Surgical Timing and Outcomes in Esophageal Cancer: Insights from One- and Two-Stage Esophagectomies in a Polish Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Collection
2.2. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AC | Adenocarcinoma |
AL | Anastomotic Leaks |
ARDS | Acute Respiratory Distress Syndrome |
CRT | Chemoradiotherapy |
CT | Computed Tomography |
EC | Esophageal Cancer |
Gy | Gray |
HER2 | Human Epidermal Growth Factor Receptor 2 |
PET | Positron Emission Tomography |
SCC | Squamous Cell Carcinoma |
References
- Smyth, E.C.; Lagergren, J.; Fitzgerald, R.C.; Lordick, F.; Shah, M.A.; Lagergren, P.; Cunningham, D. Oesophageal cancer. Nat. Rev. Dis. Primers 2017, 3, 17048. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Lagergren, J.; Smyth, E.; Cunningham, D.; Lagergren, P. Oesophageal cancer. Lancet 2017, 390, 2383–2396. [Google Scholar] [CrossRef] [PubMed]
- Gavin, A.T.; Francisci, S.; Foschi, R.; Donnelly, D.W.; Lemmens, V.; Brenner, H.; Anderson, L.A.; EUROCARE-4 Working Group. Oesophageal cancer survival in Europe: A EUROCARE-4 study. Cancer Epidemiol. 2012, 36, 505–512. [Google Scholar] [CrossRef]
- Li, J.; Xu, J.; Zheng, Y.; Gao, Y.; He, S.; Li, H.; Zou, K.; Li, N.; Tian, J.; Chen, W.; et al. Esophageal cancer: Epidemiology, risk factors and screening. Chin. J. Cancer Res. 2021, 33, 535–547. [Google Scholar] [CrossRef]
- Sheikh, M.; Roshandel, G.; McCormack, V.; Malekzadeh, R. Current Status and Future Prospects for Esophageal Cancer. Cancers 2023, 15, 765. [Google Scholar] [CrossRef]
- Falk, G.W. Risk factors for esophageal cancer development. Surg. Oncol. Clin. N. Am. 2009, 18, 469–485. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.; Soerjomataram, I.; Rumgay, H.; Coleman, H.G.; Thrift, A.P.; Vignat, J.; Laversanne, M.; Ferlay, J.; Arnold, M. The Global Landscape of Esophageal Squamous Cell Carcinoma and Esophageal Adenocarcinoma Incidence and Mortality in 2020 and Projections to 2040: New Estimates From GLOBOCAN 2020. Gastroenterology 2022, 163, 649–658. [Google Scholar] [CrossRef]
- Coleman, H.G.; Xie, S.H.; Lagergren, J. The Epidemiology of Esophageal Adenocarcinoma. Gastroenterology 2018, 154, 390–405. [Google Scholar] [CrossRef]
- Kang, X.; Chen, K.; Li, Y.; Li, J.; D’Amico, T.A.; Chen, X. Personalized targeted therapy for esophageal squamous cell carcinoma. World J. Gastroenterol. 2015, 21, 7648–7658. [Google Scholar] [CrossRef]
- Baxter, M.A.; Middleton, F.; Cagney, H.P.; Petty, R.D. Resistance to immune checkpoint inhibitors in advanced gastro-oesophageal cancers. Br. J. Cancer 2021, 125, 1068–1079. [Google Scholar] [CrossRef] [PubMed]
- Moughnyeh, M.M.; Green, M.; Katuwal, B.; Hammoud, Z.T. Current landscape of immunotherapy in esophageal cancer: A literature review. J. Thorac. Dis. 2024, 16, 8807–8814. [Google Scholar] [CrossRef]
