Population-Based Analysis of Vaccination Status and Post-Vaccination Adverse Events in Adults Aged 55 and Older
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measures
2.3. Statistical Analysis
3. Results
4. Discussion
Study Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AEFI | Adverse Events Following Immunization |
CDC | Centers for Disease Control and Prevention |
COVID-19 | Coronavirus Disease 2019 |
ECDC | European Centre for Disease Prevention and Control |
IAGG | International Association of Gerontology and Geriatrics |
IFA | International Federation on Ageing |
MMSE | Mini Mental State Examination |
NOP | Niepożądany Odczyn Poszczepienny (Adverse Post-Vaccination Reaction) |
WHO | World Health Organization |
PQStat | Polish Statistical Software for Data Analysis |
U3A | University of the Third Age |
References
- Goodwin, K.; Viboud, C.; Simonsen, L. Antibody response to influenza vaccination in the elderly: A quantitative review. Vaccine 2006, 24, 1159–1169. [Google Scholar] [CrossRef] [PubMed]
- Ciabattini, A.; Nardini, C.; Santoro, F.; Garagnani, P.; Franceschi, C.; Medaglini, D. Vaccination in the elderly: The challenge of immune changes with aging. Semin. Immunol. 2018, 40, 83–94. [Google Scholar] [CrossRef]
- MacDonald, N.E. Vaccine hesitancy: Definition, scope and determinants. Vaccine 2015, 33, 4161–4164. [Google Scholar] [CrossRef] [PubMed]
- Dubé, E.; Laberge, C.; Guay, M.; Bramadat, P.; Roy, R.; Bettinger, J.A. Vaccine hesitancy. Hum. Vaccines Immunother. 2013, 9, 1763–1773. [Google Scholar] [CrossRef]
- Ten Health Issues WHO Will Tackle This Year. Available online: https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019 (accessed on 4 May 2025).
- Gao, Y.; Guyatt, G.; Uyeki, T.M.; Liu, M.; Chen, Y.; Zhao, Y.; Shen, Y.; Xu, J.; Zheng, Q.; Li, Z.; et al. Antivirals for Treatment of Severe Influenza: A Systematic Review and Network Meta-Analysis of Randomised Con-Trolled Trials. Lancet 2024, 404, 753–763. Available online: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(24)01307-2/fulltext (accessed on 4 May 2025).
- Hansen, C.L.; Chaves, S.S.; Demont, C.; Viboud, C. Mortality Associated With Influenza and Respiratory Syncytial Virus in the US, 1999–2018. JAMA Netw. Open 2022, 5, e220527. [Google Scholar] [CrossRef]
- Seasonal Influenza Vaccination and Antiviral Use in EU/EEA Member States. Available online: https://www.ecdc.europa.eu/en/publications-data/seasonal-influenza-vaccination-antiviral-use-eu-eea-member-states (accessed on 4 May 2025).
- Pilishvili, T.; Bennett, N.M. Pneumococcal disease prevention among adults: Strategies for the use of pneumococcal vaccines. Vaccine 2015, 33, D60–D65. [Google Scholar] [CrossRef]
- Drijkoningen, J.J.C.; Rohde, G.G.U. Pneumococcal Infection in Adults: Burden of Disease. Clin. Microbiol. Infect. 2014, 20, 45–51. Available online: https://www.clinicalmicrobiologyandinfection.com/article/S1198-743X(14)60175-0/fulltext (accessed on 4 May 2025).
- Pneumococcal Disease. Available online: https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/norms-and-standards/vaccine-standardization/pneumococcal-disease (accessed on 4 May 2025).
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Onder, G.; Rezza, G.; Brusaferro, S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA 2020, 323, 1775–1776. [Google Scholar] [CrossRef]
- Czapla, M.; Juárez-Vela, R.; Gea-Caballero, V.; Zieliński, S.; Zielińska, M. The Association between Nutritional Status and In-Hospital Mortality of COVID-19 in Critically-Ill Patients in the ICU. Nutrients 2021, 13, 3302. [Google Scholar] [CrossRef]
- Haas, E.J.; Angulo, F.J.; McLaughlin, J.M.; Anis, E.; Singer, S.R.; Khan, F.; Brooks, N.; Smaja, M.; Mircus, G.; Pan, K.; et al. Impact and Effectiveness of mRNA BNT162b2 Vaccine Against SARS-CoV-2 Infections and COVID-19 Cases, Hospi-Talisations, and Deaths Following a Nationwide Vaccination Campaign in Israel: An Observational Study Using Na-Tional Surveillance Data. Lancet 2021, 397, 1819–1829. Available online: https://www.thelancet.com/article/S0140-6736(21)00947-8/fulltext (accessed on 4 May 2025).
