Hemodynamic Adaptation and Cardiac Effects of High-Flow Arteriovenous Access in Hemodialysis Patients: A Prospective Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Clinical and Biochemical Parameters
2.3. Bioimpedance Methodology
2.4. Echocardiography
2.5. Access Flow (Qa) Measurement
2.6. Duplex Ultrasound Measurement
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics According to Qa/CO Ratio
3.2. Bioimpedance Parameters According to Qa/CO Ratio
3.3. Baseline Echocardiographic Findings According to Qa/CO Ratio
3.4. Access Flow and Duplex Ultrasound Parameters of Vascular Access According to Qa/CO Ratio
3.5. Univariate and Multivariate Logistic Regression Analyses for High Qa/CO Ratio
3.6. Receiver Operating Characteristic (ROC) Curve for High Qa/CO Ratio
3.7. Changes in Echocardiographic Parameters According to Qa/CO Ratio
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lok, C.E.; Huber, T.S.; Lee, T.; Shenoy, S.; Yevzlin, A.S.; Abreo, K.; Allon, M.; Asif, A.; Astor, B.C.; Glickman, M.H.; et al. KDOQI Clinical Practice Guideline for Vascular Access: 2019 Update. Am. J. Kidney Dis. 2020, 75 (Suppl. 2), S1–S164. [Google Scholar] [CrossRef] [PubMed]
- Schmidli, J.; Widmer, M.K.; Basile, C.; de Donato, G.; Gallieni, M.; Gibbons, C.P.; Haage, P.; Hamilton, G.; Hedin, U.; Kamper, L.; et al. Editor’s Choice—Vascular Access: 2018 Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS). Eur. J. Vasc. Endovasc. Surg. 2018, 55, 757–818. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Thamer, M.; Zhang, Y.; Zhang, Q.; Allon, M. Outcomes of Elderly Patients after Predialysis Vascular Access Creation. J. Am. Soc. Nephrol. 2015, 26, 3133–3140. [Google Scholar] [CrossRef] [PubMed]
- Aala, A.; Sharif, S.; Parikh, L.; Gordon, P.C.; Hu, S.L. High-Output Cardiac Failure and Coronary Steal With an Arteriovenous Fistula. Am. J. Kidney Dis. 2018, 71, 896–903. [Google Scholar] [CrossRef]
- de Ávila, D.X.; Villacorta, H.; de Andrade Martins, W.; Mesquita, E.T. High-output Cardiac Failure: A Forgotten Phenotype in Clinical Practice. Curr. Cardiol. Rev. 2022, 18, e050821195319. [Google Scholar] [CrossRef]
- Pandeya, S.; Lindsay, R.M. The relationship between cardiac output and access flow during hemodialysis. ASAIO J. 1999, 45, 135–138. [Google Scholar] [CrossRef]
- MacRae, J.M. Vascular access and cardiac disease: Is there a relationship? Curr. Opin. Nephrol. Hypertens. 2006, 15, 577–582. [Google Scholar] [CrossRef]
- MacRae, J.M.; Levin, A.; Belenkie, I. The cardiovascular effects of arteriovenous fistulas in chronic kidney disease: A cause for concern? Semin. Dial. 2006, 19, 349–352. [Google Scholar] [CrossRef]
