Blood Flow Restriction Training as a Non-Pharmacologic Therapy with Exercise-Induced Hypertension
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects and Study Protocol
2.2. Graded Exercise Test (GXT)
2.3. Blood Flow Restriction Exercise Method
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kohl, H.W.I.; Nichaman, M.Z.; Frankowski, R.F.; Blair, S.N. Maximal exercise hemodynamics and risk of mortality in apparently healthy men and women. Med. Sci. Sports Exerc. 1996, 28, 601–609. [Google Scholar] [PubMed]
- Schultz, M.G.; Otahal, P.; Cleland, V.J.; Blizzard, L.; Marwick, T.H.; Sharman, J.E. Exercise-Induced Hypertension, Cardiovascular Events, and Mortality in Patients Undergoing Exercise Stress Testing: A Systematic Review and Meta-Analysis. Am. J. Hypertens. 2012, 26, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Allison, T.G.; Cordeiro, M.A.; Miller, T.D.; Daida, H.; Squires, R.W.; Gau, G.T. Prognostic significance of exercise-induced systemic hypertension in healthy subjects. Am. J. Cardiol. 1999, 83, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Lee, S.; Park, K. Exercise characteristics and incidence of abnormal electrocardiogram response in long-distance runners with exercise-induced hypertension. J. Clin. Hypertens. 2021, 23, 1915–1921. [Google Scholar] [CrossRef]
- Gwag, H.B.; Kim, Y.J.; Park, K.M. Excessive Blood Pressure Rise and Cardiovascular Remodeling in Marathon Runners. Int. J. Sports Med. 2024, 45, 930–936. [Google Scholar] [CrossRef]
- Kim, C.H.; Park, Y.; Chun, M.Y.; Kim, Y.J. Exercise-induced hypertension can increase the prevalence of coronary artery plaque among middle-aged male marathon runners. Medicine 2020, 99, e19911. [Google Scholar] [CrossRef]
- Kim, Y.J.; Park, K.M. Possible Mechanisms for Adverse Cardiac Events Caused by Exercise-Induced Hypertension in Long-Distance Middle-Aged Runners: A Review. J. Clin. Med. 2024, 13, 2184. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, Y.; Ma, X.; Qiang, L.; Lin, A.; Zhou, M. Low-Intensity Resistance Exercise Combined With Blood Flow Restriction is More Conducive to Regulate Blood Pressure and Autonomic Nervous System in Hypertension Patients-Compared With High-Intensity and Low-Intensity Resistance Exercise. Front. Physiol. 2022, 13, 833809. [Google Scholar] [CrossRef]
- Miller, B.C.; Tirko, A.W.; Shipe, J.M.; Sumeriski, O.R.; Moran, K. The Systemic Effects of Blood Flow Restriction Training: A Systematic Review. Int. J. Sports Phys. Ther. 2021, 16, 978–990. [Google Scholar] [CrossRef]
- Pearson, S.J.; Hussain, S.R. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med. 2015, 45, 187–200. [Google Scholar] [CrossRef]
