Combined Model for the Diagnosis of Hepatocellular Carcinoma: A Pilot Study Comparing the Liver to Spleen Volume Ratio and Liver Vein to Cava Attenuation
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. LSVR and LVCA Calculations
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Comparison Between Groups
4.2. Combined Model for the Diagnosis of HCC
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AFP | Alpha-fetoprotein |
AFP-L3 | Lens Culinaris Agglutinin-Reactive AFP |
AIC | Akaike Information Criterion |
ALP | Alkaline Phosphatase |
ALT | Alanine Aminotransferase |
aPTT | Activated Partial Thromboplastin Time |
AST | Aspartate Aminotransferase |
AUC | Area Under the Curve |
CI | Confidence Interval |
CT | Computed Tomography |
ctDNA | Circulating Tumor DNA |
DCP | Des-gamma-carboxyprothrombin |
GGT | Gamma-glutamyl Transferase |
HBV | Hepatitis B Virus |
HCC | Hepatocellular Carcinoma |
HCV | Hepatitis C Virus |
INR | International Normalized Ratio |
LC | Liver Cirrhosis |
LDL | Low-Density Lipoprotein |
LSVR | Liver to Spleen Volume Ratio |
LVCA | Liver Vein to Cava Attenuation |
MELD | Model for End-Stage Liver Disease |
MRI | Magnetic Resonance Imaging |
OR | Odds Ratio |
PT | Prothrombin Time |
ROC | Receiver Operating Characteristic |
SD | Standard Deviation |
References
- Scarlata, G.G.M.; Cicino, C.; Spagnuolo, R.; Marascio, N.; Quirino, A.; Matera, G.; Dumitrașcu, D.L.; Luzza, F.; Abenavoli, L. Impact of diet and gut microbiota changes in the development of hepatocellular carcinoma. Hepatoma Res. 2024, 10, 19. [Google Scholar] [CrossRef]
- Koshy, A. Evolving Global Etiology of Hepatocellular Carcinoma (HCC): Insights and Trends for 2024. J. Clin. Exp. Hepatol. 2025, 15, 102406. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 589–604. [Google Scholar] [CrossRef] [PubMed]
- Phoolchund, A.G.S.; Khakoo, S.I. MASLD and the Development of HCC: Pathogenesis and Therapeutic Challenges. Cancers 2024, 16, 259. [Google Scholar] [CrossRef]
- Hu, H.; Zhao, Y.; He, C.; Qian, L.; Huang, P. Ultrasonography of Hepatocellular Carcinoma: From Diagnosis to Prognosis. J. Clin. Transl. Hepatol. 2024, 12, 516–524. [Google Scholar] [CrossRef]
- Arif-Tiwari, H.; Kalb, B.; Chundru, S.; Sharma, P.; Costello, J.; Guessner, R.W.; Martin, D.R. MRI of hepatocellular carcinoma: An update of current practices. Diagn. Interv. Radiol. 2014, 20, 209–221. [Google Scholar] [CrossRef]
- Okada, M.; Aoki, R.; Nakazawa, Y.; Tago, K.; Numata, K. CT and MR Imaging of Hepatocellular Carcinoma and Liver Cirrhosis. Gastroenterol. Insights 2024, 15, 976–997. [Google Scholar] [CrossRef]
- Samban, S.S.; Hari, A.; Nair, B.; Kumar, A.R.; Meyer, B.S.; Valsan, A.; Vijayakurup, V.; Nath, L.R. An Insight into the Role of Alpha-Fetoprotein (AFP) in the Development and Progression of Hepatocellular Carcinoma. Mol. Biotechnol. 2024, 66, 2697–2709. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, W.; Li, X.; Zhao, H.; Wang, S. The Diagnostic Performance of AFP, AFP-L3, DCP, CA199, and Their Combination for Primary Liver Cancer. J. Hepatocell. Carcinoma 2025, 12, 513–526. [Google Scholar] [CrossRef]
- Schlosser, S.; Tümen, D.; Volz, B.; Neumeyer, K.; Egler, N.; Kunst, C.; Tews, H.C.; Schmid, S.; Kandulski, A.; Müller, M.; et al. HCC biomarkers—State of the old and outlook to future promising biomarkers and their potential in everyday clinical practice. Front. Oncol. 2022, 12, 1016952. [Google Scholar] [CrossRef]
- Scarlata, G.G.M.; Ismaiel, A.; Gambardella, M.L.; Leucuta, D.C.; Luzza, F.; Dumitrascu, D.L.; Abenavoli, L. Use of Non-Invasive Biomarkers and Clinical Scores to Predict the Complications of Liver Cirrhosis: A Bicentric Experience. Medicina 2024, 60, 1854. [Google Scholar] [CrossRef] [PubMed]
- Ismaiel, A.; Katell, E.; Leucuta, D.C.; Popa, S.L.; Catana, C.S.; Dumitrascu, D.L.; Surdea-Blaga, T. The Impact of Non-Invasive Scores and Hemogram-Derived Ratios in Differentiating Chronic Liver Disease from Cirrhosis. J. Clin. Med. 2025, 14, 3072. [Google Scholar] [CrossRef]