- MacRae, J.M.; Pandeya, S.; Humen, D.P.; Krivitski, N.; Lindsay, R.M. Arteriovenous fistula-associated high-output cardiac failure: A review of mechanisms. Am. J. Kidney Dis. 2004, 43, e17–e22. [Google Scholar] [CrossRef]
- Lee, D.Y.; Chen, T.; Huang, W.C.; Chou, R.H.; Wu, C.H.; Yang, C.Y.; Lee, C.Y.; Lin, C.C.; Tarng, D.C. Systemic vascular resistance predicts high-output cardiac failure in patients with high-flow arteriovenous fistula. ESC Heart Fail. 2024, 11, 189–197. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Cano, N.; Franch, H.; Fouque, D.; Himmelfarb, J.; Zadeh, K.K.; Kuhlmann, M.; Stenvinkel, P.; TerWee, P.; Teta, D.; et al. Prevention and treatment of protein energy wasting in chronic kidney disease patients: A consensus statement by the International Society of Renal Nutrition and Metabolism. Kidney Int. 2013, 84, 1096–1107. [Google Scholar] [CrossRef] [PubMed]
- Daugirdas, J.T.; Depner, T.A.; Greene, T.; Silisteanu, P. Solute-solver: A web-based tool for modeling urea kinetics for a broad range of hemodialysis schedules in multiple patients. Am. J. Kidney Dis. 2009, 54, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Marcelli, D.; Usvyat, L.A.; Kotanko, P.; Bayh, I.; Canaud, B.; Etter, M.; Gatti, E.; Grassmann, A.; Wang, Y.; Marelli, C.; et al. Body Composition and Survival in Dialysis Patients: Results from an International Cohort Study. Clin. J. Am. Soc. Nephrol. 2015, 10, 1192–1200. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Sun, Y.; Chen, Y.; Xu, J.; Yuan, P.; Shen, Y.; Lin, S.; Sun, W.; Ma, Y.; Ren, J.; et al. The effect of BCM guided dry weight assessment on short-term survival in Chinese hemodialysis patients: Primary results of a randomized trial—Body Composition MOnitor (BOCOMO) study. BMC Nephrol. 2020, 21, 135. [Google Scholar] [CrossRef]
- Jaeger, J.Q.; Mehta, R.L. Assessment of dry weight in hemodialysis: An overview. J. Am. Soc. Nephrol. 1999, 10, 392–403. [Google Scholar] [CrossRef]
- Sahn, D.J.; DeMaria, A.; Kisslo, J.; Weyman, A. Recommendations regarding quantitation in M-mode echocardiography: Results of a survey of echocardiographic measurements. Circulation 1978, 58, 1072–1083. [Google Scholar] [CrossRef]
- Kim, J.S.; Yang, J.W.; Yoo, J.S.; Choi, S.O.; Han, B.G. Association between E/e ratio and fluid overload in patients with predialysis chronic kidney disease. PLoS ONE 2017, 12, e0184764. [Google Scholar] [CrossRef]
