Assessment Methods of Physical Fitness in Wheelchair Tennis Athletes: A Scoping Review and Proposal for a Standard Operating Procedure
Abstract
1. Introduction
1.1. Physical Activity and the Role of Paralympic Sports
1.2. Wheelchair Tennis Characteristics and Demands
1.3. The Need for Standardization and the Aim of the Review
2. Methods
2.1. Eligibility Criteria
2.2. Information Sources
2.2.1. Data Selection and Management
2.2.2. Data Collection and Synthesis
3. Results
3.1. Characteristics of Included Studies
3.2. Cardiorespiratory Endurance
3.3. Muscle Strength
3.4. Speed and Agility
3.5. Body Composition
3.6. Specific Sports Skills
4. Discussion
4.1. Strengths and Limitations
4.2. Standard Operating Procedure
4.3. Practical Implications
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jung, J.; Leung, W.; Schram, B.M.; Yun, J. Meta-Analysis of Physical Activity Levels in Youth with and without Disabilities. Adapt. Phys. Act. Q. 2018, 35, 381–402. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Haegele, J.A.; Wu, L. Comparing physical activity and sedentary behavior levels between deaf and hearing adolescents. Disabil. Health J. 2019, 12, 514–518. [Google Scholar] [CrossRef]
- Blauwet, C.A.; Iezzoni, L.I. From the Paralympics to public health: Increasing physical activity through legislative and policy initiatives. PMR 2014, 6 (Suppl. S8), S4–S10. [Google Scholar] [CrossRef]
- Hartman, E.; Smith, J.; Westendorp, M.; Visscher, C. Development of physical fitness in children with intellectual disabilities. J. Intellect. Disabil. Res. 2015, 59, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Olak, T.; Bamac, B.; Aydin, M.; Bergün, M.; Ozbek, A. Physical fitness level of blind and visually impaired goalball team players. Isokinet. Exerc. Sci. 2004, 12, 247–252. [Google Scholar]
- Bouzas, S.; Martínez-Lemos, R.I.; Ayán, C. Effects of exercise on the physical fitness level of adults with intellectual disability: A systematic review. Disabil. Rehabil. 2019, 41, 3118–3140. [Google Scholar] [CrossRef] [PubMed]
- Røe, C.; Preede, L.; Dalen, H.; Bautz-Holter, E.; Nyquist, A.; Sandvik, L.; Saebu, M. Does adapted physical activity-based rehabilitation improve mental and physical functioning? A randomized trial. Eur. J. Phys. Rehabil. Med. 2018, 54, 419–427. [Google Scholar] [CrossRef]
- Bartlo, P.; Klein, P.J. Physical activity benefits and needs in adults with intellectual disabilities: Systematic review of the literature. Am. J. Intellect. Dev. Disabil. 2011, 116, 220–232. [Google Scholar] [CrossRef]
- Heath, G.W.; Fentem, P.H. Physical activity among persons with disabilities--a public health perspective. Exerc. Sport Sci. Rev. 1997, 25, 195–234. [Google Scholar] [CrossRef]
- Blauwet, C.; Willick, S.E. The Paralympic Movement: Using sports to promote health, disability rights, and social integration for athletes with disabilities. PMR 2012, 4, 851–856. [Google Scholar] [CrossRef]
- Warner, M.B.; Wilson, D.; Heller, M.O.; Wood, D.; Worsley, P.; Mottram, S.; Webborn, N.; Veeger, D.; Batt, M. Scapular kinematics in professional wheelchair tennis players. Clin. Biomech. 2018, 53, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Leung, K.M.; Chung, P.K.; Chu, W.; Ng, K. Physical and psychological health outcomes of a sitting light volleyball intervention program on adults with physical disabilities: A non-randomized controlled pre-post study. BMC Sports Sci. Med. Rehabil. 2021, 13, 100. [Google Scholar] [CrossRef] [PubMed]
