Temporomandibular Joint Sound Frequencies and Mouth-Opening Distances: Effect of Gender and Age
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Recruitment, Inclusion, and Exclusion Criteria
2.3. Temporomandibular Joint Evaluation
- Range of Motion (ROM): The incisal distance from centric occlusion to the maximum open position (in millimeters) was assessed using a calibrated Vernier caliper with an accuracy of 1 mm. Subjects were instructed to open their mouths to the fullest extent, and the caliper was employed to measure the interincisal distance, defined as the distance between the edges of the upper and lower anterior central incisors. The study population comprised 143 females and 108 males.
- Total Integral Value for Right (TIR) and Left (TIL): This parameter represents the area under the mean Fast Fourier Transform (FFT) frequency distribution, quantifying the total pressure wave activity over time in kilohertz (KHz). It serves as a primary indicator of overall vibration intensity.
- Integral > 300 Hz for Right (<300R) and Left (<300L): This refers to the segment of the Total Integral attributed to frequencies exceeding 300 Hz, which is predominantly influenced by roughened surfaces (KHz). This aspect of the frequency distribution is susceptible to degenerative changes occurring within the joint.
- Integral < 300 Hz for Right (>300R) and Left (>300L): This component encompasses the portion of the Total Integral attributed to frequencies below 300 Hz, primarily associated with disk movements (KHz). This segment of the frequency distribution is significantly affected by disk displacements, reductions, hypermobility, or generalized joint laxity (GJL).
- Integral >300/<300 Ratio: When the ratio of these integrals (>300 Hz/<300 Hz) exceeds 0.3, it indicates the presence of degenerative disease in the joints.
2.4. Statistical Analysis
3. Results
3.1. Range of Motion (ROM)
3.2. Total Integral Left (TIL)
3.3. Total Integral Right (TIR)
3.4. <300 Hz Left (<300L) and <300 Hz Right (<300R)
3.5. >300 Hz Left (>300L) and >300 Hz Right (>300R)
3.6. Ratio Left and Ratio Right
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pihut, M.E.; Kostrzewa-Janicka, J.; Orczykowska, M.; Biegańska-Banaś, J.; Gibas-Stanek, M.; Gala, A. Initial assessment of the psycho-emotional state of patients with temporomandibular disorders: A pilot study. Dent. Med. Probl. 2024, 61, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Bevilaqua-Grossi, D.; Chaves, T.C.; De Oliveira, A.S.; Monteiro-Pedro, V. Anamnestic index severity and signs and symptoms of TMD. CRANIO—J. Craniomandib. Sleep Pract. 2006, 24, 112–118. [Google Scholar] [CrossRef] [PubMed]
- González-González, A.M.; Herrero, A.J. A systematic review of temporomandibular disorder diagnostic methods. CRANIO—J. Craniomandib. Sleep Pract. 2024, 42, 348–360. [Google Scholar] [CrossRef]
- Kadamati, P.; Ruiz Velasco, G.; Radke, J. Recorded Vibrations from Temporomandibular Joints with Internal Derangements and from Asymptomatic Control Subjects. Adv. Dent. Technol. Tech. 2020, 46–53. Available online: https://adtt.scholasticahq.com/article/13270-recorded-vibrations-from-temporomandibular-joints-with-internal-derangements-and-from-asymptomatic-control-subjects (accessed on 10 June 2025).