- Hung, C.S.; Chou, C.H.; Wu, X.M.; Chang, Y.Y.; Wu, V.C.; Chen, Y.H.; Chang, Y.S.; Tsai, Y.C.; Su, M.J.; Ho, Y.L.; et al. Circulating tissue inhibitor of matrix metalloproteinase-1 is associated with aldosterone-induced diastolic dysfunction. J. Hypertens. 2015, 33, 1922–1930. [Google Scholar] [CrossRef]
- Dietl, A.; Stark, K.; Zimmermann, M.E.; Meisinger, C.; Schunkert, H.; Birner, C.; Maier, L.S.; Peters, A.; Heid, I.M.; Luchner, A. NT-proBNP Predicts Cardiovascular Death in the General Population Independent of Left Ventricular Mass and Function: Insights from a Large Population-Based Study with Long-Term Follow-Up. PLoS ONE 2016, 11, e0164060. [Google Scholar] [CrossRef]
- Toida, T.; Toida, R.; Yamashita, R.; Komiya, N.; Uezono, S.; Komatsu, H.; Ishikawa, T.; Kitamura, K.; Sato, Y.; Fujimoto, S. Grading of Left Ventricular Diastolic Dysfunction with Preserved Systolic Function by the 2016 American Society of Echocardiography/European Association of Cardiovascular Imaging Recommendations Contributes to Predicting Cardiovascular Events in Hemodialysis Patients. Cardiorenal Med. 2019, 9, 190–200. [Google Scholar] [CrossRef]
- Yazdi, D.; Sridaran, S.; Smith, S.; Centen, C.; Patel, S.; Wilson, E.; Gillon, L.; Kapur, S.; Tracy, J.A.; Lewine, K.; et al. Noninvasive Scale Measurement of Stroke Volume and Cardiac Output Compared With the Direct Fick Method: A Feasibility Study. J. Am. Heart Assoc. 2021, 10, e021893. [Google Scholar] [CrossRef] [PubMed]
- Krivitski, N.M. Theory and validation of access flow measurement by dilution technique during hemodialysis. Kidney Int. 1995, 48, 244–250. [Google Scholar] [CrossRef] [PubMed]
- van Hooland, S.; Malik, J. Hemodialysis vascular access ultrasonography: Tips, tricks, pitfalls and a quiz. J. Vasc. Access 2010, 11, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.K. Systemic Effects of Hemodialysis Access. Adv. Chronic Kidney Dis. 2015, 22, 459–465. [Google Scholar] [CrossRef]
- Basile, C.; Lomonte, C.; Vernaglione, L.; Casucci, F.; Antonelli, M.; Losurdo, N. The relationship between the flow of arteriovenous fistula and cardiac output in haemodialysis patients. Nephrol. Dial. Transpl. 2008, 23, 282–287. [Google Scholar] [CrossRef]
- Hentschel, D.M. Determinants of Arteriovenous Fistula Maturation. Clin. J. Am. Soc. Nephrol. 2018, 13, 1307–1308. [Google Scholar] [CrossRef]
- Malik, J.; Valerianova, A.; Tuka, V.; Trachta, P.; Bednarova, V.; Hruskova, Z.; Slavikova, M.; Rosner, M.H.; Tesar, V. The effect of high-flow arteriovenous fistulas on systemic haemodynamics and brain oxygenation. ESC Heart Fail. 2021, 8, 2165–2171. [Google Scholar] [CrossRef]
