Validation of a Novel Coronary Angiography-Derived Quantitative Functional Assessment Compared with Wire-Based FFR and IMR: The Prospective Multicenter FAIR Study
Abstract
1. Introduction
2. Material and Methods
2.1. Study Design and Population
2.2. Methodology for CAG-FFR and CAG-IMR Determination Using Multi-Branch CFD Simulation
2.3. Strategies for Multi-Branch Model Reconstruction and Fast Simulation
2.4. Wire-Based FFR and IMR Measurements
2.5. Study Endpoints
2.6. Sample Size
2.7. Intra- and Inter-Observer Analysis
2.8. Statistical Analyses
3. Results
3.1. Patient Characteristics
3.2. Diagnostic Performance of CAG-FFR
3.3. Diagnostic Performance of CAG-IMR
3.4. Reproducibility in Repeated CAG-FFR and CAG-IMR Analysis
4. Discussion
4.1. Functional Coronary Angiography of FFR and IMR
4.2. Innovations in Coronary Vessel Modeling
4.3. Impact of Aortic Pressure on Diagnostic Accuracy
4.4. Microvascular Dysfunction in Patients Without Significant Stenosis
4.5. Clinical Implications
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malakar, A.K.; Choudhury, D.; Halder, B.; Paul, P.; Uddin, A.; Chakraborty, S. A review on coronary artery disease, its risk factors, and therapeutics. J. Cell. Physiol. 2019, 234, 16812–16823. [Google Scholar] [CrossRef] [PubMed]
- Escaned, J.; Berry, C.; De Bruyne, B.; Shabbir, A.; Collet, C.; Lee, J.M.; Appelman, Y.; Barbato, E.; Biscaglia, S.; Buszman, P.P. Applied coronary physiology for planning and guidance of percutaneous coronary interventions. A clinical consensus statement from the European Association of Percutaneous Cardiovascular Interventions (EAPCI) of the European Society of Cardiology. EuroIntervention 2023, 19, 464–481. [Google Scholar] [CrossRef] [PubMed]
- Pijls, N.H.; Van Son, J.A.; Kirkeeide, R.L.; De Bruyne, B.; Gould, K.L. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 1993, 87, 1354. [Google Scholar] [CrossRef] [PubMed]
- Neumann, F.-J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.-P.; Falk, V.; Head, S.J. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef]
- Fearon, W.F.; Aarnoudse, W.; Pijls, N.H.J.; Bruyne, B.D.; Balsam, L.B.; Cooke, D.T.; Robbins, R.C.; Fitzgerald, P.J.; Yeung, A.C.; Yock, P.G. Microvascular Resistance Is Not Influenced by Epicardial Coronary Artery Stenosis Severity Experimental Validation. Circulation 2004, 109, 2269–2272. [Google Scholar] [CrossRef]
- Yong, A.S.; Ho, M.; Shah, M.G.; Ng, M.K.; Fearon, W.F. Coronary microcirculatory resistance is independent of epicardial stenosis. Circ. Cardiovasc. Interv. 2012, 5, 103–108. [Google Scholar] [CrossRef]
- El Farissi, M.; Zimmermann, F.M.; De Maria, G.L.; van Royen, N.; van Leeuwen, M.A.H.; Carrick, D.; Carberry, J.; Wijnbergen, I.F.; Konijnenberg, L.S.F.; Hoole, S.P. The index of microcirculatory resistance after primary PCI: A pooled analysis of individual patient data. Cardiovasc. Interv. 2023, 16, 2383–2392. [Google Scholar]
- Lee, H.S.; Lee, J.M.; Nam, C.-W.; Shin, E.-S.; Doh, J.-H.; Dai, N.; Ng, M.K.C.; Yong, A.S.C.; Tresukosol, D.; Mullasari, A.S. Consensus document for invasive coronary physiologic assessment in Asia-Pacific countries. Cardiol. J. 2019, 26, 215–225. [Google Scholar] [CrossRef]
- Collet, C.; Yong, A.; Munhoz, D.; Akasaka, T.; Berry, C.; Blair, J.E.A.; Collison, D.; Engstrøm, T.; Escaned, J.; Fearon, W.F. A Systematic Algorithmic Approach to the Evaluation of the Coronary Microcirculation Using Bolus Thermodilution: CATH CMD. J. Soc. Cardiovasc. Angiogr. Interv. 2024, 3, 101934. [Google Scholar]