- Yap, A.U.; Lei, J.; Zhang, X.H.; Fu, K.Y. TMJ degenerative joint disease: Relationships between CBCT findings, clinical symptoms, and signs. Acta Odontol. Scand 2023, 81, 562–568. [Google Scholar] [CrossRef]
- Grochala, J.; Kajor, M.; Pihut, M.; Loster, J.E. A proposal for a database of sounds generated by temporomandibular joints and a tool for automated diagnosis based on an RDC/TMD questionnaire. Folia Medica Cracoviensia 2023, 63, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Matos, M.; Thumati, P.; Sutter, B.; Ruiz-velasco, G.; Goldberg, J.; Booth, J.; Radke, J. Are Temporomandibular Disorders Really Somatic Symptom Disorders? Part II—Joint Vibration Analysis of the Temporomandibular Joint. Adv. Dent. Technol. Tech. 2021, 4, 21–34. [Google Scholar]
- Gonzalez, Y.M.; Greene, C.S.; Mohl, N.D. Technological Devices in the Diagnosis of Temporomandibular Disorders. Oral Maxillofac. Surg. Clin. North Am. 2008, 20, 211–220. [Google Scholar] [CrossRef]
- John, R.; Sutter, B.A. Sensitivities and Specificity of Joint Vibration Analysis (JVA): A Review. Adv. Dent. Technol. Tech. 2022, 59, 59–65. [Google Scholar]
- Ruiz-Velasco, G.; Radke, J. Temporomandibular Joints (TMJ) Joint Vibration Analysis (JVA) detects the presence of a “Stuck Disk” with a TMJ internal derangement: A Case Study. Adv. Dent. Technol. Tech. 2022, 76–84. Available online: https://adtt.scholasticahq.com/article/70316-joint-vibration-analysis-jva-detects-the-presence-of-a-stuck-disk-with-a-tmj-internal-derangement-a-case-study (accessed on 10 June 2025).
- Radke, J.C.; Kull, R.S. Comparison of TMJ vibration frequencies under different joint conditions. CRANIO—J. Craniomandib. Sleep Pract. 2015, 33, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Crow, H.C.; Kartha, K.; McCall, W.D.; Gonzalez, Y.M. Reliability and diagnostic validity of a joint vibration analysis device. BMC Oral Health. 2017, 17, 56. [Google Scholar] [CrossRef]
- Thumati, P.; Thumati, R.P.; Radke, J.; Kamyszek, G. JVA changes from pre to post Disclusion Time Reduction in a group of muscularly symptomatic TMD patients. Adv. Dent. Technol. Tech. 2022, 15–28. Available online: https://adtt.scholasticahq.com/article/70331-jva-changes-from-pre-to-post-disclusion-time-reduction-in-a-group-of-muscularly-symptomatic-tmd-patients (accessed on 10 June 2025).
- Gözler, S. JVA, Mastication and Digital Occlusal Analysis in Diagnosis and Treatment of Temporomandibular Disorders. In Temporomandibular Joint Pathol, 1st ed.; Intech: London, UK, 2018; pp. 127–159. [Google Scholar] [CrossRef]
- Akan, A.; Ergin, A.; Yildirim, M.; Öztaş, E. Analysis of temporomandibular joint sounds in orthodontic patients. Comput. Electr. Eng. 2006, 32, 312–321. [Google Scholar] [CrossRef]
- Dworkin, S.F.; LeResche, L. Research diagnostic criteria for temporomandibular disorders: Review, criteria, examinations and specifications, critique. J. Craniomandib. Disord. 1992, 6, 301–355. [Google Scholar]
- Schiffman, E.; Ohrbach, R.; Truelove, E.; Look, J.; Anderson, G.; Goulet, J.P.; List, T.; Svensson, P.; Gonzalez, Y.; Lobbezoo, F.; et al. Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) for Clinical and Research Applications: Recommendations of the International RDC/TMD Consortium Network and Orofacial Pain Special Interest Group. J. Oral Facial Pain Headache 2014, 28, 6–27. [Google Scholar] [CrossRef] [PubMed]
- Demir, M.G. Comparison of symptoms, signs, gender, and magnetic resonance images of temporomandibular joint disorder patients. CRANIO—J. Craniomandib. Sleep Pract. 2022, 43, 307–311. [Google Scholar] [CrossRef]
- Kondrat, W.; Sierpińska, T.; Radke, J. Assessment of the temporomandibular joint function in young adults without complaints from the masticatory system. Int. J. Med. Sci. 2018, 15, 161–169. [Google Scholar] [CrossRef]
- Radke, J.C.; Ruiz Velasco, G. Joint Vibration Analysis (JVA) Bridges the Gap between Clinical Procedures and Sophisticated TMJ Imaging. Adv. Dent. Technol. Tech. 2020, 1–20. Available online: https://adtt.scholasticahq.com/article/17315-joint-vibration-analysis-jva-bridges-the-gap-between-clinical-procedures-and-sophisticated-tmj-imaging (accessed on 10 June 2025).
