Minimally Invasive Lateral Thoracic and Lumbar Interbody Fusion with Expandable Interbody Spacers for Spine Trauma—Indications, Complications and Outcomes
Abstract
1. Introduction
2. Materials and Methods
2.1. Hospital Setting
2.2. Indication for Surgery and Patient Identification
2.3. Data Collection and Variables
2.4. Surgical Technique and Special Considerations
2.5. Statistical Analysis
2.6. Ethical Considerations
3. Results
3.1. Patient Cohort
3.2. Follow-Up and Reasons for Missing Data
3.3. Radiological Outcomes
3.4. Clinical Outcomes
4. Discussion
4.1. Why “Trauma LLIF”?
4.2. Which Type of Spine Trauma Is Suitable for “Trauma LLIF”?
4.3. Why and When Should Expandable Interbody Spacers Be Used for “Trauma LLIF”?
4.4. Limitations of and Caveats for “Trauma LLIF”
4.5. Strengths
4.6. Limitations
4.7. Implications for Practice
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AE | Adverse event |
ALIF | Anterior interbody fusion |
AO | Arbeitsgemeinschaft für Osteosynthesefragen |
ALL | Anterior longitudinal ligament |
ASA | American Society of Anesthesiologists |
ASD | Adjacent segment degeneration |
C7 SVA | C7- sagittal vertebral axis |
CCI | Charlson Comorbidity Index |
CT | Computed tomography |
DISH | Diffuse idiopathic skeletal hyperostosis |
EBL | Estimated blood loss |
EMG | Electromyography |
IRB | Institutional review board |
LL | Lumbar lordosis |
LLIF | Lateral lumbar (or thoracic) interbody fusion |
LOS | Lengths of hospital stay |
ODI | Oswestry Disability Score |
PI | Pelvic incidence |
PJF | Proximal junctional failure |
PLIF | Posterior interbody fusion |
PROM | Patient reported outcome measure |
PT | Pelvic tilt |
SD | Standard deviation |
SL | Segmental lordosis |
SPECT | Single photon emission computed tomography |
SS | Sacral slope |
TDN | Therapy–Disability–Neurology |
TL | Thoracolumbar |
TLIF | Transforaminal interbody fusion |
UPN | Unique patient number |
VAS | Visual Analogue Scale |
VB | Vertebral body |
References
- Smith, W.D.; Dakwar, E.; Le, T.V.; Ginger, C.; Serrano, S.; Uribe, J.S. Minimally invasive surgery for traumatic spinal pathologies: A mini-open, lateral approach in the thoracic and lumbar spine. Spine 2010, 35 (Suppl. S26), S338–S346. [Google Scholar] [CrossRef]
- Cheng, I.; Stienen, M.N.; Medress, Z.A.; Varshneya, K.; Ho, A.L.; Ratliff, J.K.; Veeravagu, A. Single- versus dual-attending strategy for spinal deformity surgery: 2-year experience and systematic review of the literature. J. Neurosurg. Spine 2020, 33, 560–571. [Google Scholar] [CrossRef] [PubMed]
- Schonauer, C.; Stienen, M.N.; Gautschi, O.P.; Schaller, K.; Tessitore, E. Endoscope-Assisted Extreme-Lateral Interbody Fusion: Preliminary Experience and Technical Note. World Neurosurg. 2017, 103, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Fischer, G.; Bättig, L.; Schöfl, T.; Schonfeld, E.; Veeravagu, A.; Martens, B.; Stienen, M.N. Indications, complications and outcomes of minimally-invasive lateral lumbar interbody fusion with anterior column realignment vs. standard LLIF using expandable interbody spacers. Front. Surg. 2024, 11, 1455445. [Google Scholar] [CrossRef] [PubMed]