- Kalata, S.; Singh, B.; Graham, N.; Fan, Z.; Chang, A.C.; Lynch, W.R.; Lagisetty, K.H.; Lin, J.; Yeung, J.; Reddy, R.M.; et al. Epidemiology of Postoperative Complications After Esophagectomy: Implications for Management. Ann. Thorac. Surg. 2023, 116, 1168–1175. [Google Scholar] [CrossRef]
- Bhayani, N.H.; Gupta, A.; Dunst, C.M.; Kurian, A.A.; Reavis, K.M.; Swanström, L.L. Esophagectomies with thoracic incisions carry increased pulmonary morbidity. JAMA Surg. 2013, 148, 733–738. [Google Scholar] [CrossRef]
- Merkow, R.P.; Bilimoria, K.Y.; McCarter, M.D.; Phillips, J.D.; DeCamp, M.M.; Sherman, K.L.; Ko, C.Y.; Bentrem, D.J. Short-term outcomes after esophagectomy at 164 American College of Surgeons National Surgical Quality Improvement Program hospitals: Effect of operative approach and hospital-level variation. Arch. Surg. 2012, 147, 1009–1016. [Google Scholar] [CrossRef]
- Sun, Z.W.; Du, H.; Li, J.-R.; Qin, H.-Y. Constructing a risk prediction model for anastomotic leakage after esophageal cancer resection. J. Int. Med. Res. 2020, 48, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lofgren, A.; Akesson, O.; Johansson, J.; Persson, J. Hospital costs and health-related quality of life from complications after esophagectomy. Eur. J. Surg. Oncol. 2021, 47, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Veziant, J.; Gaillard, M.; Barat, M.; Dohan, A.; Barret, M. Imaging of postoperative complications following Ivor-Lewis esophagectomy. Diagn. Interv. Imaging 2022, 103, 67–78. [Google Scholar] [CrossRef]
- Ozawa, S.; Koyanagi, K.; Ninomiya, Y.; Yatabe, K.; Higuchi, T. Postoperative complications of minimally invasive esophagectomy for esophageal cancer. Ann. Gastroenterol. Surg. 2020, 4, 126–134. [Google Scholar] [CrossRef]
- Cheng, Z.; Johar, A.; Nilsson, M.; Lagergren, P. Cancer-Related Fatigue After Esophageal Cancer Surgery: Impact of Postoperative Complications. Ann. Surg. Oncol. 2022, 29, 2842–2851. [Google Scholar] [CrossRef]
- Fabbi, M.; Hagens, E.R.C.; Henegouwen, M.I.; Gisbertz, S.S. Anastomotic leakage after esophagectomy for esophageal cancer: Definitions, diagnostics, and treatment. Dis. Esophagus 2021, 34, doaa039. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Gu, J.; Ou, Y.; Li, Y.; Chen, Y.; Ge, D.; Lu, C. The effect of a novel slow-flow irrigation drainage tube on anastomotic leakage and empyema after the resection of esophageal or gastroesophageal junction cancer. Ann. Palliat. Med. 2021, 10, 1560–1568. [Google Scholar] [CrossRef]
- Huang, F.-L.; Yu, S.-J. Esophageal cancer: Risk factors, genetic association, and treatment. Asian J. Surg. 2018, 41, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Otake, R.; Kozuki, R.; Toihata, T.; Takahashi, K.; Okamura, A.; Imamura, Y. Recent progress in multidisciplinary treatment for patients with esophageal cancer. Surg. Today 2020, 50, 12–20. [Google Scholar] [CrossRef]
- Yang, Y.-H.; Park, S.Y.; Kim, D.J. Chyle Leakage after Esophageal Cancer Surgery. Korean J. Thorac. Cardiovasc. Surg. 2020, 53, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.W.; Kim, J.J.; Cho, D.G.; Park, J.K. Early detection of complications: Anastomotic leakage. J. Thorac. Dis. 2019, 11 (Suppl. 5), S805–S811. [Google Scholar] [CrossRef]