- Wang, W.; Wei, C. Advances in the early diagnosis of hepatocellular carcinoma. Genes. Dis. 2020, 7, 308–319. [Google Scholar] [CrossRef]
- Hwang, S.H.; Hong, S.B.; Han, K.; Seo, N.; Choi, J.Y.; Lee, J.H.; Park, S.; Lim, Y.S.; Kim, D.Y.; Kim, S.Y.; et al. A New Reporting System for Diagnosis of Hepatocellular Carcinoma in Chronic Hepatitis B With Clinical and Gadoxetic Acid-Enhanced MRI Features. J. Magn. Reson. Imaging 2022, 55, 1877–1886. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, N.M.; Fung, A.; Kambadakone, A.R.; Yeh, B.M. Computed Tomography Techniques, Protocols, Advancements, and Future Directions in Liver Diseases. Magn. Reson. Imaging Clin. N. Am. 2021, 29, 305–320. [Google Scholar] [CrossRef] [PubMed]
- Obmann, V.C.; Mertineit, N.; Berzigotti, A.; Marx, C.; Ebner, L.; Kreis, R.; Vermathen, P.; Heverhagen, J.T.; Christe, A.; Huber, A.T. CT predicts liver fibrosis: Prospective evaluation of morphology- and attenuation-based quantitative scores in routine portal venous abdominal scans. PLoS ONE 2018, 13, e0199611. [Google Scholar] [CrossRef]
- Yoshiji, H.; Nagoshi, S.; Akahane, T.; Asaoka, Y.; Ueno, Y.; Ogawa, K.; Kawaguchi, T.; Kurosaki, M.; Sakaida, I.; Shimizu, M.; et al. Evidence-based clinical practice guidelines for Liver Cirrhosis 2020. J. Gastroenterol. 2021, 56, 593–619. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines on the management of hepatocellular carcinoma. J. Hepatol. 2025, 82, 315–374. [Google Scholar] [CrossRef]
- De Franchis, R.; Bosch, J.; Garcia-Tsao, G.; Reiberger, T.; Ripoll, C.; Abraldes, J.G.; Albillos, A.; Baiges, A.; Bajaj, J.; Bañares, R.; et al. Baveno VII—Renewing consensus in portal hypertension. J. Hepatol. 2022, 76, 959–974. [Google Scholar] [CrossRef]
- Tajiri, T.; Yoshida, H.; Obara, K.; Onji, M.; Kage, M.; Kitano, S.; Kokudo, N.; Kokubu, S.; Sakaida, I.; Sata, M.; et al. General Rules for Recording Endoscopic Findings of Esophagogastric Varices, 2nd ed.; Wiley: Hoboken, NJ, USA, 2010; Volume 22, pp. 1–9. [Google Scholar]
- Villa, E.; Bianchini, M.; Blasi, A.; Denys, A.; Giannini, E.G.; de Gottardi, A.; Lisman, T.; de Raucourt, E.; Ripoll, C.; Rautou, P.E. EASL Clinical Practice Guidelines on prevention and management of bleeding and thrombosis in patients with cirrhosis. J. Hepatol. 2022, 76, 1151–1184. [Google Scholar] [CrossRef]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Qi, X.; Guo, X. Child-Pugh Versus MELD Score for the Assessment of Prognosis in Liver Cirrhosis: A Systematic Review and Meta-Analysis of Observational Studies. Medicine 2016, 95, e2877. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.H.; Lee, S.S.; Yoon, J.S.; Suk, H.I.; Sung, Y.S.; Kim, H.S.; Lee, C.M.; Kim, K.M.; Lee, S.J.; Kim, S.Y. Liver-to-Spleen Volume Ratio Automatically Measured on CT Predicts Decompensation in Patients with B Viral Compensated Cirrhosis. Korean J. Radiol. 2021, 22, 1985–1995. [Google Scholar] [CrossRef]
- Obmann, V.C.; Marx, C.; Hrycyk, J.; Berzigotti, A.; Ebner, L.; Mertineit, N.; Gräni, C.; Heverhagen, J.T.; Christe, A.; Huber, A.T. Liver segmental volume and attenuation ratio (LSVAR) on portal venous CT scans improves the detection of clinically significant liver fibrosis compared to liver segmental volume ratio (LSVR). Abdom. Radiol. 2021, 46, 1912–1921. [Google Scholar] [CrossRef]
- Hothorn, T.; Hornik, K.; Zeileis, A. Unbiased recursive partitioning: A conditional inference framework. J. Comput. Graph. Stat. 2006, 15, 651–674. [Google Scholar] [CrossRef]
- Hothorn, T.; Hornik, K.; Strobl, C.; Zeileis, A. party: A Laboratory for Recursive Partytioning. R Package Version 1.3-13. 2023. Available online: https://CRAN.R-project.org/package=party (accessed on 5 May 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 5 May 2025).