- Gianoli, D.; Bättig, L.; Bertulli, L.; Forster, T.; Martens, B.; Stienen, M.N. Lateral lumbar and thoracic interbody fusion (LLIF) for thoracolumbar spine trauma (Trauma LLIF): A single-center, retrospective observational cohort study. N. Am. Spine Soc. J. 2024, 19, 100534. [Google Scholar]
- Tanaka, M.; Singh, M.; Fujiwara, Y.; Uotani, K.; Oda, Y.; Arataki, S.; Yamauchi, T.; Takigawa, T.; Ito, Y. Comparison of Navigated Expandable Vertebral Spacer with Conventional Expandable Vertebral Spacer for Minimally Invasive Lumbar/Thoracolumbar Corpectomy. Medicina 2022, 58, 364. [Google Scholar] [CrossRef]
- Sasaki, M.; Fukunaga, T.; Ninomiya, K.; Umegaki, M.; Matsumoto, K.; Hishima, H. Lateral Lumbar Interbody Fusion Using Bone Graft Substitute for Lumbar Vertebral Fracture Associated Radiculopathy. Neurol. Med. Chir. 2022, 62, 342–346. [Google Scholar] [CrossRef]
- Lindtner, R.A.; Mueller, M.; Schmid, R.; Spicher, A.; Zegg, M.; Kammerlander, C.; Krappinger, D. Monosegmental anterior column reconstruction using an expandable vertebral body replacement device in combined posterior-anterior sstabilizationof thoracolumbar burst fractures. Arch. Orthop. Trauma Surg. 2018, 138, 939–951. [Google Scholar] [CrossRef]
- Walker, C.T.; Xu, D.S.; Godzik, J.; Turner, J.D.; Uribe, J.S.; Smith, W.D. Minimally invasive surgery for thoracolumbar spinal trauma. Ann. Transl. Med. 2018, 6, 102. [Google Scholar] [CrossRef]
- Stienen, M.N.; Fischer, G.; Bättig, L.; Veeravagu, A.; Martens, B. Minimally-invasive lateral thoracic and lumbar interbody fusion (LLIF) with expandable interbody spacers—Considerations, complications & outcomes. Brain Spine 2024, 4, 102870. [Google Scholar]
- Lambrechts, M.J.; Schroeder, G.D.; Tran, K.; Li, S.; Huang, A.; Chu, J.; Karamian, B.A.; Canseco, J.A.; Hilibrand, A.S.; Oner, C.; et al. Validation of the AO Spine Thoracolumbar Injury Classification System Treatment Algorithm: Should it be used to Guide Fracture Management? Spine 2023, 48, 994–1002. [Google Scholar] [CrossRef] [PubMed]
- Podet, A.G.; Morrow, K.D.; Robichaux, J.M.; Shields, J.A.; DiGiorgio, A.M.; Tender, G.C. Minimally invasive lateral corpectomy for thoracolumbar traumatic burst fractures. Neurosurg. Focus 2020, 49, E12. [Google Scholar] [CrossRef] [PubMed]
- Magerl, F.; Aebi, M.; Gertzbein, S.D.; Harms, J.; Nazarian, S. A comprehensive classification of thoracic and lumbar injuries. Eur. Spine J. 1994, 3, 184–201. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Rockwood, K.; Song, X.; MacKnight, C.; Bergman, H.; Hogan, D.B.; McDowell, I.; Mitnitski, A. A global clinical measure of fitness and frailty in elderly people. CMAJ 2005, 173, 489–495. [Google Scholar] [CrossRef]