- Rongo, R.; Ekberg, E.C.; Nilsson, I.M.; Al-Khotani, A.; Alstergren, P.; Conti, P.C.R.; Durham, J.; Goulet, J.-P.; Hirsch, C.; Kalaykova, S.I.; et al. Diagnostic criteria for temporomandibular disorders (DC/TMD) for children and adolescents: An international Delphi study—Part 1-Development of Axis I. J. Oral Rehabil. 2021, 48, 836–845. [Google Scholar] [CrossRef]
- Müller, L.; van Waes, H.; Langerweger, C.; Molinari, L.; Saurenmann, R.K. Maximal mouth opening capacity: Percentiles for healthy children 4–17 years of age. Pediatr. Rheumatol. 2013, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Patel, N.; Khaitan, G.G.; Thanvi, R.; Patel, P.; Joshi, R. Evaluation of maximal mouth opening for healthy Indian children: Percentiles and impact of age, gender, and height. Natl. J. Maxillofac. Surg. 2016, 7, 33–38. [Google Scholar] [CrossRef]
- Schmitter, M.; Kress, B.; Leckel, M.; Henschel, V.; Ohlmann, B.; Rammelsberg, P. Validity of temporomandibular disorder examination procedures for assessment of temporomandibular joint status. Am. J. Orthod. Dentofac. Orthop. 2008, 133, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Baik, B.-J.; Kim, S.-H.; Yang, Y.-M.; Kim, J.-G. A study of the maximum mouth opening in children. J. Korean Acad. Peditatric Dent. 2001, 28, 593–599. [Google Scholar]
- Kurup, S.; Perez-Pino, A.; Litt, M. The association between temporomandibular disorders signs and symptoms, bruxism, and health variables: A cross-sectional study. CRANIO—J. Craniomandib. Sleep Pract. 2024, 1–9. [Google Scholar] [CrossRef]
- Malik, W.; Malik, S.; Shakir, S.; Khan, A.; Qadeer, A.; Malik, W. Sign and Symptom of Temporomandibular Joint Disorders and Associated Parafuncion Habits in Young Adults. Pak. J. Med. Health Sci. 2022, 16, 1146–1148. [Google Scholar] [CrossRef]
- Farook, T.H.; Haq, T.M.; Ramees, L.; Dudley, J. Predicting masticatory muscle activity and deviations in mouth opening from non-invasive temporomandibular joint complex functional analyses. J. Oral Rehabil. 2024, 51, 1770–1777. [Google Scholar] [CrossRef]
- Hunter, A.; Kalathingal, S. Diagnostic imaging for temporomandibular disorders and orofacial pain. Dent. Clin. N. Am. 2013, 57, 405–418. [Google Scholar] [CrossRef]
Female Mean ± SD | Male Mean ± SD | Total Mean ± SD | |||||||
---|---|---|---|---|---|---|---|---|---|
22 and Below | 23 and Above | Total | 22 and Below | 23 and Above | Total | 22 and Below | 23 and Above | Total | |
Age | 16.90 ± 3.75 | 24.09 ± 1.15 | 20.62 ± 4.52 | 15.70 ± 3.46 | 24.42 ± 1.75 | 19.33 ± 5.18 | 16.33 ± 3.65 | 24.22 ± 1.41 | 20.07 ± 4.85 |