- Spranger, M.D.; Krishnan, A.C.; Levy, P.D.; O’Leary, D.S.; Smith, S.A. Blood flow restriction training and the exercise pressor reflex: A call for concern. Am. J. Physiol. Heart Circ. Physiol. 2015, 309, H1440–H1452. [Google Scholar] [CrossRef] [PubMed]
- Hori, A.; Hasegawa, D.; Suijo, K.; Nishigaki, K.; Ishida, K.; Hotta, N. Exaggerated pressor response to blood flow restriction resistance exercise is associated with a muscle metaboreflex-induced increase in blood pressure in young, healthy humans. Appl. Physiol. Nutr. Metab. 2021, 46, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, R.J.; Balady, G.J.; Beasley, J.W.; Bricker, J.T.; Duvernoy, W.F.; Froelicher, V.F.; Mark, D.B.; Marwick, T.H.; McCallister, B.D.; Thompson, P.D.; et al. ACC/AHA guidelines for exercise testing: Executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Exercise Testing). Circulation 1997, 96, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.T.E. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Araújo, J.P.; Silva, E.D.; Silva, J.C.; Souza, T.S.; Lima, E.O.; Guerra, I.; Sousa, M.S. The acute effect of resistance exercise with blood flow restriction with hemodynamic variables on hypertensive subjects. J. Hum. Kinet. 2014, 43, 79–85. [Google Scholar] [CrossRef]
- Pinto, R.R.; Polito, M.D. Hemodynamic responses during resistance exercise with blood flow restriction in hypertensive subjects. Clin. Physiol. Funct. Imaging 2016, 36, 407–413. [Google Scholar] [CrossRef]
- Patterson, S.D.; Hughes, L.; Head, P.; Warmington, S.A.; Brandner, C.R. Blood flow restriction training: A novel approach to augment clinical rehabilitation: How to do it. Br. J. Sports Med. 2017, 51, 1648–1649. [Google Scholar] [CrossRef]
- Laurentino, G.; Ugrinowitsch, C.; Aihara, A.Y.; Fernandes, A.R.; Parcell, A.C.; Ricard, M.; Tricoli, V. Effects of strength training and vascular occlusion. Int. J. Sports Med. 2008, 29, 664–667. [Google Scholar] [CrossRef]
- Shimizu, R.; Hotta, K.; Yamamoto, S.; Matsumoto, T.; Kamiya, K.; Kato, M.; Hamazaki, N.; Kamekawa, D.; Akiyama, A.; Kamada, Y.; et al. Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people. Eur. J. Appl. Physiol. 2016, 116, 749–757. [Google Scholar] [CrossRef]
- Gobel, F.L.; Norstrom, L.A.; Nelson, R.R.; Jorgensen, C.R.; Wang, Y. The rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris. Circulation 1978, 57, 549–556. [Google Scholar] [CrossRef]
- White, W.B. Heart rate and the rate-pressure product as determinants of cardiovascular risk in patients with hypertension. Am. J. Hypertens. 1999, 12 Pt 2, 50S–55S. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Shin, Y.O.; Lee, Y.H.; Jee, H.M.; Shin, K.A.; Goh, C.W.; Kim, C.H.; Min, Y.K.; Yang, H.M. Effects of Marathon Running on Cardiac Markers and Endothelin-1 in EIH Athletes. Int. J. Sports Med. 2013, 34, 777–782. [Google Scholar] [PubMed]