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Marc, G.P.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Loubet, P.; Kernéis, S.; Groh, M.; Loulergue, P.; Blanche, P.; Verger, P.; Launay, O. Attitude, knowledge and factors associated with influenza and pneumococcal vaccine uptake in a large cohort of patients with secondary immune deficiency. Vaccine 2015, 33, 3703–3708. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P.; Rauber, D.; Betsch, C.; Lidolt, G.; Denker, M.-L. Barriers of Influenza Vaccination Intention and Behavior—A Systematic Review of Influenza Vaccine Hesitancy, 2005–2016. PLoS ONE 2017, 12, e0170550. [Google Scholar] [CrossRef] [PubMed]
- Michel, J.-P.; Chidiac, C.; Grubeck-Loebenstein, B.; Johnson, R.W.; Lambert, P.H.; Maggi, S.; Moulias, R.; Nicholson, K.; Werner, H. Coalition of advocates to vaccinate of Western European citizens aged 60 years and older. Aging Clin. Exp. Res. 2013, 21, 254–257. [Google Scholar] [CrossRef]
- Klein, S.L.; Pekosz, A. Sex-based Biology and the Rational Design of Influenza Vaccination Strategies. J. Infect. Dis. 2014, 209, S114–S119. [Google Scholar] [CrossRef]
- Flanagan, K.L.; Fink, A.L.; Plebanski, M.; Klein, S.L. Sex and Gender Differences in the Outcomes of Vaccination over the Life Course. Annu. Rev. Cell Dev. Biol. 2017, 33, 577–599. [Google Scholar] [CrossRef]
- Andrew, M.K.; McElhaney, J.E. Age and frailty in COVID-19 vaccine development. Lancet Lond. Engl. 2021, 396, 1942–1944. [Google Scholar] [CrossRef]
- Jasiński, K.; Oleksa, P.; Żuraw, D.; Sobczyk, M.; Porzak, M.; Sodolska, A.; Pawłowski, B. The effectiveness of the immune-boosting preparations in prevention and treatment of respiratory infections. Prospect. Pharm. Sci. 2024, 22, 186–197. [Google Scholar] [CrossRef]
- Nitsch-Osuch, A.; Brydak, L.B. Szczepienia przeciwko grypie u personelu medycznego. Med. Pracy Workers’ Health Saf. 2014, 64, 119–129. [Google Scholar] [CrossRef]
- Gorecka, A.; Gorecka, D.; Zaremba, B.; Wieteska, M.; Urbańska, K. Public knowledge on influenza and influenza vaccines. J. Educ. Health Sport 2021, 11, 209–214. [Google Scholar] [CrossRef]
- Hervé, C.; Laupèze, B.; Del Giudice, G.; Didierlaurent, A.M.; Tavares Da Silva, F. The how’s and what’s of vaccine reactogenicity. Npj Vaccines 2019, 4, 39. [Google Scholar] [CrossRef]
- Gruber, M.F.; Marshall, V.B. Regulation and Testing of Vaccines. Plotkins Vaccines 2018, 1547–1565.e2. [Google Scholar] [CrossRef]
- Eiden, A.L.; Barratt, J.; Nyaku, M.K. A review of factors influencing vaccination policies and programs for older adults globally. Hum. Vaccines Immunother. 2023, 19, 2157164. Available online: https://www.tandfonline.com/doi/abs/10.1080/21645515.2022.2157164 (accessed on 4 May 2025). [CrossRef]
- Rizzo, C.; Rezza, G.; Ricciardi, W. Strategies in recommending influenza vaccination in Europe and US. Hum. Vaccines Immunother. 2018, 14, 693–698. [Google Scholar] [CrossRef]
- Weinberger, B. Vaccines for the elderly: Current use and future challenges. Immun. Ageing 2018, 15, 3. [Google Scholar] [CrossRef] [PubMed]
- Domnich, A.; Arata, L.; Amicizia, D.; Puig-Barberà, J.; Gasparini, R.; Panatto, D. Effectiveness of MF59-adjuvanted seasonal influenza vaccine in the elderly: A systematic review and meta-analysis. Vaccine 2017, 35, 513–520. [Google Scholar] [CrossRef]
- Statystyka | Plock.eu. Available online: https://nowy.plock.eu/statystyka/ (accessed on 8 June 2025).