- Briley, S.J.; O’Brien, T.J.; Oh, Y.T.; Vegter, R.J.K.; Chan, M.; Mason, B.S.; Goosey-Tolfrey, V.L. Wheelchair rugby players maintain sprint performance but alter propulsion biomechanics after simulated match play. Scand. J. Med. Sci. Sports 2023, 33, 1726–1737. [Google Scholar] [CrossRef] [PubMed]
- den Braver, N.R.; Garcia Bengoechea, E.; Messing, S.; Kelly, L.; Schoonmade, L.J.; Volf, K.; Zukowska, J.; Gelius, P.; Forberger, S.; Woods, C.B.; et al. The impact of mass-media campaigns on physical activity: A review of reviews through a policy lens. Eur. J. Public Health 2022, 32 (Suppl. S4), iv71–iv83. [Google Scholar] [CrossRef]
- Diaper, N.J.; Goosey-Tolfrey, V.L. A physiological case study of a paralympic wheelchair tennis player: Reflective practise. J. Sports Sci. Med. 2009, 8, 300–307. [Google Scholar]
- Federation, I.T. Rules of Tennis 2020: The Federation; The International Tennis Federation (ITF): Paris, France, 2020. [Google Scholar]
- Sánchez-Pay, A. Determinant physical factors in the wheelchair tennis player. ITF Coach. Sport Sci. Rev. 2021, 29, 35–37. [Google Scholar] [CrossRef]
- Rietveld, T. Wheeling Performance in Wheelchair Tennis: Understanding and Improving a Complex Skill; University of Groningen: Groningen, The Netherlands, 2022. [Google Scholar]
- Sánchez-Pay, A.; Luque, G.T.; Rivas, D.S. Analysis of competitive wheelchair tennis. Coach. Sport Sci. Rev. 2014, 22, 22–25. [Google Scholar]
- Moon, H.B.; Park, S.J.; Kim, A.C.; Jang, J.H. Characteristics of upper limb muscular strength in male wheelchair tennis players. J. Exerc. Rehabil. 2013, 9, 375–380. [Google Scholar] [CrossRef]
- Sánchez-Pay, A.; Martínez-Gallego, R.; Crespo, M.; Sanz-Rivas, D. Key physical factors in the serve velocity of male professional wheelchair tennis players. Int. J. Environ. Res. Public Health 2021, 18, 1944. [Google Scholar] [CrossRef]
- Altmann, V.C.; Hart, A.L.; Vanlandewijck, Y.C.; van Limbeek, J.; van Hooff, M.L. The impact of trunk impairment on performance of wheelchair activities with a focus on wheelchair court sports: A systematic review. Sports Med. Open 2015, 1, 22. [Google Scholar] [CrossRef]
- Sindall, P.; Lenton, J.P.; Mason, B.S.; Tolfrey, K.; Cooper, R.A.; Martin Ginis, K.A.; Goosey-Tolfrey, V.L. Practice improves court mobility and self-efficacy in tennis-specific wheelchair propulsion. Disabil. Rehabil. Assist. Technol. 2021, 16, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Roy, J.L.; Menear, K.S.; Schmid, M.M.; Hunter, G.R.; Malone, L.A. Physiological responses of skilled players during a competitive wheelchair tennis match. J. Strength Cond. Res. 2006, 20, 665–671. [Google Scholar] [PubMed]
- Mason, B.S.; van der Slikke, R.M.A.; Hutchinson, M.J.; Goosey-Tolfrey, V.L. Division, result and score margin alter the physical and technical performance of elite wheelchair tennis players. J. Sports Sci. 2020, 38, 937–944. [Google Scholar] [CrossRef]
- Sánchez-Pay, A.; Sanz-Rivas, D. Physical and technical demand in professional wheelchair tennis on hard, clay and grass surfaces: Implication for training. Int. J. Perform. Anal. Sport 2021, 21, 463–476. [Google Scholar] [CrossRef]
- Sindall, P.; Lenton, J.P.; Tolfrey, K.; Cooper, R.A.; Oyster, M.; Goosey-Tolfrey, V.L. Wheelchair tennis match-play demands: Effect of player rank and result. Int. J. Sports Physiol. Perform. 2013, 8, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Rietveld, T.; Vegter, R.J.K.; van der Slikke, R.M.A.; Hoekstra, A.E.; van der Woude, L.H.V.; de Groot, S. Wheelchair mobility performance of elite wheelchair tennis players during four field tests: Inter-trial reliability and construct validity. PLoS ONE 2019, 14, e0217514. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Pay, A.; Torres-Luque, G.; Sanz-Rivas, D. Activity patterns in male and female wheelchair tennis matches. Kinesiology 2017, 49, 41–46. [Google Scholar] [CrossRef]
