Comparing AI-Driven and Heart Team Decision-Making in Multivessel Coronary Artery Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Evaluation and Heart Team Meetings
2.3. Clinical Vignette Presented to ChatGPT
2.4. Outcomes
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Heart Team Decisions
3.3. ChatGPT Decisions
4. Discussion
- ChatGPT demonstrated only modest agreement with HT decision-making.
- No major identifiable clinical factors were found to drive treatment assignment by the AI model.
- ChatGPT’s recommendations were predominantly skewed towards CABG for most of the cohort.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vrints, C.; Andreotti, F.; Koskinas, K.C.; Rossello, X.; Adamo, M.; Ainslie, J.; Banning, A.P.; Budaj, A.; Buechel, R.R.; Chiariello, G.A.; et al. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur. Heart J. 2024, 45, 3415–3537. [Google Scholar] [CrossRef] [PubMed]
- Riojas, R.A.; Lawton, J.S.; Metkus, T.S., Jr. The heart team: The multidisciplinary approach to coronary artery disease. Vessel Plus 2024, 8, 6. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.W.; Torres Soto, J.; Glicksberg, B.S.; Shameer, K.; Miotto, R.; Ali, M.; Ashley, E.; Dudley, J.T. Artificial Intelligence in Cardiology. J. Am. Coll. Cardiol. 2018, 71, 2668–2679. [Google Scholar] [CrossRef] [PubMed]
- Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.; Aleman, F.L.; Almeida, D.; Altenschmidt, J.; Altman, S.; Anadkat, S.; et al. GPT-4 Technical Report. arXiv 2024, arXiv:2303.08774. [Google Scholar]
- Salihu, A.; Meier, D.; Noirclerc, N.; Skalidis, I.; Mauler-Wittwer, S.; Recordon, F.; Kirsch, M.; Roguelov, C.; Berger, A.; Sun, X.; et al. A study of ChatGPT in facilitating Heart Team decisions on severe aortic stenosis. EuroIntervention 2024, 20, e496–e503. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Principles and Applications of Artificial Intelligence (AI). In Algorithms: A Review of The Literature. Highlights in Science, Engineering and Technology; Darcy & Roy Press: Salem, OR, USA, 2023; pp. 76–84. [Google Scholar] [CrossRef]
- Cersosimo, A.; Zito, E.; Pierucci, N.; Matteucci, A.; La Fazia, V.M. A Talk with ChatGPT: The Role of Artificial Intelligence in Shaping the Future of Cardiology and Electrophysiology. J. Pers. Med. 2025, 15, 205. [Google Scholar] [CrossRef] [PubMed]
- Sudri, K.; Motro-Feingold, I.; Ramon-Gonen, R.; Barda, N.; Klang, E.; Fefer, P.; Amunts, S.; Attia, Z.I.; Alkhouli, M.; Segev, A.; et al. Enhancing Coronary Revascularization Decisions: The Promising Role of Large Language Models as a Decision-Support Tool for Multidisciplinary Heart Team. Circ. Cardiovasc. Interv. 2024, 17, e014201. [Google Scholar] [CrossRef] [PubMed]
- Salihu, A.; Gadiri, M.A.; Skalidis, I.; Meier, D.; Auberson, D.; Fournier, A.; Fournier, R.; Thanou, D.; Abbe, E.; Muller, O.; et al. Towards AI-assisted cardiology: A reflection on the performance and limitations of using large language models in clinical decision-making. EuroIntervention 2023, 19, e798–e801. [Google Scholar] [CrossRef] [PubMed]