- Dehmer, G.J.; Weaver, D.; Roe, M.T.; Milfordbeland, S.; Fitzgerald, S.; Hermann, A.; Messenger, J.; Moussa, I.; Garratt, K.; Rumsfeld, J. A contemporary view of diagnostic cardiac catheterization and percutaneous coronary intervention in the United States: A report from the CathPCI Registry of the National Cardiovascular Data Registry, 2010 through June 2011. J. Am. Coll. Cardiol. 2012, 60, 2017–2031. [Google Scholar] [CrossRef]
- Renker, M.; Schoepf, U.J.; Wang, R.; Meinel, F.G.; Rier, J.D.; Bayer, R.R.; Möllmann, H.; Hamm, C.W.; Steinberg, D.H.; Baumann, S. Comparison of diagnostic value of a novel noninvasive coronary computed tomography angiography method versus standard coronary angiography for assessing fractional flow reserve. Am. J. Cardiol. 2014, 114, 1303–1308. [Google Scholar] [CrossRef] [PubMed]
- Stables, R.H.; Mullen, L.J.; Elguindy, M.; Nicholas, Z.; Aboul-Enien, Y.H.; Kemp, I.; O’Kane, P.; Hobson, A.; Johnson, T.W.; Khan, S.Q.; et al. Routine Pressure Wire Assessment Versus Conventional Angiography in the Management of Patients With Coronary Artery Disease: The RIPCORD 2 Trial. Circulation 2022, 146, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Morris, P.D.; Ryan, D.; Morton, A.C.; Lycett, R.; Lawford, P.V.; Hose, D.R.; Gunn, J.P. Virtual fractional flow reserve from coronary angiography: Modeling the significance of coronary lesions: Results from the VIRTU-1 (VIRTUal Fractional Flow Reserve From Coronary Angiography) study. JACC Cardiovasc. Interv. 2013, 6, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Morris, P.D.; Curzen, N.; Gunn, J.P. Angiography-derived fractional flow reserve: More or less physiology? J. Am. Heart Assoc. 2020, 9, e015586. [Google Scholar] [CrossRef]
- Ai, H.; Feng, Y.; Gong, Y.; Zheng, B.; Huo, Y. Coronary Angiography-Derived Index of Microvascular Resistance. Front. Physiol. 2020, 11, 6053–6056. [Google Scholar] [CrossRef]
- Scarsini, R.; Shanmuganathan, M.; Kotronias, R.A.; Terentes-Printzios, D.; Borlotti, A.; Langrish, J.P.; Lucking, A.J.; Ribichini, F.; Ferreira, V.M.; Channon, K.M.; et al. Angiography-derived index of microcirculatory resistance (IMR(angio)) as a novel pressure-wire-free tool to assess coronary microvascular dysfunction in acute coronary syndromes and stable coronary artery disease. Int. J. Cardiovasc. Imaging 2021, 37, 1801–1813. [Google Scholar] [CrossRef]
- Zhang, Y.; Pu, J.; Niu, T.; Fang, J.; Chen, D.; Yidilisi, A.; Zheng, Y.; Lu, J.; Hu, Y.; Koo, B.-K. Prognostic Value of Coronary Angiography–Derived Index of Microcirculatory Resistance in Non–ST-Segment Elevation Myocardial Infarction Patients. Cardiovasc. Interv. 2024, 17, 1874–1886. [Google Scholar] [CrossRef]
- Li, W.; Takahashi, T.; Rios, S.A.; Latib, A.; Lee, J.M.; Fearon, W.F.; Kobayashi, Y. Diagnostic performance and prognostic impact of coronary angiography-based Index of Microcirculatory Resistance assessment: A systematic review and meta-analysis. Catheter. Cardiovasc. Interv. 2022, 99, 286–292. [Google Scholar] [CrossRef]