- Scarpellini, E.; Scarlata, G.G.M.; Santori, V.; Scarcella, M.; Kobyliak, N.; Abenavoli, L. Gut Microbiota, Deranged Immunity, and Hepatocellular Carcinoma. Biomedicines 2024, 12, 1797. [Google Scholar] [CrossRef]
- Daher, D.; Seif El Dahan, K.; Yekkaluri, S.; Gopal, P.; Rich, N.E.; Parikh, N.D.; Murphy, C.C.; Singal, A.G. Proportion of Time Covered by Hepatocellular Carcinoma Surveillance in Patients with Cirrhosis. Am. J Gastroenterol. 2024, 119, 875–882. [Google Scholar] [CrossRef]
- Mazzaferro, V.; Bhoori, S.; Sposito, C.; Bongini, M.; Langer, M.; Miceli, R.; Mariani, L. Milan criteria in liver transplantation for hepatocellular carcinoma: An evidence-based analysis of 15 years of experience. Liver Transplant. 2011, 17, S44–S57. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines on liver transplantation. J. Hepatol. 2024, 81, 1040–1086. [Google Scholar] [CrossRef]
- Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol. 2019, 70, 151–171. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef]
- Tan, Y.J. Hepatitis B virus infection and the risk of hepatocellular carcinoma. World J. Gastroenterol. 2011, 17, 4853–4857. [Google Scholar] [CrossRef]
- Attia, A.M.; Rezaee-Zavareh, M.S.; Hwang, S.Y.; Kim, N.; Adetyan, H.; Yalda, T.; Chen, P.J.; Koltsova, E.K.; Yang, J.D. Novel Biomarkers for Early Detection of Hepatocellular Carcinoma. Diagnostics 2024, 14, 2278. [Google Scholar] [CrossRef]
- Oura, K.; Morishita, A.; Tani, J.; Masaki, T. Tumor Immune Microenvironment and Immunosuppressive Therapy in Hepatocellular Carcinoma: A Review. Int. J. Mol. Sci. 2021, 22, 5801. [Google Scholar] [CrossRef]
- Pan, G.Q.; Jiao, Y.; Meng, G.X.; Dong, Z.R.; Li, T. The relationship between the serum lipid profile and hepatocellular carcinoma in east Asian population: A mendelian randomization study. Heliyon 2023, 9, e17126. [Google Scholar] [CrossRef]
- Fang, T.; Long, G.; Mi, X.; Su, W.; Mo, L.; Zhou, L. Splenic Volume, an Easy-To-Use Predictor of HCC Late Recurrence for HCC Patients After Hepatectomy. Front. Oncol. 2022, 12, 876668. [Google Scholar] [CrossRef]
- Takase, K.; Ueno, T.; Matsuki, K.; Todo, M.; Iwasaki, S.; Deguchi, K.; Masahata, K.; Nomura, M.; Watanabe, M.; Kamiyama, M.; et al. Liver-Spleen Volume Ratio as a Predictor of Native Liver Survival in Patients with Biliary Atresia. Transplant. Proc. 2023, 55, 872–877. [Google Scholar] [CrossRef]
- Romero-Cristóbal, M.; Clemente-Sánchez, A.; Ramón, E.; Téllez, L.; Canales, E.; Ortega-Lobete, O.; Velilla-Aparicio, E.; Catalina, M.V.; Ibáñez-Samaniego, L.; Alonso, S.; et al. CT-derived liver and spleen volume accurately diagnose clinically significant portal hypertension in patients with hepatocellular carcinoma. JHEP Rep. 2022, 5, 100645. [Google Scholar] [CrossRef]