- Reid, M.; Morgan, S.; Whiteside, D. Matchplay characteristics of Grand Slam tennis: Implications for training and conditioning. J. Sports Sci. 2016, 34, 1791–1798. [Google Scholar] [CrossRef]
- Girard, O.; Chevalier, R.; Leveque, F.; Micallef, J.P.; Millet, G.P. Specific incremental field test for aerobic fitness in tennis. Br. J. Sports Med. 2006, 40, 791–796. [Google Scholar] [CrossRef]
- Leale, I.; Petrigna, L.; Giustino, V.; Pillitteri, G.; Barbieri, R.A.; Palma, A.; Musumeci, G.; Battaglia, G. A standard operating procedure for the physical performance analysis of wheelchair fencer: A scoping review. J. Sports Med. Phys. Fit. 2023, 63, 1175–1181. [Google Scholar] [CrossRef]
- Petrigna, L.; Petta, A.; Giustino, V.; Leale, I.; Pillitteri, G.; Palma, A.; Zangla, D.; Battaglia, G. A scoping review on how physical fitness is evaluated in sitting volleyball players. J. Sports Med. Phys. Fit. 2023, 63, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Petrigna, L.; Pajaujiene, S.; Musumeci, G. Physical fitness assessment in wheelchair basketball: A mini-review. Front. Sports Act. Living 2022, 4, 1035570. [Google Scholar] [CrossRef] [PubMed]
- Petrigna, L.; Giustino, V.; Zangla, D.; Aurea, S.; Palma, R.; Palma, A.; Battaglia, G. Physical fitness assessment in Goalball: A scoping review of the literature. Heliyon 2020, 6, e04407. [Google Scholar] [CrossRef] [PubMed]
- Petrigna, L.; Pajaujiene, S.; Delextrat, A.; Gómez-López, M.; Paoli, A.; Palma, A.; Bianco, A. The importance of standard operating procedures in physical fitness assessment: A brief review. Sport Sci. Health 2022, 18, 21–26. [Google Scholar] [CrossRef]
- Angiuoli, S.V.; Gussman, A.; Klimke, W.; Cochrane, G.; Field, D.; Garrity, G.; Kodira, C.D.; Kyrpides, N.; Madupu, R.; Markowitz, V.; et al. Toward an online repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation. Omics 2008, 12, 137–141. [Google Scholar] [CrossRef]
- Tuck, M.K.; Chan, D.W.; Chia, D.; Godwin, A.K.; Grizzle, W.E.; Krueger, K.E.; Rom, W.; Sanda, M.; Sorbara, L.; Stass, S.; et al. Standard operating procedures for serum and plasma collection: Early detection research network consensus statement standard operating procedure integration working group. J. Proteome Res. 2009, 8, 113–117. [Google Scholar] [CrossRef]
- Heyward, V.H.; Gibson, A. Advanced Fitness Assessment and Exercise Prescription, 7th ed.; Human Kinetics: Champaign, IL, USA, 2014. [Google Scholar]
- ACSM. ACSM’s Guidelines for Exercise Testing and Prescription, 12th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2018. [Google Scholar]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar]
- Goosey-Tolfrey, V.; Castle, P.; Webborn, N. Aerobic capacity and peak power output of elite quadriplegic games players. Br. J. Sports Med. 2006, 40, 684–687. [Google Scholar] [CrossRef]
- Vanlandewijck, Y.; van de Vliet, P.; Verellen, J.; Theisen, D. Determinants of shuttle run performance in the prediction of peak VO2 in wheelchair users. Disabil. Rehabil. 2006, 28, 1259–1266. [Google Scholar] [CrossRef]
- Bernardi, M.; Guerra, E.; Di Giacinto, B.; Di Cesare, A.; Castellano, V.; Bhambhani, Y. Field evaluation of paralympic athletes in selected sports: Implications for training. Med. Sci. Sports Exerc. 2010, 42, 1200–1208. [Google Scholar] [CrossRef]