- Kokkinos, P.; Chrysohoou, C.; Panagiotakos, D.; Narayan, P.; Greenberg, M.; Singh, S. Beta-Blockade Mitigates Exercise Blood Pressure in Hypertensive Male Patients. J. Am. Coll. Cardiol. 2006, 47, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Warner, J.G.; Metzger, D.; Kitzman, D.W.; Wesley, D.J.; Little, W.C. Losartan improves exercise tolerance in patients with diastolic dysfunction and a hypertensive response to exercise. J. Am. Coll. Cardiol. 1999, 33, 1567–1572. [Google Scholar] [CrossRef]
- Kim, C.H.; Park, Y.; Chun, M.Y.; Kim, Y.J. Exercise-induced hypertension is associated with angiotensin II activity and total nitric oxide. Medicine 2020, 99, e20943. [Google Scholar] [CrossRef]
- Myers, J.; Prakash, M.; Froelicher, V.; Do, D.; Partington, S.; Atwood, J.E. Exercise capacity and mortality among men referred for exercise testing. N. Engl. J. Med. 2002, 346, 793–801. [Google Scholar] [CrossRef]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA 2009, 301, 2024–2035. [Google Scholar] [CrossRef]
- Barjaste, A.; Mirzaei, B.; Rahmani-nia, F.; Haghniyaz, R.; Brocherie, F. Concomitant aerobic-and hypertrophy-related skeletal muscle cell signaling following blood flow-restricted walking. Sci. Sports 2020, 36, e51–e58. [Google Scholar] [CrossRef]
- Solsona, R.; Sabater Pastor, F.; Normand-Gravier, T.; Borrani, F.; Sanchez, A.M. Sprint training in hypoxia and with blood flow restriction: Controversies and perspectives. J. Sports Sci. 2024, 18, 1–15. [Google Scholar] [CrossRef]
- Chen, Y.T.; Hsieh, Y.Y.; Ho, J.Y.; Lin, T.Y.; Lin, J.C. Running Training Combined with Blood Flow Restriction Increases Cardiopulmonary Function and Muscle Strength in Endurance Athletes. J. Strength Cond. Res. 2022, 36, 1228–1237. [Google Scholar] [CrossRef]
- Abe, T.; Fujita, S.; Nakajima, T.; Sakamaki, M.; Ozaki, H.; Ogasawara, R.; Sugaya, M.; Kudo, M.; Kurano, M.; Yasuda, T.; et al. Effects of Low-Intensity Cycle Training with Restricted Leg Blood Flow on Thigh Muscle Volume and VO2MAX in Young Men. J. Sports Sci. Med. 2010, 9, 452–458. [Google Scholar]
Variable | BFRG (n = 18) | Non-BFRG (n = 15) | p-Value |
---|---|---|---|
Physical characteristics | |||
Age (years) | 57.2 ± 5.2 | 59.1 ± 6.6 | 0.379 |
Height (cm) | 172.0 ± 6.6 | 169.6 ± 4.1 | 0.220 |
Weight (kg) | 67.7 ± 7.2 | 66.2 ± 7.5 | 0.559 |
BMI (m2/kg) | 22.8 ± 2.1 | 22.9 ± 2.3 | 0.923 |
Disease | |||
Hypertension | 5 (27.8%) | 3 (20.0%) | 0.604 |
Dyslipidemia | 3 (16.7%) | 1 (6.7%) | 0.381 |
Diabetes + hypertension | 0 (0%) | 2 (13.3%) | 0.110 |
Hypertension + dyslipidemia | 2 (11.1) | 1 (6.7%) | 0.658 |