- Shah, S.; Shukla, A.; Paunipagar, B. Radiological features of hepatocellular carcinoma. J. Clin. Exp. Hepatol. 2014, 4, S63–S66. [Google Scholar] [CrossRef]
- Zhang, B.H.; Yang, B.H.; Tang, Z.Y. Randomized controlled trial of screening for hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 2004, 130, 417–422. [Google Scholar] [CrossRef]
- Lok, A.S.; Sterling, R.K.; Everhart, J.E.; Wright, E.C.; Hoefs, J.C.; Di Bisceglie, A.M.; Morgan, T.R.; Kim, H.Y.; Lee, W.M.; Bonkovsky, H.L.; et al. Des-gamma-carboxy prothrombin and alpha-fetoprotein as biomarkers for the early detection of hepatocellular carcinoma. Gastroenterology 2010, 138, 493–502. [Google Scholar] [CrossRef]
- Tzartzeva, K.; Obi, J.; Rich, N.E.; Parikh, N.D.; Marrero, J.A.; Yopp, A.; Waljee, A.K.; Singal, A.G. Surveillance Imaging and Alpha Fetoprotein for Early Detection of Hepatocellular Carcinoma in Patients with Cirrhosis: A Meta-analysis. Gastroenterology 2018, 154, 1706–1718.e1. [Google Scholar] [CrossRef]
- Wehrle, C.J.; Hong, H.; Kamath, S.; Schlegel, A.; Fujiki, M.; Hashimoto, K.; Kwon, D.C.H.; Miller, C.; Walsh, R.M.; Aucejo, F. Tumor Mutational Burden from Circulating Tumor DNA Predicts Recurrence of Hepatocellular Carcinoma After Resection: An Emerging Biomarker for Surveillance. Ann. Surg. 2024, 280, 504–513. [Google Scholar] [CrossRef]
- Pearce, H.; Chang, Y.C.; Javitt, M.C.; Datta, J.; Pimentel, A.; Bialick, S.; Hosein, P.J.; Alessandrino, F. ctDNA in the reading room: A guide for radiologists. Eur. J. Radiol. 2024, 181, 111796. [Google Scholar] [CrossRef]
- Watson, R.E.; Yu, L. Safety Considerations in MRI and CT. Continuum 2023, 29, 27–53. [Google Scholar] [CrossRef]
- Najjar, R. Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging. Diagnostics 2023, 13, 2760. [Google Scholar] [CrossRef]
LC + HCC (n = 36) | |
---|---|
Demographic data | |
Age (years), mean ± SD | 62 ± 11 |
Male gender, n (%) | 28 (78) |
Clinical data, n (%) | |
Alcoholic | 17 (47) |
Autoimmune | 1 (3) |
Cryptogenic | 3 (8) |
Dysmetabolic | 8 (22) |
Infective | 8 (22) |
HBV-related | 4 (11) |
HCV-related | 4 (11) |
Mixed | 1 (3) |
Presence of complications | 33 (92) |
Number of complications (mean ± SD) | 2 ± 1 |
Ascites | 26 (72) |
Hepatic encephalopathy | 19 (53) |
Esophageal and gastric varices | 5 (14) |
Esophageal varices F1 | 12 (33) |
Esophageal varices F2 | 7 (19) |
Esophageal varices F3 | 1 (3) |
Gastric varices | 4 (11) |
Hepato-renal syndrome | 5 (14) |
Portal hypertensive gastropathy | 17 (47) |
Portal vein ectasia | 4 (11) |
Portal vein thrombosis | 3 (8) |
Splenomegaly | 22 (61) |
Monofocal HCC | 10 (28) |
Multifocal HCC | 1 (3) |
Size of the nodules (cm), mean ± SD | 4 ± 2 |
Laboratory parameters and scores, mean ± SD | |
Albumin (g/dL) | 4 ± 0.5 |