- De Maria, G.L.; Scarsini, R.; Shanmuganathan, M.; Kotronias, R.A.; Terentes-Printzios, D.; Borlotti, A.; Langrish, J.P.; Lucking, A.J.; Choudhury, R.P.; Kharbanda, R.; et al. Angiography-derived index of microcirculatory resistance as a novel, pressure-wire-free tool to assess coronary microcirculation in ST elevation myocardial infarction. Int. J. Cardiovasc. Imaging 2020, 36, 1395–1406. [Google Scholar] [CrossRef]
- Vrints, C.; Andreotti, F.; Koskinas, K.C.; Rossello, X.; Adamo, M.; Ainslie, J.; Banning, A.P.; Budaj, A.; Buechel, R.R.; Chiariello, G.A. 2024 ESC Guidelines for the management of chronic coronary syndromes: Developed by the task force for the management of chronic coronary syndromes of the European Society of Cardiology (ESC) Endorsed by the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2024, 45, 3415–3537. [Google Scholar]
- Asano, T.; Tanigaki, T.; Ikeda, K.; Ono, M.; Yokoi, H.; Kobayashi, Y.; Kozuma, K.; Tanaka, N.; Kawase, Y.; Matsuo, H. Consensus document on the clinical application of invasive functional coronary angiography from the Japanese Association of Cardiovascular Intervention and Therapeutics. Cardiovasc. Interv. Ther. 2024, 39, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Tu, S.; Barbato, E.; Kszegi, Z.; Yang, J.; Sun, Z.; Holm, N.R.; Tar, B.; Li, Y.; Rusinaru, D.; Wijns, W. Fractional Flow Reserve Calculation From 3-Dimensional Quantitative Coronary Angiographyand TIMI Frame Count. JACC Cardiovasc. Interv. 2014, 7, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Mavrogeni, S.I.; Manginas, A.; Papadakis, E.; Douskou, M.; Cokkinos, D.V. Coronary flow evaluation by TIMI frame count and magnetic resonance flow velocity in patients with coronary artery ectasia. J. Cardiovasc. Magn. Reson. Off. J. Soc. Cardiovasc. Magn. Reson. 2005, 7, 545. [Google Scholar] [CrossRef]
- Gibson, C.M.; Cannon, C.P.; Daley, W.L.; Dodge, J.T.; Braunwald, E. TIMI Frame Count: A Quantitative Method of Assessing Coronary Artery Flow. Circulation 1996, 93, 879–888. [Google Scholar] [CrossRef]
- Sankaran, S.; Lesage, D.; Tombropoulos, R.; Xiao, N.; Kim, H.J.; Spain, D.; Schaap, M.; Taylor, C.A. Physics driven real-time blood flow simulations. Comput. Methods Appl. Mech. Eng. 2020, 364, 112963. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, S.; Cai, X.; Lu, Z.; Ma, J.; Lan, H.; Hu, X. Diagnostic performance of multi-branch coronary angiography-based index of microcirculatory resistance: A novel approach. Front. Med. 2025, 12, 1490346. [Google Scholar]
- Tu, S.; Westra, J.; Yang, J.; von Birgelen, C.; Ferrara, A.; Pellicano, M.; Nef, H.; Tebaldi, M.; Murasato, Y.; Lansky, A. Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography: The international multicenter FAVOR pilot study. Cardiovasc. Interv. 2016, 9, 2024–2035. [Google Scholar]
- Yoon, G.S.; Ahn, S.G.; Woo, S.I.; Yoon, M.H.; Lee, M.J.; Choi, S.H.; Seo, J.Y.; Kwon, S.W.; Park, S.D.; Seo, K.W. The Index of Microcirculatory Resistance after Primary Percutaneous Coronary Intervention Predicts Long-Term Clinical Outcomes in Patients with ST-Segment Elevation Myocardial Infarction. J. Clin. Med. 2021, 10, 4752. [Google Scholar] [CrossRef]
- Camici, P.G.; d’Amati, G.; Rimoldi, O. Coronary microvascular dysfunction: Mechanisms and functional assessment. Nat. Rev. Cardiol. 2015, 12, 48–62. [Google Scholar] [CrossRef]
- Yong, A.S.; Layland, J.; Fearon, W.F.; Ho, M.; Shah, M.G.; Daniels, D.; Whitbourn, R.; Macisaac, A.; Kritharides, L.; Wilson, A. Calculation of the index of microcirculatory resistance without coronary wedge pressure measurement in the presence of epicardial stenosis. JACC. Cardiovasc. Interv. 2013, 6, 53–58. [Google Scholar] [CrossRef]