ROM | 42.67 ± 5.01 | 41.84 ± 7.78 | 42.34 ± 6.12 | 44.83 ± 5.00 | 45.11 ± 8.58 | 44.94 ± 6.69 | 43.70 ± 5.10 | 43.08 ± 8.21 | 43.40 ± 6.75 |
TIL | 6.52 ± 5.05 | 10.48 ± 6.29 | 8.12 ± 5.87 | 6.80 ± 4.68 | 8.74 ± 5.24 | 7.61 ± 4.99 | 6.65 ± 4.86 | 9.82 ± 5.95 | 8.16 ± 5.62 |
TIR | 6.04 ± 5.80 | 8.24 ± 6.20 | 7.12 ± 6.00 | 5.63 ± 3.89 | 8.58 ± 6.68 | 6.86 ± 5.41 | 5.84 ± 4.97 | 8.36 ± 6.36 | 7.04 ± 5.80 |
c1 < 300L | 5.66 ± 4.41 | 9.48 ± 5.85 | 7.12 ± 5.13 | 6.03 ± 4.40 | 7.77 ± 4.64 | 6.76 ± 4.56 | 5.84 ± 4.39 | 8.83 ± 5.47 | 7.26 ± 5.14 |
c2 < 300R | 5.14 ± 5.20 | 7.12 ± 5.42 | 6.02 ± 5.31 | 5.33 ± 4.88 | 7.45 ± 5.18 | 6.23 ± 5.03 | 5.22 ± 5.06 | 7.27 ± 5.32 | 6.11 ± 5.19 |
d1 > 300L | 0.85 ± 0.79 | 1.01 ± 0.78 | 0.93 ± 0.79 | 0.78 ± 0.51 | 0.96 ± 1.04 | 0.86 ± 0.78 | 0.82 ± 0.67 | 0.99 ± 0.88 | 0.90 ± 0.78 |
d2 > 300R | 0.89 ± 0.81 | 1.11 ± 1.20 | 0.98 ± 0.98 | 0.80 ± 0.48 | 1.10 ± 1.04 | 0.92 ± 0.78 | 0.84 ± 0.67 | 1.10 ± 1.14 | 0.97 ± 0.93 |
e1 RatioL | 0.18 ± 0.09 | 0.12 ± 0.08 | 0.15 ± 0.09 | 0.15 ± 0.08 | 0.14 ± 0.10 | 0.15 ± 0.09 | 0.17 ± 0.09 | 0.13 ± 0.09 | 0.15 ± 0.09 |
e2 RatioR | 0.23 ± 0.12 | 0.16 ± 0.09 | 0.20 ± 0.11 | 0.21 ± 0.11 | 0.18 ± 0.10 | 0.20 ± 0.11 | 0.22 ± 0.12 | 0.17 ± 0.09 | 0.20 ± 0.11 |
Age Correlation | ROM | b1 TIL | b2 TIR | c1 < 300L | c2 < 300R | d1 > 300L | d2 > 300R | e1 RatioL | e2 RatioR | |
---|---|---|---|---|---|---|---|---|---|---|
TOTAL | Pearson Correlation | −0.054 | 0.218 ** | 0.158 * | 0.229 ** | 0.159 * | 0.057 | 0.098 | −0.198 ** | −0.188 ** |
Sig. (2-tailed) | 0.397 | 0.001 | 0.012 | 0.000 | 0.012 | 0.366 | 0.123 | 0.002 | 0.003 | |
Effect size | −0.0537 | 0.2231 | 0.1595 | 0.2353 | 0.1609 | 0.0574 | 0.0980 | −0.2016 | −0.1913 | |
MALE | Pearson Correlation | 0.001 | 0.107 | 0.166 | 0.106 | 0.159 | 0.056 | 0.156 | −0.081 | −0.073 |
Sig. (2-tailed) | 0.989 | 0.270 | 0.086 | 0.274 | 0.101 | 0.568 | 0.107 | 0.404 | 0.450 | |
Effect size | 0.001 | 0.108 | 0.168 | 0.107 | 0.161 | 0.056 | 0.158 | −0.081 | −0.074 | |
FEMALE | Pearson Correlation | −0.054 | 0.287 ** | 0.150 | 0.307 ** | 0.158 | 0.048 | 0.055 | −0.298 ** | −0.285 ** |
Sig. (2-tailed) | 0.520 | 0.001 | 0.074 | 0.000 | 0.059 | 0.570 | 0.512 | 0.000 | 0.001 | |
Effect size | −0.054 | 0.299 | 0.151 | 0.323 | 0.160 | 0.048 | 0.055 | −0.312 | −0.297 |
Gender | Age Group Difference 22 and Below vs. 23 and Above (Mean ± SD) (KHz) | p | Effect Size | |
---|---|---|---|---|
ROM | Males | +2.5 ± 0.5 | 0.046 * | 0.126 |
Females | +2.3 ± 0.4 | 0.038 * | 0.131 | |
TIL | Males | −1.8 ± 0.3 | 0.01 * | 0.163 |
Females | −2.1 ± 0.4 | 0.000 * | inf | |
TIR | Males | −1.5 ± 0.3 | 0.02 * | 0.147 |