- Tian, N.F.; Wu, Y.; Zhang, X.; Wu, X.; Chi, Y.; Mao, F. Fusion versus nonfusion for surgically treated thoracolumbar burst fractures: A meta-analysis. PLoS ONE 2013, 8, e63995. [Google Scholar] [CrossRef] [PubMed]
- Laouissat, F.; Sebaaly, A.; Gehrchen, M.; Roussouly, P. Classification of normal sagittal spine alignment: Refounding the Roussouly classification. Eur. Spine J. 2018, 27, 2002–2011. [Google Scholar] [CrossRef]
- Pizones, J.; Moreno-Manzanaro, L.; Sanchez-Perez-Grueso, F.J.; Vila-Casademunt, A.; Yilgor, C.; Obeid, I.; Alanay, A.; Kleinstück, F.; Acaroglu, E.R.; Pellisé, F. Restoring the ideal Roussouly sagittal profile in adult scoliosis surgery decreases the risk of mechanical complications. Eur. Spine J. 2020, 29, 54–62. [Google Scholar] [CrossRef]
- Sebaaly, A.; Grobost, P.; Mallam, L.; Roussouly, P. Description of the sagittal alignment of the degenerative human spine. Eur. Spine J. 2018, 27, 489–496. [Google Scholar] [CrossRef]
- Terrapon, A.P.R.; Zattra, C.M.; Voglis, S.; Velz, J.; Vasella, F.; Akeret, K.; Held, U.; Schiavolin, S.; Bozinov, O.; Ferroli, P.; et al. Adverse Events in Neurosurgery: The Novel Therapy-Disability-Neurology Grade. Neurosurgery 2021, 89, 236–245. [Google Scholar] [CrossRef]
- Joswig, H.; Hock, C.; Hildebrandt, G.; Schaller, K.; Stienen, M.N. Microscopic lumbar spinal stenosis decompression: Is surgical education safe? Acta Neurochir. 2016, 158, 357–366. [Google Scholar] [CrossRef]
- Macnab, I. Negative disc exploration. An analysis of the causes of nerve-root involvement in sixty-eight patients. J. Bone Jt. Surg. Am. 1971, 53, 891–903. [Google Scholar] [CrossRef]
- Tafazal, S.I.; Sell, P.J. Outcome scores in spinal surgery quantified: Excellent, good, fair and poor in terms of patient-completed tools. Eur. Spine J. 2006, 15, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Raizman, N.M.; O’Brien, J.R.; Poehling-Monaghan, K.L.; Yu, W.D. Pseudarthrosis of the spine. J. Am. Acad. Orthop. Surg. 2009, 17, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Grobost, P.; Boudissa, M.; Kerschbaumer, G.; Ruatti, S.; Tonetti, J. Early versus delayed corpectomy in thoracic and lumbar spine trauma. A long-term clinical and radiological retrospective study. Orthop. Traumatol. Surg. Res. 2020, 106, 261–267. [Google Scholar] [CrossRef]
- Croci, D.M.; Cole, K.; Sherrod, B.; Yen, C.P.; Dailey, A.T.; Mazur, M.D. L4 Corpectomy: Surgical Approaches and Mitigating the Risk of Femoral Nerve Injuries. World Neurosurg. 2022, 166, e905–e914. [Google Scholar] [CrossRef] [PubMed]
- Vaccaro, A.R.; Cumhur, O.; Kepler, C.K.; Dvorak, M.; Schnake, K.; Bellabarba, C.; Reinhold, M.; Aarabi, B.; Kandziora, F.; Chapman, J.; et al. AOSpine Thoracolumbar Spine Injury Classification System. Fracture Description, Neurological Status, and Key Modifiers. Spine 2013, 38, 2028–2037. [Google Scholar] [CrossRef]