Exercise data | |||
Exercise history (yrs) | 17.2 ± 6.5 | 19.1 ± 5.7 | 0.384 |
Marathon completed (numbers) | 72.5 ± 49.9 | 56.4 ± 36.1 | 0.306 |
Marathon time (min) | 233.7 ± 38.1 | 234.2 ± 39.8 | 0.972 |
Exercise time (min/day) | 74.4 ± 20.9 | 89.3 ± 31.2 | 0.113 |
Exercise intensity (Borg’s scale) | 14.1 ± 1.2 | 14.7 ± 1.0 | 0.181 |
Exercise frequency (weeks) | 4.1 ± 1.6 | 4.2 ± 1.5 | 0.787 |
Cardiorespiratory fitness | |||
RHR (beats/min) | 61.3 ± 8.7 | 58.0 ± 4.6 | 0.194 |
RSBP (mmHg) | 127.5 ± 12.1 | 124.6 ± 10.4 | 0.483 |
RDBP (mmHg) | 82.5 ± 9.5 | 78.3 ± 5.2 | 0.143 |
MHR (beats/min) | 163.3 ± 13.6 | 162.9 ± 7.4 | 0.456 |
MSBP (mmHg) | 221.7 ± 7.3 | 217.5 ± 5.7 | 0.112 |
MDBP (mmHg) | 94.0 ± 8.0 | 94.2 ± 8.4 | 0.926 |
TET (s) | 788.3 ± 138.0 | 784.6 ± 84.2 | 0.929 |
Ventilatory threshold (%) | 40.4 ± 10.5 | 40.4 ± 7.6 | 0.984 |
VO2max (mL/kg/min) | 46.4 ± 9.0 | 46.6 ± 6.6 | 0.941 |
Bruce Protocol | Rest | Exercise | Recovery | ||
---|---|---|---|---|---|
Stage | Speed (mph) | Grade (Slope%) | |||
1 | 1.7 | 10 | After a sufficient 5 min rest, HR, SBP, DBP, and RPP were measured. | RPE, SBP, DBP, HR, VO2, and ECG were measured at 2 min and 30 s of each GXT stage. From Stage 4 onward, measurements were recorded every 30 s. For precise BP measurement, a high-sensitivity microphone was attached to the brachioradial artery to detect Korotkoff sounds. | After the completion of the test, HR, BP, RPP, and ECG were measured at 1 min intervals for up to 3 min, after which the test was terminated. |
2 | 2.5 | 12 | |||
3 | 3.4 | 14 | |||
4 | 4.2 | 16 | |||
5 | 5.0 | 18 | |||
6 | 5.5 | 20 | |||
7 | 6.0 | 22 | |||
Recovery | 1.7 | 0 |
Weeks | Intensity | Frequency/Time | Method |
---|---|---|---|
Week 1 | 50% HRR | Two a week/ 20 min | Cycle mode (Low SKU, 150–220 mmHg): Begins with 150 mmHg pressure for 30 s followed by 5 s release; pressure increases by 10 mmHg per stage; repeated for 30 s on/5 s off up to 220 mmHg across 8 stages. |
Week 2 | 50% HRR | Two a week/ 20 min | Cycle mode (Low SKU, 150–220 mmHg): Begins with 150 mmHg pressure for 30 s followed by 5 s release; pressure increases by 10 mmHg per stage; repeated as 30 s on/5 s off over 8 stages up to 220 mmHg, applied for a total of 10 min. Then switched to Constant mode (250 mmHg) for 10 min during exercise. |
Week 3~8 | 60% HRR | Two a week/ 20 min | Cycle mode (Medium SKU, 230–300 mmHg): One cycle of Stages 1–8 was applied, followed by 15 min of Constant mode at 250 mmHg. |
Variable | Group | Pre | Post | p-Value (Partial Eta Squared) |
---|---|---|---|---|
HRrest (beats/min) | BFRG | 61.3 ± 8.7 | 64.4 ± 13.3 | T: 0.019 (0.164) G: 0.435 (0.020) I: 0.580 (0.010) |
non-BFRG | 58.0 ± 4.6 | 62.9 ± 10.2 * | ||