- Stańczak, J. MMSE Polish Standardization; Laboratory of Psychological Tests of the Polish Psychological Association: Warsaw, Poland, 2010. [Google Scholar]
- Jędrzejczyk, M.; Lee, C.S.; Vellone, E.; Gozdzik, A.; Szczepanowski, R.; Czapla, M.; Uchmanowicz, I. Analysis of changes in mental health, cognitive function and self-care behaviors in patients with heart failure: A prospective cohort study. Adv. Clin. Exp. Med. 2025. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.; Kislaya, I.; Rodrigues, A.P.; Sequeira, D.; Lima, J.; Cruz, C.; Leite, P.P.; Matias Dias, C.; Nunes, B. COVID-19 vaccine effectiveness against symptomatic SARS-CoV-2 infections, COVID-19 related hospitalizations and deaths, among individuals aged ≥ 65 years in Portugal: A cohort study based on data-linkage of national registries February-September 2021. PLoS ONE 2022, 17, e0274008. [Google Scholar] [CrossRef]
- Barratt, J. Vaccinations for older adults. Bull. World Health Organ. 2022, 100, 359. [Google Scholar] [CrossRef] [PubMed]
- Zintel, S.; Flock, C.; Arbogast, A.L.; Forster, A.; von Wagner, C.; Sieverding, M. Gender differences in the intention to get vaccinated against COVID-19: A systematic review and meta-analysis. J. Public Health 2022, 31, 1303–1327. [Google Scholar] [CrossRef]
- Delpech, R.; Bloy, G.; Panjo, H.; Falcoff, H.; Ringa, V.; Rigal, L. Physicians’ preventive practices: More frequently performed for male patients and by female physicians. BMC Health Serv. Res. 2020, 20, 331. [Google Scholar] [CrossRef]
- Ferreira-da-Silva, R.; Lobo, M.F.; Pereira, A.M.; Morato, M.; Polónia, J.J.; Ribeiro-Vaz, I. Frontiers | Network analysis of adverse event patterns following immunization with mRNA COVID-19 vaccines: Real-world data from the European pharmacovigilance database EudraVigilance. Front. Med. 2025, 12, 1501921. [Google Scholar] [CrossRef]
- Zaher, K.; Basingab, F.; Alrahimi, J.; Basahel, K.; Aldahlawi, A. Gender Differences in Response to COVID-19 Infection and Vaccination. Biomedicines 2023, 11, 1677. [Google Scholar] [CrossRef]
- Jensen, A.; Stromme, M.; Moyassari, S.; Chadha, A.S.; Tartaglia, M.C.; Szoeke, C.; Ferretti, M.T. COVID-19 vaccines: Considering sex differences in efficacy and safety. Contemp. Clin. Trials 2022, 115, 106700. [Google Scholar] [CrossRef]
- Klein, S.L.; Morgan, R. The impact of sex and gender on immunotherapy outcomes. Biol. Sex Differ. 2020, 11, 24. [Google Scholar] [CrossRef]
- Raciborski, F.; Samel-Kowalik, P.; Gujski, M.; Pinkas, J.; Arcimowicz, M.; Jankowski, M. Factors Associated with a Lack of Willingness to Vaccinate against COVID-19 in Poland: A 2021 Nationwide Cross-Sectional Survey. Vaccines 2021, 9, 1000. [Google Scholar] [CrossRef]
- Yaamika, H.; Muralidas, D.; Elumalai, K. Review of adverse events associated with COVID-19 vaccines, highlighting their frequencies and reported cases. J. Taibah Univ. Med. Sci. 2023, 18, 1646–1661. [Google Scholar] [CrossRef]