- Sapkas, G.; Kateros, K.; Papadakis, S.A.; Brilaki, E.; Macheras, G.; Katonis, P. Treatment of unstable thoracolumbar burst fractures by indirect reduction and posterior sstabilization short-segment versus long-segment sstabilization. Open Orthop. J. 2010, 4, 7–13. [Google Scholar] [CrossRef]
- Li, Y.M.; Frisch, R.F.; Huang, Z.; Towner, J.; Li, Y.I.; Greeley, S.L.; Ledonio, C. Comparative Effectiveness of Expandable Versus Static Interbody Spacers via MIS LLIF: A 2-Year Radiographic and Clinical Outcomes Study. Glob. Spine J. 2020, 10, 998–1005. [Google Scholar] [CrossRef]
- Frisch, R.F.; Luna, I.Y.; Brooks, D.M.; Joshua, G.; O’Brien, J.R. Clinical and radiographic analysis of expandable versus static lateral lumbar interbody fusion devices with two-year follow-up. J. Spine Surg. 2018, 4, 62–71. [Google Scholar] [CrossRef]
- Huo, C.W.; Malham, G.M.; Biddau, D.T.; Chung, T.; Wang, Y.Y. Lateral Lumbar Interbody Fusion Using Expandable vs. Static Titanium Interbody Spacers: A Prospective Cohort Study of Clinical and Radiographic Outcomes. Int. J. Spine Surg. 2023, 17, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Huangxs, S.; Christiansen, P.A.; Tan, H.; Smith, J.S.; Shaffrey, M.E.; Uribe, J.S.; Shaffrey, C.I.; Yen, C. Mini-Open Lateral Corpectomy for Thoracolumbar Junction Lesions. Oper. Neurosurg. 2020, 18, 640–647. [Google Scholar] [CrossRef] [PubMed]
Baseline Demographic Information | |
---|---|
Age in years | 48.3 (15.7, 17–76) |
Sex | |
Female | 10 (47.6%) |
Male | 11 (52.4%) |
ASA risk scale | |
I | 11 (52.4%) |
II | 3 (14.3%) |
III | 7 (33.3%) |
IV | - (0%) |
Charlson comorbidity index | 0.7 (1.6, 0–5) |
0–1 | 18 (85.7%) |
2–3 | 1 (4.8%) |
4 or higher | 2 (9.5%) |
Canadian Clinical Frailty Index | |
Very fit or well | 14 (66.7%) |
Managing well or vulnerable | 4 (19.1%) |
Mildly or moderately frail | 2 (9.5%) |
Severely or very severely frail | 1 (4.8%) |
Smoking status | |
Active smoker | 6 (28.6%) |
Former smoker | 2 (9.5%) |
Nonsmoker | 13 (61.9%) |
AO Spine Classification | |
A2 fracture | 4 (19.1%) |
A3 fracture | 14 (66.7%) |
A4 fracture | 3 (14.3%) |
Additional B2 injury | 8 (38.1%) |
Additional B3 injury | 1 (4.8%) |
Roussouly type of spinal geometry | |
Type 1 (SS < 35°) | 6 (28.6%) |
Type 2 (SS < 35°) | 4 (19.1%) |
Type 3 (35° < SS < 45°) | 4 (19.1%) |
Type 4 (SS > 45°) | 7 (33.3%) |
Total | 21 (100%) |
Surgical Parameters | |
---|---|
LLIF segment | |
T11-12 | 4 (19.1%) |
T12-L1 | 10 (47.5%) |
L1-2 | 2 (9.5%) |
L2-3 | 4 (19.1%) |
L3-4 | 1 (4.8%) |
Number of fused segments | 2.1 (1.5, 1–6) |
Mono-/bisegmental | 15 (71.4%) |
3–7 segments | 6 (28.6%) |
ALL release | |
Yes | 4 (19.1%) |
No | 17 (80.9%) |
Length of surgery, in minutes | 233 (87.6, 96–409) |
Estimated blood loss, in milliliters | 313 (231, 20–1000) |
Type of interbody spacer | |
Parallel (0° lordosis) | 1 (4.8%) |
Anatomical (6° lordosis) | 4 (19.1%) |
Lordotic (5–20° lordosis) | 14 (67.7%) |
Hyperlordotic (15–30° lordosis) | 2 (9.5%) |