ALP (UI/L) | 114 ± 54 |
AST (UI/L) | 48 ± 44 |
ALT (UI/L) | 38 ± 61 |
GGT (UI/L) | 88 ± 86 |
AFP (ng/mL) | 232 ± 1356 |
Platelets (103/μL) | 125 ± 66 |
PT (s) | 14 ± 3 |
aPTT (s) | 36 ± 10 |
INR | 1.3 ± 0.4 |
Fibrinogen (mg/dL) | 269 ± 95 |
Creatinine (mg/dL) | 1 ± 0.3 |
Potassium (mmol/L) | 4 ± 0.5 |
Sodium (mmol/L) | 138 ± 4 |
Total bilirubin (mg/dL) | 1.4 ± 0.9 |
Direct bilirubin (mg/dL) | 0.7 ± 0.5 |
Neutrophils (109/L) | 3 ± 1.5 |
Lymphocytes (109/L) | 1 ± 0.5 |
Leucocytes (109/L) | 5 ± 2 |
Monocytes (109/L) | 0.4 ± 0.2 |
Basophils (109/L) | 0.02 ± 0.01 |
Triglycerides (mg/dL) | 109 ± 64 |
Glycemia (mg/dL) | 120 ± 42 |
Total cholesterol (mg/dL) | 132 ± 38 |
HDL (mg/dL) | 42 ± 17 |
LDL (mg/dL) | 76 ± 32 |
Child–Pugh A, n (%) | 12 (33) |
Child–Pugh B, n (%) | 21 (58) |
Child–Pugh C, n (%) | 3 (8) |
MELD score, | 12 ± 4 |
MELD Na | 11 ± 6 |
Liver volume (cm3) | 1500 ± 335 |
Spleen volume (cm3) | 685 ± 437 |
LSVR | 0.5 ± 0.3 |
Liver right-lobe diameter (cm) | 15 ± 1.5 |
Spleen diameter (cm) | 14 ± 3 |
LVCA | 2 ± 1 |
LC (n = 25) | LC + HCC (n = 11) | p-Value | |
---|---|---|---|
Demographic data | |||
Age (years), mean ± SD | 63 ± 12 | 61 ± 10 | 0.535 |
Male gender, n (%) | 18 (72) | 7 (64) | 0.209 |
Clinical data, n (%) | |||
Alcoholic | 12 (48) | 5 (45) | 0.888 |
Autoimmune | 1 (4) | 0 | 0.501 |
Cryptogenic | 2 (8) | 1 (9) | 0.913 |
Dysmetabolic | 7 (28) | 1 (9) | 0.209 |
Infective | 4 (16) | 4 (36) | 0.176 |
HBV-related | 1 (4) | 3 (26) | 0.041 |
HCV-related | 3 (12) | 1 (9) | 0.798 |
Mixed | 1 (4) | 0 | 0.501 |
Presence of complications | 22 (88) | 11 (100) | 0.230 |
Number of complications (mean ± SD) | 2 ± 1 | 3 ± 1 | 0.068 |
Ascites | 17 (68) | 9 (81) | 0.394 |
Hepatic encephalopathy | 13 (52) | 6 (54) | 0.888 |
Esophageal and gastric varices | 1 (4) | 4 (36) | 0.010 |
Esophageal varices F1 | 10 (40) | 2 (18) | 0.201 |
Esophageal varices F2 | 2 (8) | 5 (45) | 0.009 |
Esophageal varices F3 | 1 (4) | 0 | 0.501 |
Gastric varices | 1 (4) | 3 (27) | 0.041 |
Hepato-renal syndrome | 3 (12) | 2 (18) | 0.621 |
Portal hypertensive gastropathy | 11 (44) | 6 (54) | 0.559 |
Portal vein ectasia | 8 (32) | 4 (36) | 0.798 |
Portal vein thrombosis | 1 (4) | 2 (18) | 0.156 |
Splenomegaly | 16 (64) | 6 (54) | 0.592 |
Laboratory parameters and scores, mean ± SD | |||
Albumin (g/dL) | 3.8 ± 0.4 | 3.6 ± 0.7 | 0.239 |
ALP (UI/L) | 111 ± 59 | 121 ± 41 | 0.611 |
AST (UI/L) | 48 ± 51 | 47 ± 23 | 0.372 |
ALT (UI/L) | 42 ± 73 | 29 ± 16 | 0.986 |
GGT (UI/L) | 87 ± 97 | 90 ± 61 | 0.410 |
AFP (ng/mL) | 4 ± 3 | 750 ± 2452 | 0.013 |
Platelets (103/μL) | 140 ± 71 | 91 ± 40 | 0.054 |
PT (s) | 14 ± 3 | 15 ± 3 | 0.249 |
aPTT (s) | 35 ± 9 | 38 ± 11 | 0.352 |
INR | 1.3 ± 0.5 | 1.4 ± 0.2 | 0.126 |
Fibrinogen (mg/dL) | 282 ± 98 | 238 ± 85 | 0.223 |