- Veith, F.J.; Gupta, S.K.; Ascer, E.; White-Flores, S.; Samson, R.H.; Scher, L.A.; Towne, J.B.; Bernhard, V.M.; Bonier, P.; Flinn, W.R.; et al. Six-year prospective multicenter randomized comparison of autologous saphenous vein and expanded polytetrafluoroethylene grafts in infrainguinal arterial reconstructions. J. Vasc. Surg. 1986, 3, 104–114. [Google Scholar] [CrossRef]
- Zonnebeld, N.; Huberts, W.; van Loon, M.M.; Delhaas, T.; Tordoir, J.H.M. Natural Vascular Remodelling After Arteriovenous Fistula Creation in Dialysis Patients With and Without Previous Ipsilateral Vascular Access. Eur. J. Vasc. Endovasc. Surg. 2020, 59, 277–287. [Google Scholar] [CrossRef]
- Browne, L.D.; Griffin, P.; Bashar, K.; Walsh, S.R.; Kavanagh, E.G.; Walsh, M.T. In Vivo validation of the In Silico predicted pressure drop across an arteriovenous fistula. Ann. Biomed. Eng. 2015, 43, 1275–1286. [Google Scholar] [CrossRef]
All (n = 142) | Qa/CO ≤ 0.3 (n = 116) | Qa/CO > 0.3 (n = 26) | p Value | |
---|---|---|---|---|
Demographic data | ||||
Age, years | 65.9 ± 12.0 | 67.4 ± 11.5 | 62.0 ± 14.1 | 0.040 |
Male, n (%) | 94 (66.1) | 79 (68.1) | 15 (57.7) | 0.361 |
DM, n (%) | 102 (71.8) | 88 (75.9) | 14 (53.8) | 0.031 |
Hypertension, n (%) | 132 (93.0) | 110 (94.8) | 22 (84.6) | 0.085 |
Pre-dialysis SBP, mmHg | 154.2 ± 23.6 | 152.8 ± 22.9 | 158.9 ± 27.3 | 0.239 |
Pre-dialysis DBP, mmHg | 69.2 ± 15.1 | 66.7 ± 14.4 | 76.8 ± 15.1 | 0.002 |
Pulse rate, rate/min | 72.4 ± 11.7 | 71.7 ± 11.3 | 73.6 ± 12.5 | 0.461 |
Dialysis vintage, months | 65.9 ± 47.1 | 66.9 ± 47.8 | 64.9 ± 48.6 | 0.845 |
BMI, kg/m2 | 24.2 ± 4.1 | 24.4 ± 3.8 | 22.9 ± 5.2 | 0.087 |
Kt/V | 1.65 ± 0.25 | 1.64 ± 0.26 | 1.70 ± 0.23 | 0.313 |
Fistula, n (%) | 104 (73.2) | 80 (69.6) | 21 (80.8) | 0.337 |
Upper arm access | 57 (40.1) | 38 (32.8) | 19 (73.1) | <0.001 |
Access flow, Qa (mL/min) | 1132.5 ± 571.6 | 930.4 ± 342.9 | 1979.6 ± 510.5 | <0.001 |
All (n = 142) | Qa/CO ≤ 0.3 (n = 116) | Qa/CO > 0.3 (n = 26) | p Value | |
---|---|---|---|---|
Overhydration, L | 2.63 ± 2.13 | 2.54 ± 2.10 | 2.90 ± 2.20 | 0.433 |
TBW, L | 32.6 ± 7.2 | 33.0 ± 7.3 | 30.5 ± 7.5 | 0.129 |
ECW/TBW ratio, % | 15.3 ± 10.4 | 15.0 ± 10.4 | 17.2 ± 9.5 | 0.337 |
LTI, kg/m2 | 13.7 ± 3.3 | 13.9 ± 3.5 | 12.8 ± 2.7 | 0.141 |
FTI, kg/m2 | 9.4 ± 5.0 | 9.4 ± 4.5 | 9.4 ± 6.8 | 0.999 |
All (n = 142) | Qa/CO ≤ 0.3 (n = 116) | Qa/CO > 0.3 (n = 26) | p Value | |
---|---|---|---|---|
LAD, cm | 4.10 ± 0.58 | 4.07 ± 0.57 | 4.02 ± 0.65 | 0.706 |
LAVI, mL/m2 | 46.5 ± 16.1 | 46.1 ± 15.3 | 50.1 ± 20.6 | 0.263 |
RVIDd, mm | 3.02 ± 0.40 | 3.04 ± 0.41 | 3.03 ± 0.32 | 0.913 |