- Kunadian, V.; Chieffo, A.; Camici, P.G.; Berry, C.; Escaned, J.; Maas, A.H.; Prescott, E.; Karam, N.; Appelman, Y.; Fraccaro, C. An EAPCI expert consensus document on ischaemia with non-obstructive coronary arteries in collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. Eur. Heart J. 2020, 41, 3504–3520. [Google Scholar] [PubMed]
- Kim, H.J.; Vignon-Clementel, I.E.; Coogan, J.S.; Figueroa, C.A.; Jansen, K.E.; Taylor, C.A. Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann. Biomed. Eng. 2010, 38, 3195–3209. [Google Scholar] [CrossRef] [PubMed]
- Carlos, C.; Yoshinobu, O.; Jeroen, S.; Taku, A.; Bert, V.; Ran, K.; Shengxian, T.; Jelmer, W.; Holm, N.R.; Bo, X. Diagnostic performance of angiography-derived fractional flow reserve: A systematic review and Bayesian meta-analysis. Eur. Heart J. 2018, 39, 3314–3321. [Google Scholar]
- Tu, S.; Ding, D.; Chang, Y.; Li, C.; Wijns, W.; Xu, B. Diagnostic accuracy of quantitative flow ratio for assessment of coronary stenosis significance from a single angiographic view: A novel method based on bifurcation fractal law. Catheter. Cardiovasc. Interv. 2021, 97, 1040–1047. [Google Scholar] [CrossRef]
- Wang, W.; Hu, Y.; Xiang, P.; Sheng, X.; Leng, X.; Yang, X.; Dong, L.; Chang, L.; Sun, Y.; Jiang, J.; et al. The diagnostic performance of AccuFFRangio for evaluating coronary artery stenosis under different computational conditions. Quant. Imaging Med. Surg. 2023, 13, 2496. [Google Scholar] [CrossRef]
- Li, J.; Gong, Y.; Wang, W.; Yang, Q.; Liu, B.; Lu, Y.; Xu, Y.; Huo, Y.; Yi, T.; Liu, J.; et al. Accuracy of computational pressure-fluid dynamics applied to coronary angiography to derive fractional flow reserve: FLASH FFR. Cardiovasc. Res. 2020, 116, 1349–1356. [Google Scholar] [CrossRef]
- Tebaldi, M.; Biscaglia, S.; Di Girolamo, D.; Erriquez, A.; Penzo, C.; Tumscitz, C.; Campo, G. Angio-Based index of microcirculatory resistance for the assessment of the coronary resistance: A proof of concept study. J. Interv. Cardiol. 2020, 2020, 8887369. [Google Scholar] [CrossRef]
- Fan, Y.; Li, C.; Hu, Y.; Hu, X.; Wang, S.; He, J.; Leng, X.; Xiang, J.; Lu, Z. Angiography-based index of microcirculatory resistance (AccuIMR) for the assessment of microvascular dysfunction in acute coronary syndrome and chronic coronary syndrome. Quant. Imaging Med. Surg. 2023, 13, 3556. [Google Scholar] [CrossRef]
- Li, C.; Leng, X.; He, J.; Xia, Y.; Jiang, W.; Pan, Y.; Dong, L.; Sun, Y.; Hu, X.; Wang, J.a. Diagnostic performance of angiography-based fractional flow reserve for functional evaluation of coronary artery stenosis. Front. Cardiovasc. Med. 2021, 8, 714077. [Google Scholar] [CrossRef]
- Vancheri, F.; Longo, G.; Vancheri, S.; Henein, M. Coronary Microvascular Dysfunction. J. Clin. Med. 2020, 9, 2880. [Google Scholar] [CrossRef]
- Sara, J.D.; Widmer, R.J.; Matsuzawa, Y.; Lennon, R.J.; Lerman, L.O.; Lerman, A. Prevalence of Coronary Microvascular Dysfunction Among Patients With Chest Pain and Nonobstructive Coronary Artery Disease. JACC Cardiovasc. Interv. 2015, 8, 1445–1453. [Google Scholar] [CrossRef] [PubMed]
- Rehan, R.; Yong, A.; Ng, M.; Weaver, J.; Puranik, R. Coronary microvascular dysfunction: A review of recent progress and clinical implications. Front. Cardiovasc. Med. 2023, 10, 1111721. [Google Scholar] [CrossRef] [PubMed]
