Tolerance in Food Allergy. J. Allergy Clin. Immunol. Pract. 2025, 13, 741–744. [Google Scholar] [CrossRef]
- Trevisonno, J.; Venter, C.; Pickett-Nairne, K.; Begin, P.; Cameron, S.B.; Chan, E.S.; Cook, V.E.; Factor, J.M.; Groetch, M.; Hanna, M.A.; et al. Age-Related Food Aversion and Anxiety Represent Primary Patient Barriers to Food Oral Immunotherapy. J. Allergy Clin. Immunol. Pract. 2024, 12, 1809–1818.e3. [Google Scholar] [CrossRef] [PubMed]
- Mirotti, L.; Mucida, D.; de Sa-Rocha, L.C.; Costa-Pinto, F.A.; Russo, M. Food aversion: A critical balance between allergen-specific IgE levels and taste preference. Brain Behav. Immun. 2010, 24, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Dourado, L.P.; Saldanha, J.C.; Gargiulo, D.L.; Noviello Mde, L.; Brant, C.C.; Reis, M.L.; Souza, R.M.; Faria, A.M.; Souza Dda, G.; Cara, D.C. Role of IL-4 in aversion induced by food allergy in mice. Cell. Immunol. 2010, 262, 62–68. [Google Scholar] [CrossRef]
- Patel, N.; Adelman, D.C.; Anagnostou, K.; Baumert, J.L.; Blom, W.M.; Campbell, D.E.; Chinthrajah, R.S.; Mills, E.N.C.; Javed, B.; Purington, N.; et al. Using data from food challenges to inform management of consumers with food allergy: A systematic review with individual participant data meta-analysis. J. Allergy Clin. Immunol. 2021, 147, 2249–2262.e2247. [Google Scholar] [CrossRef]
- Turner, P.J.; Wainstein, B.K. Crossing the threshold: Can outcome data from food challenges be used to predict risk of anaphylaxis in the community? Allergy 2017, 72, 9–12. [Google Scholar] [CrossRef]
- Chinthrajah, R.S.; Purington, N.; Andorf, S.; Long, A.; O’Laughlin, K.L.; Lyu, S.C.; Manohar, M.; Boyd, S.D.; Tibshirani, R.; Maecker, H.; et al. Sustained outcomes in oral immunotherapy for peanut allergy (POISED study): A large, randomised, double-blind, placebo-controlled, phase 2 study. Lancet 2019, 394, 1437–1449. [Google Scholar] [CrossRef]
- Jones, S.M.; Kim, E.H.; Nadeau, K.C.; Nowak-Wegrzyn, A.; Wood, R.A.; Sampson, H.A.; Scurlock, A.M.; Chinthrajah, S.; Wang, J.; Pesek, R.D.; et al. Efficacy and safety of oral immunotherapy in children aged 1-3 years with peanut allergy (the Immune Tolerance Network IMPACT trial): A randomised placebo-controlled study. Lancet 2022, 399, 359–371. [Google Scholar] [CrossRef]
Allergen Food for OIT | |||
---|---|---|---|
Egg | Milk | Wheat | |
Number of patients | 72 | 47 | 23 |
Age (years) at start of OIT, median (IQR) | 6 (5–9) | 5 (5–7) | 6 (5–8) |
Current age (years); median (IQR) | 15 (14–18) | 14 (13–16) | 14 (13–15) |
Sex, male % | 56 | 68 | 78 |
Treatment length (months); median (IQR) | 81 (70–91) | 80 (64–88) | 73 (62–83) |
Comorbid allergic diseases | |||
Bronchial asthma, % | 42 | 64 | 65 |
Atopic dermatitis, % | 38 | 62 | 57 |
Total IgE at baseline (IU/mL); median (IQR) | 1107 (680–3097) | 916 (605–1676) | 1159 (596–1351) |
Specific IgE, median (IQR) UA/L at baseline | |||
Egg white | 24.7 (11.4–65.7) | - | - |
Ovomucoid | 13.5 (8.6–43.0) | - | - |
Milk | - | 30.2 (8.7–76.5) | - |
Casein | - | 26.5 (8.6–80) | - |
Wheat | - | - | 55.9 (21.5–133.7) |
ω5-gliadin | - | - | 4.39 (0.9–8.3) |
DBPCFC threshold, mg protein, (IQR) | |||
Egg | 156 (37.8–420) | - | - |
Milk | - | 66 (19.8–198) | - |
Wheat | - | - | 101 (41.9–163.9) |
TEAE | Treatment Phase | Egg, n, % | p-Value * | Milk, n, % | p-Value * | Wheat, n, % | p-Value * | |||
---|---|---|---|---|---|---|---|---|---|---|
Oral discomfort | Build-up | 33 | 45.8% | n.s. | 15 | 31.9% | n.s. | 6 | 26.1% | n.s. |
Early maintenance | 14 | 19.7% | 11 | 23.4% | 2 | 8.7% | ||||
Late maintenance | 27 | 37.5% | 17 | 36.2% | 8 | 34.8% | ||||
WAO Grading | ||||||||||
Grade 1 Upper respiratory | Build-up | 23 | 32.0% | 0.0397 | 29 | 61.7% | 0.0004 | 11 | 47.8% | n.s. |
Early maintenance | 24 | 33.3% | 34 | 72.3% | 9 | 39.1% | ||||