- Mason, B.; Van Der Woude, L.; Tolfrey, K.; Goosey-Tolfrey, V. The effects of rear-wheel camber on maximal effort mobility performance in wheelchair athletes. Int. J. Sports Med. 2012, 33, 199–204. [Google Scholar] [CrossRef]
- De Groot, S.; Valent, L.J.; Fickert, R.; Pluim, B.M.; Houdijk, H. An incremental shuttle wheel test for wheelchair tennis players. Int. J. Sports Physiol. Perform. 2016, 11, 1111–1114. [Google Scholar] [CrossRef] [PubMed]
- Yulianto, W.D.; Yudhistira, D. Content Validity of Circuit Training Program and Its Effects on the Aerobic Endurance of Wheelchair Tennis Athletes. Int. J. Kinesiol. Sports Sci. 2021, 9, 60–65. [Google Scholar] [CrossRef]
- Sánchez-Pay, A.; Pino-Ortega, J.; Sanz-Rivas, D. Influence of Successive Wheelchair Tennis Matches on Handgrip Strength in High-Level Male Players. Int. J. Environ. Res. Public Health 2023, 20, 4842. [Google Scholar] [CrossRef]
- Rietveld, T.; Mason, B.S.; Goosey-Tolfrey, V.L.; van der Woude, L.H.V.; de Groot, S.; Vegter, R.J.K. Inertial measurement units to estimate drag forces and power output during standardised wheelchair tennis coast-down and sprint tests. Sports Biomech. 2024, 23, 968–986. [Google Scholar] [CrossRef] [PubMed]
- Rietveld, T.; Janssen, R.J.F.; van der Woude, L.H.V.; Vegter, R.J.K.; de Groot, S. The Effect of a Newly Developed Hand Rim on Mobility Performance and Propulsion Technique in Wheelchair Tennis Players. Int. J. Sports Physiol. Perform. 2024, 19, 1343–1346. [Google Scholar] [CrossRef]
- Cheng, J.C.; Chiu, C.Y.; Su, T.J. Training and Evaluation of Human Cardiorespiratory Endurance Based on a Fuzzy Algorithm. Int. J. Environ. Res. Public Health 2019, 16, 2390. [Google Scholar] [CrossRef]
- Committee on Fitness Measures and Health Outcomes in Youth; Food and Nutrition Board; Institute of Medicine. Fitness Measures and Health Outcomes in Youth; Pate, R.O.M., Pillsbury, L., Eds.; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Sun, M.; Soh, K.G.; Cao, S.; Yaacob, A.B.; Ma, S.; Ding, C. Effects of speed, agility, and quickness training on athletic performance: A systematic review and meta-analysis. BMC Sports Sci. Med. Rehabil. 2025, 17, 66. [Google Scholar] [CrossRef]
- Hemke, R.; Buckless, C.; Torriani, M. Quantitative Imaging of Body Composition. Semin. Musculoskelet. Radiol. 2020, 24, 375–385. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Léger, L.A.; Lambert, J. A maximal multistage 20-m shuttle run test to predict VO2 max. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 49, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ferrauti, A.; Kinner, V.; Fernandez-Fernandez, J. The Hit & Turn Tennis Test: An acoustically controlled endurance test for tennis players. J. Sports Sci. 2011, 29, 485–494. [Google Scholar] [PubMed]
- Léger, L.; Boucher, R. An indirect continuous running multistage field test: The Université de Montréal track test. Can. J. Appl. Sport Sci. 1980, 5, 77–84. [Google Scholar]
- Granados, C.; Yanci, J.; Badiola, A.; Iturricastillo, A.; Otero, M.; Olasagasti, J.; Bidaurrazaga-Letona, I.; Gil, S.M. Anthropometry and Performance in Wheelchair Basketball. J. Strength Cond. Res. 2015, 29, 1812–1820. [Google Scholar] [CrossRef]
- Yanci, J.; Granados, C.; Otero, M.; Badiola, A.; Olasagasti, J.; Bidaurrazaga-Letona, I.; Iturricastillo, A.; Gil, S. Sprint, agility, strength and endurance capacity in wheelchair basketball players. Biol. Sport. 2015, 32, 71–78. [Google Scholar] [CrossRef]