- Deng, W.; Lin, S.H. Advances in radiotherapy for esophageal cancer. Ann. Transl. Med. 2018, 6, 79. [Google Scholar] [CrossRef]
- Verstegen, M.; Slaman, A.; Klarenbeek, B.; van Berge Henegouwen, M.; Gisbertz, S.S.; Rosman, C. Outcomes of Patients with Anastomotic Leakage After Transhiatal, McKeown or Ivor Lewis Esophagectomy: A Nationwide Cohort Study. World J. Surg. 2021, 45, 3341–3349. [Google Scholar] [CrossRef]
- Verstegen, M.; Bouwense, S.; Workum, F.; Broek, R.; Siersema, P.; Rovers, M.; Rosman, C. Managment of intrathoracic and cervical anastomotic leakage after esophagectomy for esophageal cancer: A systematic review. World J. Emerg. Surg. 2019, 14, 17. [Google Scholar] [CrossRef]
- Vetter, D.; Gutschow, C.A. Strategies to prevent anastomotic leakage after esophagectomy and gastric conduit reconstruction. Langenbecks Arch. Surg. 2020, 405, 1069–1077. [Google Scholar] [CrossRef]
- Wang, W.; Yu, Y.; Sun, H.; Wang, Z.; Zheng, Y.; Liang, G.; Chen, P.; Cheng, J.; Xu, X.; Yang, F.; et al. Predictive model of postoperative pneumonia after neoadjuvant immunochemotherapy for esophageal cancer. J. Gastrointest. Oncol. 2022, 13, 488–498. [Google Scholar] [CrossRef] [PubMed]
- Tabola, R.; Augoff, K.; Lewandowski, A.; Ziolkowski, P.; Szelachowski, P.; Grabowski, K. Esophageal anastomosis—How the granulation phase of wound healing improves the incidence of anastomotic leakage. Oncol. Lett. 2016, 12, 2038–2044. [Google Scholar] [CrossRef]
- Chang, A.C.; Lee, J.S. Resection for Esophageal Cancer in the Elderly. Thorac. Surg. Clin. 2009, 19, 333–343. [Google Scholar] [CrossRef]
- Mann, C.; Berlth, F.; Hadzijusufovic, E.; Lang, H.; Grimminger, P.P. Minimally invasive esophagectomy: Clinical evidence and surgical techniques. Langenbecks Arch. Surg. 2020, 405, 1061–1067. [Google Scholar] [CrossRef]
- Mao, Y.; Gao, S.; Li, Y.; Chen, C.; Hao, A.; Wang, Q.; Tan, L.; Ma, J.; Xiao, G.; Fu, X.; et al. Minimally invasive versus open esophagectomy for resectable thoracic esophageal cancer (NST 1502): A multicenter prospective cohort study. J. Natl. Cancer Cent. 2023, 3, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; He, M.; Zhao, J.; Ma, M.; Gao, Z. Distal-continual colon interposition for esophageal reconstruction after esophagectomy: Two case reports. Front. Surg. 2023, 10, 1098583. [Google Scholar] [CrossRef] [PubMed]
- Poghosyan, T.; Gaujoux, S.; Chirica, M.; Munoz-Bongrand, N.; Sarfati, E.; Cattan, P. Functional disorders and quality of life after esophagectomy and gastric tube reconstruction for cancer. J. Visc. Surg. 2011, 148, 327–335. [Google Scholar] [CrossRef]
- Zhang, B.; Najarali, Z.; Ruo, L.; Alhusaini, A.; Solis, N.; Valencia, M.; Sanchez, M.I.P.; Serrano, P.E. Effect of Perioperative Nutritional Supplementation on Postoperative Complications-Systematic Review and Meta-Analysis. J. Gastrointest. Surg. 2019, 23, 1682–1693. [Google Scholar] [CrossRef]