Overall N = 137 | PCI N = 63 | CABG N = 74 | |
---|---|---|---|
Age—mean (±SD) | 70.3 (±8.6) | 73.1 (±9.5) | 67.9 (±7.1) |
Clinical presentation | |||
CCS—(%) | 115 (83.9) | 49 (77.8) | 66 (89.2) |
Stabilized ACS—(%) | 22 (16.1) | 14 (22.2) | 8 (10.8) |
Non-invasive stress test—(%) | 65 (47.4) | 22 (34.9) | 43 (58.1) |
Concomitant severe VHD—(%) | 10 (7.2) | 6 (9.6) | 4 (5.4) |
Obesity—(%) | 19 (13.9) | 9 (14.3) | 10 (13.5) |
eGFR—mean (±DS) | 78.2 (±22.1) | 80.9 (±22.4) | 0.578 |
eGFR < 35—(%) | 8 (12.7) | 7 (17.1) | 0.576 |
Type 2 DM—(%) | 58 (42.3) | 29 (46) | 29 (39.2) |
Hypertension—(%) | 124 (90.5) | 60 (95.2) | 64 (86.5) |
Dyslipidemia—(%) | 133 (97.1) | 61 (96.8) | 72 (97.3) |
Previous PCI—(%) | 22 (16.1) | 11 (17.5) | 11 (14.9) |
Previous CABG—(%) | 2 (1.5) | 2 (3.2) | 0 |
Carotid stenosis > 50%—(%) | 21 (15.3) | 5 (7.9) | 16 (21.6) |
COPD—(%) | 14 (10.2) | 9 (14.3) | 5 (6.8) |
Poor social condition—(%) | 10 (7.3) | 5 (7.9) | 5 (6.8) |
Echocardiography | |||
LVEF—mean (±SD) | 54.3 (±8.2) | 51.7 (±6.2) | 56.6 (±4.3) |
LVEF < 40%—(%) | 18 (13.5) | 12 (19.2) | 6 (8.1) |
Risk Scores | |||
SYNTAX—mean (±SD) | 25.2 (±7.7) | 23.4 (±8.0) | 27.1 (±7.1) |
EuroSCORE II—mean (±SD) | 2.1 (±2.1) | 2.6 (±2.8) | 1.7 (±1.2) |
STS mortality–mean (±SD) | 2.1 (±2.2) | 2.6 (±2.9) | 1.6 (±1.2) |
LM involvement and/or CTO lesions | |||
LM/LAD + 1 vessel—(%) | 7 (5.1) | 1 (1.6) | 6 (8.1) |
LM disease—(%) | 28 (20.4) | 8 (12.7) | 20 (27) |
One CTO lesion—(%) | 43 (31.4) | 19 (30.2) | 24 (32.4) |
Two CTO lesions—(%) | 12 (8.8) | 4 (6.3) | 8 (10.8) |
Versus PCI | Versus CABG | |
---|---|---|
Sensitivity (%) | 44.4 | 82.4 |
Specificity (%) | 82.4 | 44.4 |
Accuracy (%) | 65.0 | 65.0 |
Positive predictive value (%) | 68.3 | 63.5 |
Negative predictive value (%) | 63.5 | 68.3 |
HT N = 63 | ChatGPT N = 41 | p-Value | |
---|---|---|---|
Age—mean (±SD) | 73.1 (±9.5) | 70.9 (±9.9) | 0.261 |
Male—(%) | 51 (81%) | 32 (78%) | 0.804 |
Clinical presentation | |||
CCS—(%) | 49 (77.8) | 31 (75.7) | 0.985 |
Stabilized ACS—(%) | 14 (22.2) | 10 (24.4) | 0.985 |
Non-invasive stress test—(%) | 22 (34.9) | 15 (36.6) | 0.513 |
Obesity—(%) | 9 (14.3) | 4 (9.8) | 0.559 |
eGFR—mean (±SD) | 82.8 (±21.8) | 80.6 (±21.9) | 0.529 |
eGFR < 35—(%) | 12 (16.2) | 13 (13.5) | 0.625 |
Type 2 DM—(%) | 29 (46%) | 12 (29.3) | 0.103 |
Hypertension—(%) | 60 (95.2) | 34 (82.9) | 0.047 |
Dyslipidemia—(%) | 61 (96.8) | 39 (95.1) | 0.646 |
Previous PCI—(%) | 11 (17.5) | 9 (45) | 0.616 |
Previous CABG—(%) | 2 (3.2) | 2 (4.9) | 0.646 |
Carotid stenosis > 50%—(%) | 5 (7.9) | 4 (9.7) | 0.616 |
COPD—(%) | 9 (14.3) | 6 (15) | 1.0 |
Poor social condition—(%) | 5 (55.6) | 4 (44.4) | 0.736 |
Echocardiography | |||
LVEF—mean (±SD) | 51 (±10) | 56 (±7) | 0.020 |
LVEF < 40%—(%) | 12 (19) | 4 (9.8) | 0.270 |
Risk Scores | |||