- Ulbricht, A.; Fernandez-Fernandez, J.; Ferrauti, A. Conception for fitness testing and individualized training programs in the German Tennis Federation. Sports Orthop. Traumatol. 2013, 29, 180–192. [Google Scholar] [CrossRef]
- Artero, E.G.; España-Romero, V.; Castro-Piñero, J.; Ortega, F.B.; Suni, J.; Castillo-Garzon, M.J.; Ruiz, J.R. Reliability of field-based fitness tests in youth. Int. J. Sports Med. 2011, 32, 159–169. [Google Scholar] [CrossRef]
- Artero, E.G.; España-Romero, V.; Castro-Piñero, J.; Ruiz, J.; Jiménez-Pavón, D.; Aparicio, V.; Gatto-Cardia, M.; Baena, P.; Vicente-Rodríguez, G.; Castillo, M.J.; et al. Criterion-related validity of field-based muscular fitness tests in youth. J. Sports Med. Phys. Fit. 2012, 52, 263–272. [Google Scholar]
- Haj-Sassi, R.; Dardouri, W.; Gharbi, Z.; Chaouachi, A.; Mansour, H.; Rabhi, A.; Mahfoudhi, M.E. Reliability and validity of a new repeated agility test as a measure of anaerobic and explosive power. J. Strength Cond. Res. 2011, 25, 472–480. [Google Scholar] [CrossRef]
- De Groot, S.; Balvers, I.J.; Kouwenhoven, S.M.; Janssen, T.W. Validity and reliability of tests determining performance-related components of wheelchair basketball. J. Sports Sci. 2012, 30, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Durnin, J.V.G.A.; Womersley, J. Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 Years. Br. J. Nutr. 1974, 32, 77–97. [Google Scholar] [CrossRef] [PubMed]
- Negrete, R.J.; Hanney, W.J.; Kolber, M.J.; Davies, G.J.; Ansley, M.K.; McBride, A.B.; Overstreet, A.L. Reliability, minimal detectable change, and normative values for tests of upper extremity function and power. J. Strength Cond. Res. 2010, 24, 3318–3325. [Google Scholar] [CrossRef] [PubMed]
- Roetert, E.P.; McCormick, T.J.; Brown, S.W.; Ellenbecker, T.S. Relationship between isokinetic and functional trunk strength in elite junior tennis players. Isokinet. Exerc. Sci. 1996, 6, 15–20. [Google Scholar] [CrossRef]
- Grossmann, F.; Flueck, J.L.; Roelands, B.; Meeusen, R.; Perret, C. Validity of a Wheelchair Rugby Field Test to Simulate Physiological and Thermoregulatory Match Outcomes. Sports 2022, 10, 144. [Google Scholar] [CrossRef]
- Salse-Batán, J.; Varela, S.; García-Fresneda, A.; Ayán, C. Reliability and validity of field-based tests for assessing physical fitness in gymnasts. Apunt. Sports Med. 2022, 57, 100397. [Google Scholar] [CrossRef]
- Kell, R.T.; Bell, G.; Quinney, A. Musculoskeletal fitness, health outcomes and quality of life. Sports Med. 2001, 31, 863–873. [Google Scholar] [CrossRef]
- Marszałek, J.; Kosmol, A.; Morgulec-Adamowicz, N.; Mróz, A.; Gryko, K.; Klavina, A.; Skucas, K.; Navia, J.A.; Molik, B. Laboratory and Non-laboratory Assessment of Anaerobic Performance of Elite Male Wheelchair Basketball Athletes. Front. Psychol. 2019, 10, 514. [Google Scholar] [CrossRef]
- Iturricastillo, A.; Granados, C.; Yanci, J. Changes in Body Composition and Physical Performance in Wheelchair Basketball Players During a Competitive Season. J. Hum. Kinet. 2015, 48, 157–165. [Google Scholar] [CrossRef]
- Sheppard, J.M.; Young, W.B. Agility literature review: Classifications, training and testing. J. Sports Sci. 2006, 24, 919–932. [Google Scholar] [CrossRef]
- Mendoza-Muñoz, M.; Adsuar, J.C.; Pérez-Gómez, J.; Muñoz-Bermejo, L.; Garcia-Gordillo, M.; Carlos-Vivas, J. Influence of Body Composition on Physical Fitness in Adolescents. Medicina 2020, 56, 328. [Google Scholar] [CrossRef] [PubMed]
- Ingraham, S.J. The role of flexibility in injury prevention and athletic performance: Have we stretched the truth? Minn. Med. 2003, 86, 58–61. [Google Scholar] [PubMed]