IVSd, mm | 1.08 ± 0.20 | 1.10 ± 0.18 | 1.00 ± 0.25 | 0.064 |
IVSs, mm | 1.40 ± 0.23 | 1.41 ± 0.22 | 1.36 ± 0.22 | 0.281 |
LVIDd, mm | 4.78 ± 0.66 | 4.70 ± 0.67 | 4.97 ± 0.61 | 0.076 |
LVIDs, mm | 3.31 ± 0.63 | 3.23 ± 0.63 | 3.48 ± 0.56 | 0.064 |
LVPWd, mm | 1.07 ± 0.16 | 1.07 ± 0.15 | 1.06 ± 0.19 | 0.686 |
LVPWs, mm | 1.40 ± 0.21 | 1.39 ± 0.19 | 1.38 ± 0.19 | 0.911 |
E, cm/s | 92.9 ± 27.0 | 92.2 ± 28.0 | 97.1 ± 24.0 | 0.415 |
A | 98.1 ± 25.6 | 99.5 ± 27.3 | 92.8 ± 18.2 | 0.143 |
E/A | 1.01 ± 0.52 | 1.01 ± 0.57 | 1.05 ± 0.27 | 0.753 |
RWT, mm | 0.45 ± 0.10 | 0.46 ± 0.10 | 0.43 ± 0.09 | 0.128 |
RVSP, mmHg | 31.0 ± 14.3 | 30.3 ± 14.0 | 34.6 ± 14.8 | 0.165 |
LVM, g | 191.0 ± 54.1 | 187.5 ± 51.5 | 196.4 ± 59.4 | 0.440 |
LVMI, g/m2 | 114.2 ± 29.3 | 112.1 ± 28.7 | 120.1 ± 30.8 | 0.202 |
LVH, n (%) | 32 (23.9) | 23 (21.1) | 9 (36.0) | 0.125 |
E/e′ ratio | 14.5 ± 5.1 | 14.5 ± 5.1 | 14.9 ± 5.0 | 0.770 |
LVDD, n (%) | 63 (44.7) | 51 (44.0) | 12 (48.0) | 0.825 |
EF, % | 57.7 ± 8.0 | 57.8 ± 7.9 | 58.4 ± 6.9 | 0.722 |
LVSD, n (%) | 19 (13.7) | 16 (14.0) | 3 (12.0) | 1.000 |
CO, L/min | 5.69 ± 1.56 | 5.77 ± 1.58 | 4.82 ± 1.25 | 0.005 |
CI, L/min/m2 | 3.36 ± 0.86 | 3.46 ± 0.88 | 2.96 ± 0.60 | 0.007 |
Effective CO, L/min | 4.49 ± 1.65 | 4.86 ± 1.54 | 2.84 ± 0.95 | <0.001 |
CO + Qa, L/min | 6.73 ± 1.70 | 6.72 ± 1.72 | 6.80 ± 1.66 | 0.825 |
Qa/CO | 0.21 ± 0.12 | 0.17 ± 0.06 | 0.42 ± 0.09 | <0.001 |
All (n = 142) | Qa/CO ≤ 0.3 (n = 116) | Qa/CO > 0.3 (n = 26) | p Value | |
---|---|---|---|---|
Access flow, mL/min | 1132.5 ± 571.6 | 930.4 ± 342.9 | 1979.6 ± 510.5 | <0.001 |
Brachial artery | ||||
PSV, cm/s | 205.6 ± 70.2 | 199.5 ± 69.2 | 239.6 ± 69.1 | 0.009 |
EDV, cm/s | 106.0 ± 45.1 | 99.9 ± 42.2 | 139.8 ± 48.1 | <0.001 |
PI | 0.75 ± 0.26 | 0.78 ± 0.25 | 0.59 ± 0.20 | <0.001 |
RI | 0.49 ± 0.10 | 0.50 ± 0.09 | 0.43 ± 0.10 | <0.001 |
Acceleration, cm/s2 | 743.2 ± 359.4 | 743.8 ± 365.4 | 673.7 ± 253.0 | 0.363 |
AT, s | 0.15 ± 0.05 | 0.15 ± 0.05 | 0.16 ± 0.04 | 0.254 |
TAMV, cm/s | 80.7 ± 35.1 | 76.9 ± 33.0 | 101.6 ± 40.3 | 0.001 |
Diameter, mm | 5.40 ± 1.09 | 5.26 ± 0.98 | 6.02 ± 1.29 | 0.001 |
Flow, mL/min | 1067.2 ± 445.3 | 938.8 ± 327.0 | 1677.4 ± 401.8 | <0.001 |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
Beta | Odds Ratio (95% CI) | p Value | Beta | Odds Ratio (95% CI) | p Value | |
Age, years | −0.037 | 0.964(0.931~0.999) | 0.043 | |||
Hypertension | −1.204 | 0.300(0.078~1.152) | 0.079 | |||
Diabetes mellitus | −0.991 | 0.371(0.154~0.895) | 0.027 | 0.562 | 1.754(0.376~8.120) | 0.472 |
BMI, kg/m2 | −0.111 | 0.895(0.788~1.016) | 0.087 | |||
Male gender | −0.488 | 0.639(0.267~1.525) | 0.313 | |||