SYNTAX—mean (±SD) | 23.4 (±8.0) | 20.9 (±8.3) | 0.127 |
EuroSCORE II—mean (±SD) | 2.60 (±2.85) | 2.17 (±2.69) | 0.449 |
STS Score mortality—mean (±SD) | 2.69 (±2.93) | 2.76 (±3.41) | 0.917 |
LM involvement and/or CTO lesions | |||
LM/LAD + 1 vessel involvement—(%) | 1 (1.6) | 2 (7.3) | 0.298 |
LM disease involvement—(%) | 8 (12.7) | 3 (7.3) | 0.521 |
One CTO lesion—(%) | 19 (30.2) | 6 (14.6) | 0.115 |
Two CTO lesions—(%) | 4 (6.3) | 1 (2.4) | 0.659 |
HT N = 74 | ChatGPT N = 96 | p-Value | |
---|---|---|---|
Age—mean (±SD) | 67.9 (±7.1) | 70.1 (±8.1). | 0.077 |
Male—(%) | 66 (89.2%) | 85 (88.5%) | 0.894 |
Clinical presentation | |||
CCS—(%) | 62 (83.8) | 81 (84.4) | 0.975 |
Stabilized ACS—(%) | 43 (58.9) | 50 (53.8) | 0.418 |
Non Invasive stress test—(%) | 43 (58.9) | 50 (53.8) | 0.418 |
Obesity—(%) | 10 (13.5) | 15 (15.6) | 0.700 |
Type 2 DM—(%) | 29 (39.2%) | 46 (47.9) | 0.256 |
Hypertension—(%) | 64 (86.5) | 90 (93.8) | 0.108 |
Dyslipidemia—(%) | 10 (13.5) | 15 (15.6) | 0.700 |
Previous PCI—(%) | 11 (14.9) | 83 (13.5) | 0.806 |
Previous CABG—(%) | 2 (3.2) | 2 (4.9) | |
Carotid Stenosis > 50%—(%) | 16 (21.6) | 17 (17.7) | 0.522 |
COPD—(%) | 5 (6.8) | 8 (8.3) | 0.720 |
Echocardiography | |||
LVEF—mean (±SD) | 56.5 (±8.45) | 53.5 (±10.4) | 0.043 |
LVEF < 40%—(%) | 6 (8.1) | 14 (14.6) | 0.194 |
Risk Scores | |||
SYNTAX—mean (±SD) | 26.6 (±7.1) | 27 (±6.7) | 0.746 |
EuroSCORE II—mean (±SD) | 1.70 (±1.27) | 2.09 (±1.95) | 0.142 |
STS Score Mortality—mean (±SD) | 1.61 (±1.23) | 1.83 (±1.42) | 0.291 |
LM involvement and/or CTO lesions | |||
LM/LAD + 1 vessel involvement—(%) | 6 (8.1) | 4 (4.2) | 0.279 |
LM disease involvement—(%) | 20 (27) | 25 (26) | 0.885 |
One CTO lesion—(%) | 24 (32.4) | 37 (38.5) | 0.430 |
Two CTO lesions—(%) | 8 (10.8) | 11 (11.5) | 0.890 |
p-Value | OR | |
---|---|---|
Age | 0.017 | 1.082 |
Male | 0.094 | 0.335 |
Obesity | 0.927 | 1.063 |
Diabetes mellitus | 0.043 | 2.890 |
Hypertension | 0.932 | 0.933 |
Dyslipidemia | 0.163 | 0.159 |
COPD | 0.574 | 1.593 |
eGFR ≤ 35 | 0.043 | 0.184 |
Carotid stenosis > 50% | 0.515 | 0.626 |
LVEF ≤ 40% | 0.533 | 1.710 |
Non-invasive stress test | 0.410 | 0.636 |
Previous PCI | 0.320 | 1.858 |
SYNTAX I | 0.138 | 0.944 |
EuroSCORE | 0.064 | 1.484 |
STS Score mortality | 0.066 | 0.587 |
Two-vessel disease | 0.680 | 0.673 |
Left main involvement | 0.107 | 0.269 |
OR | p-Value | CI Lower | CI Upper | |
---|---|---|---|---|
Age | 0.072 | 0.034 | 0.009 | 0.192 |
Male | −0.884 | 0.200 | −3.096 | 0.629 |
Obesity | −0.222 | 0.749 | −2.171 | 1.520 |
Diabetes mellitus | 0.880 | 0.096 | −0.148 | 2.461 |
Hypertension | 1.153 | 0.844 | −2.076 | 5.290 |
Dyslipidemia | −1.074 | 0.183 | −22.966 | 20.482 |
COPD | 0.339 | 0.725 | −2.220 | 3.210 |
eGFR ≤ 35 | −1.660 | 0.019 | −21.245 | −0.264 |
Carotid stenosis > 50% | −0.687 | 0.279 | −2.893 | 0.747 |
LVEF ≤ 40% | 0.929 | 0.272 | −1.014 | 3.647 |
Non-invasive stress test | −0.311 | 0.550 | −1.682 | 0.875 |