- Schwartz, J.; Parsey, D.; Mundangepfupfu, T.; Tsang, S.; Pranaat, R.; Wilson, J.; Papadakos, P. Pre-operative patient optimization to prevent postoperative pulmonary complications-Insights and roles for the respiratory therapist: A narrative review. Can. J. Respir. Ther. 2020, 56, 79–85. [Google Scholar] [CrossRef]
- Lakananurak, N.; Gramlich, L. The Role of Preoperative Parenteral Nutrition. Nutrients 2020, 12, 1320. [Google Scholar] [CrossRef]
Characteristic | Females (N = 19; 31.1%) | Males (N = 42; 68.9%) | All Patients (N = 61; 100%) | |
---|---|---|---|---|
Age (Mean ± SD) | 59.9 ± 10.3 | 60.5 ± 7.4 | 60.3 ± 8.4 | |
Median age (Q1, Q3) | 60 (57, 66) | 60 (56, 66) | 60 (57, 66) | |
Tumor histopathology | AC | 0 (0%) | 8 (13.1%) | 8 (13.1%) |
SCC | 19 (31.1%) | 34 (55.7%) | 53 (86.9%) | |
Surgical approaches | IL | 5 (8.2%) | 8 (13.1%) | 13 (21.3%) |
TSR | 14 (22.9%) | 34 (55.7%) | 48 (78.7%) | |
Preoperative chemoradiotherapy | Yes | 4 (6.6%) | 18 (29.5%) | 22 (36.1%) |
No | 15 (25.0%) | 24 (39.3%) | 39 (63.9%) | |
Radicality of resection | R0 | 19 (31.1%) | 35 (57.4%) | 54 (88.5%) |
R1 | 0 (0%) | 7 (11.5%) | 7 (11.5%) | |
Age subgroups (years) | <59 | 6 (9.8%) | 16 (26.2%) | 22 (36.1%) |
59–64 | 7 (11.5%) | 11 (18.0%) | 18 (29.5%) | |
>64 | 6 (9.8%) | 15 (53.4%) | 21 (34.4%) | |
Clinical stage of the disease prior to treatment (Staging before CRT) | I | 13 (21.3%) | 15 (25.0%) | 28 (46.0%) |
II | 1 (1.6%) | 10 (16.4%) | 11 (18.0%) | |
III | 5 (8.2%) | 15 (25.0%) | 20 (32.8%) | |
IV | 0 (0%) | 1 (1.6%) | 1 (1.6%) | |
Clinical stage of the disease during surgery (Restaging, after CRT) | 0 | 2 (3.3%) | 10 (16.4%) | 12 (19.7%) |
I | 12 (19.7%) | 10 (16.4%) | 22 (36.1%) | |
II | 1 (1.6%) | 6 (24.0%) | 7 (11.5%) | |
III | 4 (6.6%) | 14 (23.0%) | 18 (30.0%) | |
IV | 0 (0%) | 2 (3.3%) | 2 (3.3%) | |
Cancer cells in postoperative specimens? | No | 2 (3.3%) | 10 (16.4%) | 12 (20.0%) |
Yes | 17 (27.9%) | 32 (52.5%) | 53 (80.0%) | |
Occurrence of postoperative complications? | No | 15 (25.0%) | 31 (50.8%) | 46 (75.4%) |
Yes | 4 (6.6%) | 11 (18.0%) | 15 (24.6%) | |
Histological grade of malignancy | G0 | 2 (3.3%) | 10 (16.4%) | 12 (19.7%) |
G1 | 4 (6.6%) | 6 (9.8%) | 10 (16.4%) | |
G2 | 11 (18.0%) | 19 (31.1%) | 30 (49.2%) | |
G3 | 2 (3.3%) | 7 (11.5%) | 9 (14.8%) |
Type of Complication | Number & Percentage (of All Complications) | Percentage (of All Procedures Performed) |
---|---|---|
Pneumonia | 4; 22.2% | 6.6% |
Delirium | 1; 5.6% | 1.6% |
Hemothorax | 5; 27.8% | 8.2% |
Pyloric mucosal bleeding following pyloroplasty | 1; 5.6% | 1.6% |
Pneumothorax | 2; 11.1% | 3.3% |
Postoperative wound hematoma and infection | 1; 5.6% | 1.6% |
Anastomotic leakage | 4; 22.2% | 6.6% |
Characteristic | Number of Patients | Number and Percentage of Patients with Complications | Chi-Squared Test, p-Value |
---|---|---|---|
Tumor histopathology | AC, N = 8 | 2; 25% | p = 0.681 |