SBPrest (mmHg) | BFRG | 127.5 ± 12.1 | 119.8 ± 9.1 * | T: 0.154 (0.064) G: 0.676 (0.006) I: 0.091 (0.089) |
non-BFRG | 124.6 ± 10.4 | 125.3 ± 12.7 | ||
DBPrest (mmHg) | BFRG | 82.5 ± 9.5 | 82.5 ± 9.2 | T: 0.016 (0.174) G: 0.990 (0.000) I: 0.017 (0.170) |
non-BFRG | 78.3 ± 5.2 | 86.6 ± 5.5 * | ||
HRmax (beats/min) | BFRG | 163.3 ± 13.6 | 160.7 ± 18.5 | T: 0.959 (0.000) G: 0.612 (0.008) I: 0.197 (0.053) |
non-BFRG | 162.9 ± 7.4 | 165.4 ± 7.2 | ||
SBPmax (mmHg) | BFRG | 221.7 ± 7.3 | 178.6 ± 17.6 *§ | T: <0.001 (0.666) G: <0.001 (0.313) I: <0.001 (0.534) |
non-BFRG | 217.5 ± 5.7 | 212.3 ± 13.9 | ||
DBPmax (mmHg) | BFRG | 94.0 ± 8.0 | 86.1 ± 9.0 *§ | T: 0.002 (0.267) G: 0.171 (0.060) I: 0.021 (0.160) |
non-BFRG | 94.2 ± 8.4 | 93.0 ± 7.5 | ||
TET (s) | BFRG | 788.3 ± 138.0 | 808.3 ± 125.5 | T: 0.274 (0.038) G: 0.820 (0.002) I: 0.713 (0.004) |
non-BFRG | 784.6 ± 84.2 | 794.6 ± 92.9 | ||
VT | BFRG | 40.4 ± 10.5 | 46.0 ± 7.1 *§ | T: 0.009 (0.203) G: 0.310 (0.033) I: 0.011 (0.190) |
non-BFRG | 40.4 ± 7.6 | 40.4 ± 9.2 | ||
VO2max (ml/kg/min) | BFRG | 46.4 ± 9.0 | 49.9 ± 7.8 * | T: 0.121 (0.121) G: 0.386 (0.024) I: <0.001 (0.374) |
non-BFRG | 46.6 ± 6.6 | 45.0 ± 6.8 |
Variable | Group | Pre | Post | p-Value (Partial Eta Squared) | |
---|---|---|---|---|---|
Stage 1 | HR | BFRG | 89.1 ± 12.4 | 83.8 ± 13.9 * | T: 0.006 (0.218) G: 0.473 (0.017) I: 0.917 (0.000) |
non-BFRG | 92.3 ± 10.2 | 86.6 ± 14.1 | |||
SBP | BFRG | 144.2 ± 11.5 | 128.0 ± 10.3 * | T: <0.001 (0.386) G: 0.397 (0.023) I: 0.012 (0.189) | |
non-BFRG | 141.2 ± 11.8 | 137.3 ± 15.6 | |||
DBP | BFRG | 82.8 ± 8.3 | 78.2 ± 10.8 * | T: 0.082 (0.094) G: 0.435 (0.055) I:0.189 (0.020) | |
non-BFRG | 83.0 ± 5.7 | 82.3 ± 9.0 | |||
RPE | BFRG | 8.0 ± 1.4 | 7.1 ± 1.1 | T: 0.043 (0.126) G: 0.735 (0.004) I: 0.345 (0.029) | |
non-BFRG | 7.6 ± 1.4 | 7.3 ± 0.7 | |||
Stage 2 | HR | BFRG | 106.8 ± 14.3 | 103.8 ± 13.9 | T: 0.317 (0.037) G: 0.908 (0.000) I: 0.519 (0.014) |
non-BFRG | 105.2 ± 9.5 | 104.3 ± 14.1 | |||
SBP | BFRG | 163.0 ± 16.2 | 137.2 ± 12.0 *§ | T: <0.001 (0.416) G: 0.086 (0.092) I: <0.001 (0.367) | |
non-BFRG | 158.6 ± 12.3 | 157.3 ± 19.2 | |||
DBP | BFRG | 85.8 ± 7.7 | 77.9 ± 8.3 *§ | T: 0.003 (0.252) G: 0.514 (0.014) I: 0.001 (0.292) | |
non-BFRG | 83.2 ± 6.3 | 83.6 ± 7.1 | |||
RPE | BFRG | 9.8 ± 1.9 | 9.8 ± 2.2 | T: 0.286 (0.037) G: 0.286 (0.000) I: 1.000 (0.037) | |
non-BFRG | 9.4 ± 2.0 | 10.2 ± 1.1 | |||
Stage 3 | HR | BFRG | 133.3 ± 16.5 | 133.0 ± 17.3 | T: 0.897 (0.001) G: 0.707 (0.005) I: 0.964 (0.000) |
non-BFRG | 131.4 ± 10.8 | 131.1 ± 9.1 | |||
SBP | BFRG | 183.1 ± 16.6 | 156.5 ± 19.3 *§ | T: <0.001(0.340) G: 0.225 (0.047) I: 0.002 (0.262) | |
non-BFRG | 178.1 ± 13.2 | 175.6 ± 26.3 | |||