Previous PCI | 0.462 | 0.479 | −1.092 | 2.280 |
SYNTAX I | −0.042 | 0.252 | −0.150 | 0.032 |
EuroSCORE | 0.423 | 0.044 | −0.167 | 1.117 |
STS Score mortality | −0.564 | 0.020 | −1.463 | −0.080 |
Two-vessel disease | −4.429 | 0.536 | −21.517 | 2.286 |
Left main involvement | −0.897 | 0.292 | −4.492 | 0.746 |
Domain | Heart Team (HT) | Artificial Intelligence (ChatGPT) |
---|---|---|
Decision process | Multidisciplinary discussion integrating clinical, anatomical, imaging, and patient-centered data | Automated text-based analysis using standardized clinical vignettes |
Input data | Full access to clinical records, direct imaging review, procedural history, and contextual variables | Standardized textual summaries of clinical and anatomical data |
Imaging integration | Direct review and interpretation of raw imaging (angiography, CT, MRI) | No direct processing of images; relies on operator-provided textual descriptors |
Time per case | Approximately 25 min (including data collection, case presentation, and team discussion) | Approximately 10 min for vignette preparation, with instant AI response |
Decision scope | Considers technical feasibility, institutional expertise, patient preferences, and logistics | Limited to variables presented in text; evaluates based on the available literature |
Strengths | Integrates nuanced, context-dependent factors; adapts to complexity; includes ethical oversight | Speed, reproducibility, scalability, potential to support rapid triage |
Limitations | Requires coordination and time; may vary with team composition and dynamics | Cannot process raw imaging; may overlook subtle context; dependent on input quality |
Ethical/legal oversight | Provided by clinical governance and collective professional responsibility | Raises concerns regarding data privacy, accountability, and regulatory standards |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migliaro, S.; Celotto, R.; Teliti, R.; Mariani, S.; Altamura, L.; Tomai, F. Comparing AI-Driven and Heart Team Decision-Making in Multivessel Coronary Artery Disease. J. Clin. Med. 2025, 14, 4452. https://doi.org/10.3390/jcm14134452
Migliaro S, Celotto R, Teliti R, Mariani S, Altamura L, Tomai F. Comparing AI-Driven and Heart Team Decision-Making in Multivessel Coronary Artery Disease. Journal of Clinical Medicine. 2025; 14(13):4452. https://doi.org/10.3390/jcm14134452
Chicago/Turabian StyleMigliaro, Stefano, Roberto Celotto, Romina Teliti, Simona Mariani, Luca Altamura, and Fabrizio Tomai. 2025. "Comparing AI-Driven and Heart Team Decision-Making in Multivessel Coronary Artery Disease" Journal of Clinical Medicine 14, no. 13: 4452. https://doi.org/10.3390/jcm14134452
APA StyleMigliaro, S., Celotto, R., Teliti, R., Mariani, S., Altamura, L., & Tomai, F. (2025). Comparing AI-Driven and Heart Team Decision-Making in Multivessel Coronary Artery Disease. Journal of Clinical Medicine, 14(13), 4452. https://doi.org/10.3390/jcm14134452