Late maintenance | 12 | 16.7% | 12 | 25.5% | 6 | 26.1% | ||||
Grade 1/2 Cutaneous | Build-up | 38 | 52.8% | 0.0025 | 35 | 74.5% | 0.0001 | 14 | 60.9% | 0.0388 |
Early maintenance | 35 | 48.6% | 37 | 78.7% | 12 | 52.2% | ||||
Late maintenance | 20 | 27.8% | 17 | 36.2% | 7 | 30.4% | ||||
Grade 1/2 Gastrointestinal | Build-up | 34 | 47.2% | n.s. | 21 | 44.7% | 0.0200 | 7 | 30.4% | n.s. |
Early maintenance | 28 | 38.9% | 24 | 51.1% | 6 | 26.1% | ||||
Late maintenance | 24 | 33.3% | 10 | 21.3% | 6 | 26.1% | ||||
Grade 3 | Build-up | 5 | 6.9% | n.s. | 8 | 17.0% | n.s. | 4 | 17.4% | 0.0880 |
Early maintenance | 6 | 8.3% | 10 | 21.3% | 0 | 0.0% | ||||
Late maintenance | 3 | 4.2% | 3 | 6.4% | 1 | 4.4% | ||||
Grade 4/5 | Build-up | 0 | - | - | 0 | - | - | 0 | - | - |
Early maintenance | 0 | - | 0 | - | 0 | - | ||||
Late maintenance | 0 | - | 0 | - | 0 | - |
Full Desensitization | Non-Full Desensitization | p Value # | |
---|---|---|---|
Number of patients | 43 | 99 | |
Chicken egg/cow’s milk/wheat, n | 23/11/9 | 49/36/14 | 0.368 |
Age at start of OIT (y); median (IQR) | 6 (5–9) | 6 (5–8) | 0.404 |
Current age (y); median (IQR) | 13 (11–17) | 13 (11–14) | 0.148 |
Gender (boy, %) | 31 (72%) | 59 (60%) | 0.155 |
Comorbid allergic diseases, n (%) | |||
Asthma | 25 (58%) | 60 (61%) | 0.815 |
Atopic dermatitis | 24 (56%) | 56 (57%) | 0.899 |
Total IgE, median (IQR), IU/mL | 977.5 (625.5–1670) | 1107 (668–1832) | 0.156 |
Specific IgE, median (IQR), kUA/L | |||
Egg white | 20.3 (10.7–47.5) | 28.3 (12.9–69.6) | 0.214 |
Ovomucoid | 11 (5.8–54.1) | 16.2 (8.9–40.3) | 0.377 |
Milk | 8.8 (3.0–21.2) | 43.9 (13.7–81.7) | 0.005 |
Casein | 8.1 (4.63–31.8) | 51.2 (10.8–93.8) | 0.010 |
Wheat | 20.5 (7.63–27.7) | 90.4 (37.5–171.5) | 0.006 |
ω5-gliadin | 1.4 (0.54–3.83) | 5.5 (3.19–15.6) | 0.309 |
Initial threshold, median (IQR), mg:protein | |||
Chicken egg | 240 (54–522) | 132 (36–360) | 0.279 |
Milk | 198 (82.5–264) | 39.6 (19.8–173) | 0.037 |
Wheat | 101 (50.7–152) | 77.7 (28.7–166) | 0.466 |
TEAE in build-up phase, n (%) | |||
Oral discomfort | 11 (25.6%) | 43 (43.4%) | 0.044 |
Grade 1_upper respiratory | 12 (27.9%) | 51 (51.5%) | 0.009 |
Grade 1/2_cutaneous | 21 (48.8%) | 66 (66.7%) | 0.045 |
Grade 1/2_gastrointestinal | 14 (32.6%) | 48 (48.5%) | 0.079 |
Grade 3 | 1 (2.3%) | 16 (16.2%) | 0.020 |
Factors | OR | 95% CI | p Value |
---|---|---|---|
Specific IgE < cut-off levels | 4.14 | 1.64–10.47 | 0.003 |
Absence of oral discomfort during build-up phase | 3.53 | 1.32–9.47 | 0.012 |
Absence of grade 3 symptoms during build-up phase | 8.07 | 0.86–75.13 | 0.067 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoshi-Funakawa, M.; Nagao, M.; Kawamoto, N.; Ohnishi, H.; Fujisawa, T. Predictors of Long-Term Desensitization in Children Treated with Oral Immunotherapy for Food Allergy: A Real-World Cohort Study. J. Clin. Med. 2025, 14, 4727. https://doi.org/10.3390/jcm14134727
Hoshi-Funakawa M, Nagao M, Kawamoto N, Ohnishi H, Fujisawa T. Predictors of Long-Term Desensitization in Children Treated with Oral Immunotherapy for Food Allergy: A Real-World Cohort Study. Journal of Clinical Medicine. 2025; 14(13):4727. https://doi.org/10.3390/jcm14134727
Chicago/Turabian StyleHoshi-Funakawa, Miyuki, Mizuho Nagao, Norio Kawamoto, Hidenori Ohnishi, and Takao Fujisawa. 2025. "Predictors of Long-Term Desensitization in Children Treated with Oral Immunotherapy for Food Allergy: A Real-World Cohort Study" Journal of Clinical Medicine 14, no. 13: 4727. https://doi.org/10.3390/jcm14134727
APA StyleHoshi-Funakawa, M., Nagao, M., Kawamoto, N., Ohnishi, H., & Fujisawa, T. (2025). Predictors of Long-Term Desensitization in Children Treated with Oral Immunotherapy for Food Allergy: A Real-World Cohort Study. Journal of Clinical Medicine, 14(13), 4727. https://doi.org/10.3390/jcm14134727