- Tamis-Holland, J.E.; Jneid, H.; Reynolds, H.R.; Agewall, S.; Brilakis, E.S.; Brown, T.M.; Lerman, A.; Cushman, M.; Kumbhani, D.J.; Arslanian-Engoren, C. Contemporary diagnosis and management of patients with myocardial infarction in the absence of obstructive coronary artery disease: A scientific statement from the American Heart Association. Circulation 2019, 139, e891–e908. [Google Scholar] [CrossRef]
- Martínez, G.J.; Yong, A.S.C.; Fearon, W.F.; Ng, M.K.C. The index of microcirculatory resistance in the physiologic assessment of the coronary microcirculation. Coron. Artery Dis. 2015, 26, e15–e26. [Google Scholar] [CrossRef] [PubMed]
- De Maria, G.L.; Alkhalil, M.; Wolfrum, M.; Fahrni, G.; Borlotti, A.; Gaughran, L.; Dawkins, S.; Langrish, J.P.; Lucking, A.J.; Choudhury, R.P. Index of microcirculatory resistance as a tool to characterize microvascular obstruction and to predict infarct size regression in patients with STEMI undergoing primary PCI. JACC Cardiovasc. Imaging 2019, 12, 837–848. [Google Scholar] [CrossRef]
- Ford, T.J.; Stanley, B.; Good, R.; Rocchiccioli, P.; McEntegart, M.; Watkins, S.; Eteiba, H.; Shaukat, A.; Lindsay, M.; Robertson, K. Stratified medical therapy using invasive coronary function testing in angina: The CorMicA trial. J. Am. Coll. Cardiol. 2018, 72, 2841–2855. [Google Scholar] [CrossRef]
- Maznyczka, A.M.; Oldroyd, K.G.; McCartney, P.; McEntegart, M.; Berry, C. The potential use of the index of microcirculatory resistance to guide stratification of patients for adjunctive therapy in acute myocardial infarction. JACC Cardiovasc. Interv. 2019, 12, 951–966. [Google Scholar] [CrossRef]
- Dai, N.; Che, W.; Liu, L.; Zhang, W.; Yin, G.; Xu, B.; Xu, Y.; Duan, S.; Yu, H.; Li, C. Diagnostic value of angiography-derived IMR for coronary microcirculation and its prognostic implication after PCI. Front. Cardiovasc. Med. 2021, 8, 735–743. [Google Scholar] [CrossRef]
- Nishi, T.; Murai, T.; Ciccarelli, G.; Shah, S.V.; Kobayashi, Y.; Derimay, F.; Waseda, K.; Moonen, A.; Hoshino, M.; Hirohata, A. Prognostic value of coronary microvascular function measured immediately after percutaneous coronary intervention in stable coronary artery disease: An international multicenter study. Circ. Cardiovasc. Interv. 2019, 12, e007889. [Google Scholar] [CrossRef]
Patients | Total N = 325 | |
---|---|---|
Age, year | 62.5 ± 9.6 | |
Male | 219 (67.4) | |
BMI, kg/m2 | 24.6 ± 3.2 | |
Hypertension | 223 (68.6) | |
Hyperlipidemia | 120 (36.9) | |
Diabetes | 108 (33.2) | |
Family with CAD | 7 (2.15) | |
Medication | Heparin sodium injection | 89 (27.4) |
Rosuvastatin calcium tablets | 56 (17.2) | |
Aspirin enteric-coated tablets | 62 (19.1) | |
Metoprolol succinate sustained-release tablets | 61 (18.7) | |
Clopidogrel hydrogen sulfate tablets | 83 (25.5) | |
Nitroglycerin | 38 (11.7) | |
Previous myocardial infarction (%) | Total N = 50 (15.38) | |
PCI of culprit lesion | 36 (72) | |
Multi vessel disease | 38 (76) | |
INOCA | 5 (10) | |
Symptoms | Stable angina | 21 (42) |
Unstable angina | 20 (40) | |
Asymptomatic | 9 (18) | |
Lesions | Total N = 340 | |
LAD | 230 (67.6) | |
RCA | 72 (21.2) | |
LCX | 38 (11.2) | |
Diameter stenosis, % | 67.6 ± 12.4 | |
FFR | 0.808 ± 0.117 | |
Vessels with FFR ≤ 0.8 | 128 (37.6) |