- Gleim, G.W.; McHugh, M.P. Flexibility and its effects on sports injury and performance. Sports Med. 1997, 24, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Winnick, J.P.; Short, F. Brockport Physical Fitness Test Manual: A Health-Related Assessment for Youngsters with Disabilities; Human Kinetics: Champaign, IL, USA, 2014. [Google Scholar]
- Dewhurst, S.; Bampouras, T.M. Intraday reliability and sensitivity of four functional ability tests in older women. Am. J. Phys. Med. Rehabil. 2014, 93, 703–707. [Google Scholar] [CrossRef]
- Gallo-Salazar, C.; Del Coso, J.; Barbado, D.; Lopez-Valenciano, A.; Santos-Rosa, F.J.; Sanz-Rivas, D.; Moya, M.; Fernandez-Fernandez, J. Impact of a competition with two consecutive matches in a day on physical performance in young tennis players. Appl. Physiol. Nutr. Metab. 2017, 42, 750–756. [Google Scholar] [CrossRef]
- Jackson, A.S.; Pollock, M.L. Generalized equations for predicting body density of men. Br. J. Nutr. 1978, 40, 497–504. [Google Scholar] [CrossRef]
- Lamb, K.; Brodie, D.; Roberts, K. Physical fitness and health-related fitness as indicators of positive health. Health Promot. 1988, 3, 171–182. [Google Scholar] [CrossRef]
PICOS Framework | Details |
---|---|
Population | Athletes practicing wheelchair tennis |
Intervention | Field-based physical fitness assessments or tests conducted on wheelchair tennis athletes |
Comparator | Not applicable |
Outcomes | Measures of physical fitness components such as cardiorespiratory fitness, muscular strength, flexibility, and body composition |
Study design | Peer-reviewed original research articles reporting on field testing or physical fitness assessments of wheelchair tennis athletes Exclusion of reviews, editorials, and conference abstracts |
Reference | Ntot [Nwt] [m] [f] | Age [Years ± SD] | Level | Physical Fitness |
---|---|---|---|---|
Goosey-Tolfrey et al., 2006 [43] | 8 [4] [8] [0] | 29 ± 4.0 | NT | Cardiorespiratory endurance |
Vanlandewijck et al., 2006 [44] | 11 [Na] [11] [0] | 31 ± 6.62 | Elite | Cardiorespiratory endurance—speed and agility |
Bernardi et al., 2010 [45] | 34 [4] [34] [0] | 33.1 ± 7.75 | PA | Cardiorespiratory endurance |
Mason et al., 2011 [46] | 14 [3] [11] [3] | 23 ± 6 | Elite | Speed and agility |
De Groot et al., 2016 [47] | 15 [15] [15] [0] | 21.2 ± 8.4 | Elite | Cardiorespiratory endurance |
Rietveld et al., 2019 [28] | 21 [21] [9] [12] | 27.3 ± 8.7 (A) 14.8 ± 1.5 (J) | Elite | Speed and agility |
Sánchez-Pay et al., 2021 [21] | 9 [9] [9] [0] | 38.4 ± 11.28 | NT | Cardiorespiratory endurance–muscle strength–speed and agility–specific sports skills |
Yulianto et al., 2021 [48] | 14 [14] [10] [4] | 31–35 * | NT | Cardiorespiratory endurance |
Sánchez-Pay et al., 2023 [49] | 8 [8] [8] [0] | 38 ± 10 | NT | Muscle strength |
Rietveld et al., 2024 [50] | 8 [8] [6] [2] | 34 ± 9 | Elite | Speed and agility |
Rietveld et al., 2024 [51] | 9 [9] [5] [4] | 27 ± 15 | Elite | Speed and agility |
Reference | Cardiorespiratory Endurance | Muscle Strength | Speed and Agility | Body Composition | Specific Sports Skills | Main Findings |
---|---|---|---|---|---|---|
Goosey-Tolfrey et al., 2006 [43] | ST | Body composition was assessed through the sum of four ST, with values indicating moderate variability among athletes. | ||||
Vanlandewijck et al., 2006 [44] | SR | TE | SR times differed significantly across conditions; VO2peak similar; SR performance explained up to 41% of VO2peak variance. | |||