Upper arm access | 1.718 | 5.571(2.156~14.397) | <0.001 | 2.093 | 8.113(1.842~35.741) | 0.006 |
Fistula | 0.608 | 1.837(0.641~5.267) | 0.257 | |||
SBP, mmHg | 0.011 | 1.011(0.993~1.030) | 0.239 | |||
DBP, mmHg | 0.046 | 1.047(1.016~1.079) | 0.003 | 0.077 | 1.080(1.028~1.134) | 0.002 |
LVMI, g/m2 | 0.010 | 1.010(0.995~1.025) | 0.263 | |||
LAVI, mL/m2 | 0.014 | 1.014(0.989~1.040) | 0.263 | |||
Brachial artery | ||||||
RI | −10.706 | 0.000(0.000~0.007) | <0.000 | −9.764 | 0.000(0.000~0.417) | 0.031 |
Overhydration, L | 0.048 | 1.049(0.862~1.277) | 0.630 | |||
Effective CO, L/min | −1.749 | 0.174(0.085~0.358) | <0.000 | −1.808 | 0.164(0.065~0.416) | <0.001 |
Qa/CO ≤ 0.3 | p Value | Qa/CO > 0.3 | p Value | |||
---|---|---|---|---|---|---|
Baseline | 1 Year Later | Baseline | 1 Year Later | |||
CO, L/min | 5.81 ± 1.53 | 6.05 ± 2.32 | 0.287 | 4.82 ± 1.25 | 6.16 ± 2.05 | 0.007 |
CI, L/min/m2 | 3.50 ± 0.87 | 3.69 ± 1.46 | 0.184 | 2.96 ± 0.60 | 3.71 ± 0.97 | 0.005 |
Effective CO, L/min | 4.90 ± 1.51 | 5.01 ± 2.22 | 0.299 | 2.84 ± 0.95 | 4.40 ± 1.89 | 0.001 |
Effective CI, L/min/m2 | 2.91 ± 0.85 | 3.10 ± 1.39 | 0.216 | 1.75 ± 0.50 | 2.66 ± 0.96 | 0.001 |
CO + Qa, L/min | 6.77 ± 1.62 | 7.02 ± 2.51 | 0.288 | 6.80 ± 1.66 | 7.91 ± 2.36 | 0.053 |
Qa/CO | 0.17 ± 0.06 | 0.17 ± 0.08 | 0.798 | 0.42 ± 0.09 | 0.30 ± 0.12 | <0.001 |
Qa, mL/min | 930.4 ± 342.9 | 949.9 ± 435.4 | 0.710 | 1979.6 ± 510.5 | 1696.1 ± 645.3 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Kim, J.-h.; Woo, J.; Choi, O.; Lee, M.; Choi, S. Hemodynamic Adaptation and Cardiac Effects of High-Flow Arteriovenous Access in Hemodialysis Patients: A Prospective Study. J. Clin. Med. 2025, 14, 4556. https://doi.org/10.3390/jcm14134556
Kim Y, Kim J-h, Woo J, Choi O, Lee M, Choi S. Hemodynamic Adaptation and Cardiac Effects of High-Flow Arteriovenous Access in Hemodialysis Patients: A Prospective Study. Journal of Clinical Medicine. 2025; 14(13):4556. https://doi.org/10.3390/jcm14134556
Chicago/Turabian StyleKim, Yaeni, Ji-hye Kim, Juyeon Woo, Oknan Choi, Mina Lee, and Sunryoung Choi. 2025. "Hemodynamic Adaptation and Cardiac Effects of High-Flow Arteriovenous Access in Hemodialysis Patients: A Prospective Study" Journal of Clinical Medicine 14, no. 13: 4556. https://doi.org/10.3390/jcm14134556
APA StyleKim, Y., Kim, J.-h., Woo, J., Choi, O., Lee, M., & Choi, S. (2025). Hemodynamic Adaptation and Cardiac Effects of High-Flow Arteriovenous Access in Hemodialysis Patients: A Prospective Study. Journal of Clinical Medicine, 14(13), 4556. https://doi.org/10.3390/jcm14134556