Patients | Total N = 180 | |
---|---|---|
Age, year | 62.2 ± 9.5 | |
Male | 127 (70.6) | |
BMI, kg/m2 | 24.8 ± 3.2 | |
Hypertension | 223 (68.6) | |
Hyperlipidemia | 74 (41.1) | |
Diabetes | 56 (31.1) | |
Family with CAD | 7 (3.9) | |
Medication | Heparin sodium injection | 42 (23.3) |
Rosuvastatin calcium tablets | 47 (26.1) | |
Aspirin enteric-coated tablets | 49 (27.2) | |
Metoprolol succinate sustained-release tablets | 50 (27.8) | |
Clopidogrel hydrogen sulfate tablets | 66 (36.7) | |
Nitroglycerin | 14 (7.8) | |
Previous myocardial infarction | Total N = 29 (16.1) | |
PCI of culprit lesion | 20 (69.0) | |
Multi vessel disease | 21 (72.4) | |
INOCA | 5 (17.2) | |
Symptoms | Stable angina | 9 (31.0) |
Unstable angina | 14 (48.3) | |
Asymptomatic | 6 (20.7) | |
Lesions | Total N = 184 | |
LAD | 129 (70.1) | |
RCA | 39 (21.2) | |
LCX | 16 (8.7) | |
Diameter stenosis, % | 66.1 ± 12.5 | |
IMR | 23.8 ± 21.4 | |
Vessels with IMR ≥ 25U | 55 (29.9) | |
Vessels with FFR ≤ 0.8 | 66 (35.9) |
CAG-FFR ≤ 0.8 | With DS ≥ 50% | With DS ≥ 70% | |
---|---|---|---|
Accuracy, % (95% CI) | 95.4 (92.5–97.4) | 42.5 (37.0–48.0) | 68.8 (63.6–73.7) |
Sensitivity, % (95% CI) | 95.9 (90.7–98.6) | 100.0 (97.0–100.0) | 92.9 (86.9–96.7) |
Specificity, % (95% CI) | 95.1 (91.1–97.6) | 7.9 (4.6–12.5) | 54.5 (47.5–61.3) |
PPV, % (95% CI) | 92.1 (85.9–96.1) | 39.5 (34.0–45.2) | 54.9 (48.0–61.7) |
NPV, % (95% CI) | 97.5 (94.2–99.1) | 100.0 (79.5–100.0) | 92.8 (86.7–96.6) |
CAG-IMR ≥ 25U | With FFR > 0.8 | With FFR ≤ 0.8 | |
---|---|---|---|
Accuracy, % (95% CI) | 95.5 (91.4–98.1) | 95.8 (90.4–98.6) | 95.5 (87.3–99.1) |
Sensitivity, % (95% CI) | 96.4 (87.5–99.6) | 94.6 (81.8–99.3) | 100 (81.5–100.0) |
Specificity, % (95% CI) | 95.2 (89.9–98.2) | 96.3 (89.6–99.2) | 93.8 (82.8–98.7) |
PPV, % (95% CI) | 89.8 (82.1–97.5) | 92.1 (78.6–98.3) | 85.7 (63.7–97.0) |
NPV, % (95% CI) | 98.4 (94.2–99.8) | 97.5 (91.3–99.7) | 100 (92.1–100.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Xue, Q.; Liang, J.; Fu, G.; Wu, Q.; Jin, Q.; Wei, W.; Qiu, F.; Yao, H.; Jiang, H. Validation of a Novel Coronary Angiography-Derived Quantitative Functional Assessment Compared with Wire-Based FFR and IMR: The Prospective Multicenter FAIR Study. J. Clin. Med. 2025, 14, 4503. https://doi.org/10.3390/jcm14134503
Xu C, Xue Q, Liang J, Fu G, Wu Q, Jin Q, Wei W, Qiu F, Yao H, Jiang H. Validation of a Novel Coronary Angiography-Derived Quantitative Functional Assessment Compared with Wire-Based FFR and IMR: The Prospective Multicenter FAIR Study. Journal of Clinical Medicine. 2025; 14(13):4503. https://doi.org/10.3390/jcm14134503
Chicago/Turabian StyleXu, Changwu, Qiang Xue, Jianwen Liang, Guosheng Fu, Qiang Wu, Qing Jin, Wenbin Wei, Fuyu Qiu, Huali Yao, and Hong Jiang. 2025. "Validation of a Novel Coronary Angiography-Derived Quantitative Functional Assessment Compared with Wire-Based FFR and IMR: The Prospective Multicenter FAIR Study" Journal of Clinical Medicine 14, no. 13: 4503. https://doi.org/10.3390/jcm14134503
APA StyleXu, C., Xue, Q., Liang, J., Fu, G., Wu, Q., Jin, Q., Wei, W., Qiu, F., Yao, H., & Jiang, H. (2025). Validation of a Novel Coronary Angiography-Derived Quantitative Functional Assessment Compared with Wire-Based FFR and IMR: The Prospective Multicenter FAIR Study. Journal of Clinical Medicine, 14(13), 4503. https://doi.org/10.3390/jcm14134503