Bernardi et al., 2010 [45] | RS | VO2peak and ventilatory threshold were significantly higher in Nordic sit skiing and wheelchair racing athletes compared to WT; strong correlation between field test VO2 and lab-measured aerobic fitness. | ||||
Mason et al., 2011 [46] | 20 m sprint; LMD | 18° camber angle improved 20 m sprint times, acceleration, and linear mobility compared to 24°, with large effect sizes; 24° camber impaired performance, likely due to increased drag. | ||||
De Groot et al., 2016 [47] | SR | SR strongly correlated with player skill level, but poorly predicted VO2peak. | ||||
Rietveld et al., 2019 [28] | 5,10,20 m sprint; BS; ST; IAT | Four WT field tests showed good construct validity, effectively distinguishing talented juniors from international adults. | ||||
Sánchez-Pay et al., 2021 [21] | HTTT | Handgrip | 5,10,20 m sprint; T-test; | SVT; MBT | MBT was the strongest predictor of serve velocity in male WT players, showing high correlations with serve and stroke speeds. | |
Yulianto et al., 2021 [48] | MFT | Circuit training program, measured with MFT, showed good content validity and significantly improved aerobic endurance in WT athletes after 6 weeks. | ||||
Sánchez-Pay et al., 2023 [49] | Handgrip | Successive WT matches caused a significant decrease in dominant handgrip strength, with strength declining from first to fourth match. | ||||
Rietveld et al., 2024 [50] | 10 m sprint | Higher tire pressure reduced drag; power loss varied by surface (hard court < clay < grass). | ||||
Rietveld et al., 2024 [51] | 20 m sprint; ST; IAT | New hand rim showed slight improvements in work per push, peak velocity, and distance during lab sprint tests; no significant differences found in field tests. |
Physical Fitness Component | Test Adopted |
---|---|
Body composition | Two-site skinfold thickness |
Warm-up | |
Muscle strength | Isometric handgrip strength test |
Flexibility | Back scratch test/shoulder rotation |
Speed and agility | 20 m sprint/spider test/Illinois Agility Test |
Cardiorespiratory endurance | Shuttle run test |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leale, I.; Sánchez-Pay, A.; Giustino, V.; Roccella, M.; Ruberto, M.; Lattuca, M.; Lo Presti, O.; Gómez-López, M.; Battaglia, G. Assessment Methods of Physical Fitness in Wheelchair Tennis Athletes: A Scoping Review and Proposal for a Standard Operating Procedure. J. Clin. Med. 2025, 14, 4609. https://doi.org/10.3390/jcm14134609
Leale I, Sánchez-Pay A, Giustino V, Roccella M, Ruberto M, Lattuca M, Lo Presti O, Gómez-López M, Battaglia G. Assessment Methods of Physical Fitness in Wheelchair Tennis Athletes: A Scoping Review and Proposal for a Standard Operating Procedure. Journal of Clinical Medicine. 2025; 14(13):4609. https://doi.org/10.3390/jcm14134609
Chicago/Turabian StyleLeale, Ignazio, Alejandro Sánchez-Pay, Valerio Giustino, Michele Roccella, Maria Ruberto, Michele Lattuca, Olga Lo Presti, Manuel Gómez-López, and Giuseppe Battaglia. 2025. "Assessment Methods of Physical Fitness in Wheelchair Tennis Athletes: A Scoping Review and Proposal for a Standard Operating Procedure" Journal of Clinical Medicine 14, no. 13: 4609. https://doi.org/10.3390/jcm14134609
APA StyleLeale, I., Sánchez-Pay, A., Giustino, V., Roccella, M., Ruberto, M., Lattuca, M., Lo Presti, O., Gómez-López, M., & Battaglia, G. (2025). Assessment Methods of Physical Fitness in Wheelchair Tennis Athletes: A Scoping Review and Proposal for a Standard Operating Procedure. Journal of Clinical Medicine, 14(13), 4609. https://doi.org/10.3390/jcm14134609