Females | −1.9 ± 0.4 | 0.001 * | 0.208 | |
<300L | Males | −1.2 ± 0.2 | 0.01 * | 0.163 |
Females | −1.4 ± 0.3 | 0.000 * | inf | |
<300R | Males | −1.1 ± 0.2 | 0.02 * | 0.147 |
Females | −1.3 ± 0.3 | 0.000 * | inf | |
>300L | Males | −0.2 ± 0.1 | 0.067 | 0.116 |
Females | −0.3 ± 0.1 | 0.034 * | 0.134 | |
>300R | Males | −0.1 ± 0.1 | 0.089 | 0.107 |
Females | −0.2 ± 0.1 | 0.072 | 0.114 | |
e1 | Males | −0.05 ± 0.01 | 0.404 | 0.053 |
Females | −0.08 ± 0.02 | 0.000 * | inf | |
e2 | Males | −0.04 ± 0.01 | 0.450 | 0.048 |
Females | −0.07 ± 0.02 | 0.000 * | inf |
Age Group | Gender Comparison Males vs. Females (Mean ± SD) (KHz) | p | Effect Size | |
---|---|---|---|---|
ROM | 22 and below | +1.81 ± 7.14 | 0.046 * | 0.126 |
23 and above | +4.71 ± 11.96 | 0.039 * | 0.130 | |
TIL | 22 and below | +0.59 ± 6.59 | 0.190 | 0.083 |
23 and above | −1.42 ± 5.99 | 0.310 | 0.064 | |
TIR | 22 and below | +0.4 ± 0.1 | 0.174 | 0.086 |
23 and above | +0.3 ± 0.1 | 0.576 | 0.035 | |
<300L | 22 and below | +0.3 ± 0.1 | 0.658 | 0.028 |
23 and above | +0.2 ± 0.1 | 0.918 | 0.006 | |
<300R | 22 and below | +0.2 ± 0.1 | 0.658 | 0.028 |
23 and above | +0.1 ± 0.1 | 0.918 | 0.006 | |
>300L | 22 and below | +0.1 ± 0.1 | 0.658 | 0.028 |
23 and above | +0.1 ± 0.1 | 0.918 | 0.006 | |
>300R | 22 and below | +0.1 ± 0.1 | 0.658 | 0.028 |
23 and above | +0.1 ± 0.1 | 0.918 | 0.006 | |
e1 | 22 and below | +0.02 ± 0.01 | 0.658 | 0.028 |
23 and above | +0.03 ± 0.01 | 0.918 | 0.006 | |
e2 | 22 and below | +0.02 ± 0.01 | 0.658 | 0.028 |
23 and above | +0.03 ± 0.01 | 0.918 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gözler, S.; Seyedoskuyi, A.; Apak, A.; Eyüboğlu, T.F.; Özcan, M. Temporomandibular Joint Sound Frequencies and Mouth-Opening Distances: Effect of Gender and Age. J. Clin. Med. 2025, 14, 4399. https://doi.org/10.3390/jcm14134399
Gözler S, Seyedoskuyi A, Apak A, Eyüboğlu TF, Özcan M. Temporomandibular Joint Sound Frequencies and Mouth-Opening Distances: Effect of Gender and Age. Journal of Clinical Medicine. 2025; 14(13):4399. https://doi.org/10.3390/jcm14134399
Chicago/Turabian StyleGözler, Serdar, Ali Seyedoskuyi, Ayşe Apak, Tan Fırat Eyüboğlu, and Mutlu Özcan. 2025. "Temporomandibular Joint Sound Frequencies and Mouth-Opening Distances: Effect of Gender and Age" Journal of Clinical Medicine 14, no. 13: 4399. https://doi.org/10.3390/jcm14134399
APA StyleGözler, S., Seyedoskuyi, A., Apak, A., Eyüboğlu, T. F., & Özcan, M. (2025). Temporomandibular Joint Sound Frequencies and Mouth-Opening Distances: Effect of Gender and Age. Journal of Clinical Medicine, 14(13), 4399. https://doi.org/10.3390/jcm14134399