SCC, N = 53 | 13; 24.5% | ||
Sex | Females, N = 19 | 4; 21.1% | p = 0.752 |
Males, N = 42 | 11; 26.2% | ||
Surgical approach | Ivor Lewis, N = 13 | 4; 30.8% | p = 0.826 |
First stage of two-stage resection, N = 48 | 11; 22.9% | ||
Radicality of resection | R0, N = 54 | 13; 24.1% | p = 0.836 |
R1, N = 7 | 2; 28.6% | ||
Age (years) | <59, N = 22 | 5; 22.7% | p = 0.469 |
59–64, N = 18 | 3; 16.7% | ||
>64, N = 21 | 7; 33.3% | ||
Clinical stage of the disease prior to treatment (Staging) | I, N = 29 | 7; 24.1% | p = 0.948 |
II, N = 11 | 3; 27.3% | ||
III, N = 20 | 5; 25% | ||
IV, N = 1 | 0; 0% | ||
Clinical stage of the disease during surgery (Restaging) | 0, N = 12 | 8; 66.7% | p = 0.004 |
I, N = 22 | 2; 9.1% | ||
II, N = 7 | 11; 14.3% | ||
III, N = 18 | 4; 22.2% | ||
IV, N = 2 | 0; 0% | ||
Grading | 0, N = 12 | 8; 66.6% | p = 0.002 |
I, N = 10 | 2; 20% | ||
II, N = 30 | 4; 13.3% | ||
III, N = 9 | 1; 11.1% | ||
Change in disease stage | Worsening, N = 1 | 0; 0% | p = 0.001 |
No change, N = 40 | 4; 10% | ||
Improvement, N = 20 | 11; 55% | ||
Use of preoperative chemoradiotherapy | Yes, N = 22 | 11; 50% | p = 0.002 |
No, N = 39 | 4; 10.6% | ||
Presence of cancer cells in the postoperative specimen | Yes, N = 49 | 7; 14.3% | p = 0.001 |
No, N = 12 | 8; 66.7% |
Type of Reconstruction | Number of Procedures Performed; % | Number of Anastomotic Leaks; % | Leak at the Cervical Anastomosis; % | Leak at the Lower Anastomosis; % |
---|---|---|---|---|
Using the distal ileum and right colon | 26; 68.4% | 6; 15.8% | 6; 15.8% | 0; 0% |
Using the right colon alone | 8; 21.1% | 3; 7.9% | 2; 5.3% | 1; 2.6% |
Using the left colon alone | 1; 2.6% | 0; 0% | 0; 0% | 0; 0% |
Using the jejunum alone | 3; 7.9% | 1; 2.6% | 1; 2.6% | 0; 0% |
Total | 38; 100% | 10; 26.3% | 9; 23.7% | 1; 2.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strzelec, B.; Chmielewski, P.P.; Kielan, W.; Rudno-Rudzińska, J. Surgical Timing and Outcomes in Esophageal Cancer: Insights from One- and Two-Stage Esophagectomies in a Polish Cohort. J. Clin. Med. 2025, 14, 4301. https://doi.org/10.3390/jcm14124301
Strzelec B, Chmielewski PP, Kielan W, Rudno-Rudzińska J. Surgical Timing and Outcomes in Esophageal Cancer: Insights from One- and Two-Stage Esophagectomies in a Polish Cohort. Journal of Clinical Medicine. 2025; 14(12):4301. https://doi.org/10.3390/jcm14124301
Chicago/Turabian StyleStrzelec, Bartłomiej, Piotr Paweł Chmielewski, Wojciech Kielan, and Julia Rudno-Rudzińska. 2025. "Surgical Timing and Outcomes in Esophageal Cancer: Insights from One- and Two-Stage Esophagectomies in a Polish Cohort" Journal of Clinical Medicine 14, no. 12: 4301. https://doi.org/10.3390/jcm14124301
APA StyleStrzelec, B., Chmielewski, P. P., Kielan, W., & Rudno-Rudzińska, J. (2025). Surgical Timing and Outcomes in Esophageal Cancer: Insights from One- and Two-Stage Esophagectomies in a Polish Cohort. Journal of Clinical Medicine, 14(12), 4301. https://doi.org/10.3390/jcm14124301