Intraoperative AEs | |
No | 20 (95.2%) |
Yes, type: | 1 (4.8%) |
Vascular injury | - |
Nerve injury | - |
Spacer subsidence | - |
Other * | 1 (4.8%) |
Total | 21 patients/21 levels (100%) |
Parameter | Preoperative | Discharge | 3 Months | 12 Months |
---|---|---|---|---|
PI, in ° | 53.0 (12.6) | - | - | - |
LL, in ° | 32.7 (18.5) | 45.9 (9.2) p < 0.001 | 45.3 (13.4) p < 0.001 | 43.3 (15.0) p < 0.001 |
PT, in ° | 23.6 (10.3) | 18.8 (7.7) p < 0.001 | 20.7 (9.7) p = 0.040 | 19.6 (9.1) p = 0.003 |
Segmental lordosis, in ° | 1.3 (16.0) | 13.0 (13.1) p < 0.001 | 12.7 (13.8) p < 0.001 | 13.3 (14.5) p < 0.001 |
C7 SVA, in cm | 8.0 (6.4) | 5.6 (4.3) p = 0.001 | 4.9 (4.2) p = 0.005 | 6.6 (5.1) p = 0.114 |
Total | n = 21 patients/n = 21 levels (100%) |
Parameter | Discharge | 3 Months | 12 Months |
---|---|---|---|
Functional outcome | - | ||
Excellent | 11 (52.4%) | 8 (38.1%) | |
Good | 6 (28.6%) | 7 (33.3%) | |
Fair | 1 (4.8%) | 1 (4.8%) | |
Poor | 1 (4.8%) | 1 (4.8%) | |
Missing data | 2 (9.5%) | 4 (19.1%) | |
Postoperative AE * | |||
No | 18 (85.7%) | 15 (71.4%) | 15 (71.4%) |
Yes | 3 (14.3%) | 4 (19.1%) | 2 (9.5%) |
Missing data | - (0%) | 2 (9.5%) | 4 (19.1%) |
TDN grading scale | |||
Grade 1 | - (0%) | 1 (4.8%) | - (0%) |
Grade 2 | 2 (9.6%) | 1 (4.8%) | - (0%) |
Grade 3 | 1 (4.8%) | 2 (9.5%) | 1 (4.8%) |
Grade 4 | - (0%) | - (0%) | - (0%) |
Grade 5 | - (0%) | - (0%) | 1 (4.8%) |
Missing data | - (0%) | 2 (9.5%) | 10 (15.8%) |
Pseudarthrosis ** | - | ||
No | 21 (100%) | 21 (100%) | |
Yes | - (0%) | - (0%) | |
Total | n = 21 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bättig, L.; Fischer, G.; Martens, B.; Veeravagu, A.; Bertulli, L.; Stienen, M.N. Minimally Invasive Lateral Thoracic and Lumbar Interbody Fusion with Expandable Interbody Spacers for Spine Trauma—Indications, Complications and Outcomes. J. Clin. Med. 2025, 14, 4557. https://doi.org/10.3390/jcm14134557
Bättig L, Fischer G, Martens B, Veeravagu A, Bertulli L, Stienen MN. Minimally Invasive Lateral Thoracic and Lumbar Interbody Fusion with Expandable Interbody Spacers for Spine Trauma—Indications, Complications and Outcomes. Journal of Clinical Medicine. 2025; 14(13):4557. https://doi.org/10.3390/jcm14134557
Chicago/Turabian StyleBättig, Linda, Gregor Fischer, Benjamin Martens, Anand Veeravagu, Lorenzo Bertulli, and Martin N. Stienen. 2025. "Minimally Invasive Lateral Thoracic and Lumbar Interbody Fusion with Expandable Interbody Spacers for Spine Trauma—Indications, Complications and Outcomes" Journal of Clinical Medicine 14, no. 13: 4557. https://doi.org/10.3390/jcm14134557
APA StyleBättig, L., Fischer, G., Martens, B., Veeravagu, A., Bertulli, L., & Stienen, M. N. (2025). Minimally Invasive Lateral Thoracic and Lumbar Interbody Fusion with Expandable Interbody Spacers for Spine Trauma—Indications, Complications and Outcomes. Journal of Clinical Medicine, 14(13), 4557. https://doi.org/10.3390/jcm14134557