Creatinine (mg/dL) | 0.9 ± 0.3 | 1 ± 0.4 | 0.409 |
Potassium (mmol/L) | 4 ± 0.6 | 4 ± 05 | 0.334 |
Sodium (mmol/L) | 138 ± 4 | 137 ± 3 | 0.277 |
Total bilirubin (mg/dL) | 1.4 ± 1 | 1.5 ± 1 | 0.503 |
Direct bilirubin (mg/dL) | 0.6 ± 0.5 | 0.7 ± 0.4 | 0.488 |
Neutrophils (109/L) | 4 ± 1.3 | 3 ± 1.8 | 0.106 |
Lymphocytes (109/L) | 1.3 ± 0.5 | 0.9 ± 0.5 | 0.030 |
Leucocytes (109/L) | 6 ± 1.6 | 4 ± 1.9 | 0.024 |
Monocytes (109/L) | 0.4 ± 0.2 | 0.3 ± 0.1 | 0.026 |
Basophils (109/L) | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.165 |
Triglycerides (mg/dL) | 121 ± 74 | 83 ± 21 | 0.057 |
Glycemia (mg/dL) | 113 ± 29 | 134 ± 62 | 0.594 |
Total cholesterol (mg/dL) | 140 ± 40 | 113 ± 23 | 0.043 |
HDL (mg/dL) | 44 ± 18 | 38 ± 17 | 0.341 |
LDL (mg/dL) | 84 ± 32 | 60 ± 26 | 0.035 |
Child–Pugh A, n (%) | 10 (40) | 2 (18) | 0.435 |
Child–Pugh B, n (%) | 13 (52) | 8 (72) | |
Child–Pugh C, n (%) | 2 (8) | 1 (9) | |
MELD score, | 11 ± 4 | 13 ± 4 | 0.204 |
MELD Na | 10 ± 6 | 13 ± 5 | 0.133 |
Liver volume (cm3) | 1461 ± 337 | 1585 ± 328 | 0.314 |
Spleen volume (cm3) | 507 ± 211 | 1088 ± 552 | <0.001 |
LSVR | 0.4 ± 0.2 | 0.7 ± 0.3 | <0.001 |
Liver right lobe diameter (cm) | 15 ± 1.5 | 15 ± 1.5 | 0.694 |
Spleen diameter (cm) | 12 ± 2 | 17 ± 3 | <0.001 |
LVCA | 1.3 ± 0.5 | 3 ± 0.8 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abenavoli, L.; Scarlata, G.G.M.; Gambardella, M.L.; Battaglia, C.; Borelli, M.; Manti, F.; Laganà, D. Combined Model for the Diagnosis of Hepatocellular Carcinoma: A Pilot Study Comparing the Liver to Spleen Volume Ratio and Liver Vein to Cava Attenuation. J. Clin. Med. 2025, 14, 4306. https://doi.org/10.3390/jcm14124306
Abenavoli L, Scarlata GGM, Gambardella ML, Battaglia C, Borelli M, Manti F, Laganà D. Combined Model for the Diagnosis of Hepatocellular Carcinoma: A Pilot Study Comparing the Liver to Spleen Volume Ratio and Liver Vein to Cava Attenuation. Journal of Clinical Medicine. 2025; 14(12):4306. https://doi.org/10.3390/jcm14124306
Chicago/Turabian StyleAbenavoli, Ludovico, Giuseppe Guido Maria Scarlata, Maria Luisa Gambardella, Caterina Battaglia, Massimo Borelli, Francesco Manti, and Domenico Laganà. 2025. "Combined Model for the Diagnosis of Hepatocellular Carcinoma: A Pilot Study Comparing the Liver to Spleen Volume Ratio and Liver Vein to Cava Attenuation" Journal of Clinical Medicine 14, no. 12: 4306. https://doi.org/10.3390/jcm14124306
APA StyleAbenavoli, L., Scarlata, G. G. M., Gambardella, M. L., Battaglia, C., Borelli, M., Manti, F., & Laganà, D. (2025). Combined Model for the Diagnosis of Hepatocellular Carcinoma: A Pilot Study Comparing the Liver to Spleen Volume Ratio and Liver Vein to Cava Attenuation. Journal of Clinical Medicine, 14(12), 4306. https://doi.org/10.3390/jcm14124306