DBP | BFRG | 89.1 ± 8.6 | 79.7 ± 8.6 *§ | T: 0.001 (0.295) G: 0.496 (0.015) I: 0.002 (0.278) | |
non-BFRG | 86.2 ± 6.4 | 86.0 ± 7.1 | |||
RPE | BFRG | 12.8 ± 2.3 | 12.2 ± 2.3 | T: 0.449 (0.019) G: 0.805 (0.002) I: 0.002 (0.263) | |
non-BFRG | 11.8 ± 1.4 | 12.9 ± 1.0 * |
Variable | Group | Pre | Post | p-Value (Partial Eta Squared) | |
---|---|---|---|---|---|
Recovery 1 min | HR | BFRG | 123.2 ± 14.8 | 134.6 ± 21.8 | T: <0.001 (0.327) G: 0.485 (0.016) I: 0.415 (0.022) |
non-BFRG | 124.1 ± 17.8 | 141.6 ± 21.2 * | |||
SBP | BFRG | 212.1 ± 12.0 | 175.1 ± 17.2 * | T: <0.001 (0.633) G: 0.974 (0.000) I: 0.041 (0.128) | |
non-BFRG | 203.9 ± 11.0 | 183.6 ± 27.2 * | |||
DBP | BFRG | 93.3 ± 8.8 | 83.6 ± 8.0 * | T: <0.001 (0.535) G: 0.536 (0.012) I: 0.286 (0.037) | |
non-BFRG | 93.4 ± 7.5 | 86.6 ± 6.9 * | |||
Recovery 2 min | HR | BFRG | 109.6 ± 13.2 | 112.7 ± 17.5 | T: 0.108 (0.081) G: 0.699 (0.005) I: 0.612 (0.008) |
non-BFRG | 110.0 ± 14.6 | 116.0 ± 17.6 | |||
SBP | BFRG | 199.5 ± 13.2 § | 166.3 ± 17.9 *§ | T: <0.001 (0.515) G: 0.608 (0.009) I: <0.001 (0.307) | |
non-BFRG | 189.1 ± 11.2 | 182.0 ± 25.4 | |||
DBP | BFRG | 91.1 ± 9.4 | 83.6 ± 7.8 * | T: 0.004 (0.244) G: 0.600 (0.009) I: 0.038 (0.132) | |
non-BFRG | 89.4 ± 7.1 | 88.0 ± 7.7 | |||
Recovery 3 min | HR | BFRG | 99.7 ± 11.8 | 100.7 ± 14.6 | T: 0.572 (0.572) G: 0.902 (0.001) I: 0.937 (0.000) |
non-BFRG | 99.0 ± 13.6 | 100.4 ± 16.0 | |||
SBP | BFRG | 185.7 ± 10.9 § | 150.3 ± 15.1 * | T: <0.001 (0.761) G: 0.509 (0.014) I: 0.006 (0.219) | |
non-BFRG | 174.5 ± 14.6 | 155.3 ± 20.3 * | |||
DBP | BFRG | 88.8 ± 9.1 | 82.9 ± 7.0 * | T: <0.010 (0.196) G: 0.656 (0.006) I: 0.163 (0.062) | |
non-BFRG | 85.7 ± 6.4 | 83.8 ± 8.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-J.; Chung, I.-M.; Park, C.-H.; Lee, J.-Y. Blood Flow Restriction Training as a Non-Pharmacologic Therapy with Exercise-Induced Hypertension. J. Clin. Med. 2025, 14, 4466. https://doi.org/10.3390/jcm14134466
Kim Y-J, Chung I-M, Park C-H, Lee J-Y. Blood Flow Restriction Training as a Non-Pharmacologic Therapy with Exercise-Induced Hypertension. Journal of Clinical Medicine. 2025; 14(13):4466. https://doi.org/10.3390/jcm14134466
Chicago/Turabian StyleKim, Young-Joo, Ick-Mo Chung, Choung-Hwa Park, and Jong-Young Lee. 2025. "Blood Flow Restriction Training as a Non-Pharmacologic Therapy with Exercise-Induced Hypertension" Journal of Clinical Medicine 14, no. 13: 4466. https://doi.org/10.3390/jcm14134466
APA StyleKim, Y.-J., Chung, I.-M., Park, C.-H., & Lee, J.-Y. (2025). Blood Flow Restriction Training as a Non-Pharmacologic Therapy with Exercise-Induced Hypertension. Journal of Clinical Medicine, 14(13), 4466. https://doi.org/10.3390/jcm14134466