- Xu, K.; Wang, Z.; Qin, M.; Gao, Y.; Luo, N.; Xie, W.; Zou, Y.; Wang, J.; Ma, X. A systematic review and meta-analysis of the effectiveness and safety of COVID-19 vaccination in older adults. Front. Immunol. 2023, 14, 1113156. [Google Scholar] [CrossRef]
- Soiza, R.L.; Scicluna, C.; Thomson, E.C. Efficacy and safety of COVID-19 vaccines in older people. Age Ageing 2021, 50, 279–283. [Google Scholar] [CrossRef]
- St. Clair, L.A.; Chaulagain, S.; Klein, S.L.; Benn, C.S.; Flanagan, K.L. Sex-Differential and Non-specific Effects of Vaccines Over the Life Course. Curr. Top. Microbiol. Immunol. 2023, 441, 225–251. [CrossRef]
- Nowak, G.J.; Gellin, B.G.; MacDonald, N.E.; Butler, R. Addressing vaccine hesitancy: The potential value of commercial and social marketing principles and practices. Vaccine 2015, 33, 4204–4211. [Google Scholar] [CrossRef]
Variable | Category | N | % | Mean Age | SD | Min | Max | Med. | Q25 | Q75 | p |
---|---|---|---|---|---|---|---|---|---|---|---|
Sex | Female | 1406 | 68.90% | 64.8 | 8.334 | 55 | 100 | 64 | 57 | 70 | <0.001 |
Male | 634 | 31.10% | 66.8 | 7.998 | 55 | 93 | 67 | 60 | 72 | ||
Total | 2040 | 100.00% | 65.4 | 8.285 | 55 | 100 | 65 | 58 | 70 | ||
Age group | ≤60 years | 664 | 32.50% | ||||||||
60–75 years | 1073 | 52.60% | |||||||||
75–90 years | 279 | 13.70% | |||||||||
>90 years | 24 | 1.20% |
Type of Vaccination | Women—n (%) | Men—n (%) | Total—n (%) | p |
---|---|---|---|---|
Influenza | 512 (43.4%) | 241 (50.7%) | 753 (45.5%) | <0.05 |
Pneumococcal | 184 (15.6%) | 66 (13.9%) | 250 (15.1%) | >0.05 |
COVID-19 | 1195 (87.4%) | 537 (85.6%) | 1732 (86.9%) | >0.05 |
Other | 4 (0.3%) | 7 (1.1%) | 11 (0.8%) | - |
Type of Vaccination | Women–n (%) | Men—n (%) | Total—n (%) | p |
---|---|---|---|---|
AEFI after COVID-19 vaccination | 215 (16.1%) | 55 (8.8%) | 270 (13.9%) | <0.001 |
AEFI after other vaccinations | 31 (2.2%) | 8 (1.3%) | 39 (2.0%) | 0.199 |
Parameter | Vaccinations in the Past 3 Years | COVID-19 Vaccination | AEFI After COVID-19 Vaccination | AEFI After Other Vaccinations |
---|---|---|---|---|
Mean–women | 2.479 | 1.129 | 1.839 | 1.977 |
Mean–men | 2.141 | 1.137 | 1.912 | 1.987 |
t-value | 4.192 | −0.525 | −4.441 | −1.529 |
df | 1439 | 2038 | 2038 | 2038 |
p | <0.001 | 0.6 | <0.001 | 0.126 |
SD–women | 1.447 | 0.335 | 0.368 | 0.149 |
SD–men | 1.299 | 0.344 | 0.284 | 0.112 |
F variance ratio | 1.242 | 1.056 | 1.68 | 1.784 |
p variance test | 0.009 | 0.411 | <0.001 | <0.001 |
Zagadnienie | r | p |
---|---|---|
Vaccinations in the past 3 years | −0.088 | 0.001 |
Received COVID-19 vaccination | 0.012 | 0.657 |
Adverse events after COVID-19 vaccination | 0.175 | 0 |
Adverse events after other vaccinations | 0.067 | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frydrysiak-Brzozowska, A.; Haor, B.; Pluta, A.; Głowacka, M. Population-Based Analysis of Vaccination Status and Post-Vaccination Adverse Events in Adults Aged 55 and Older. J. Clin. Med. 2025, 14, 4297. https://doi.org/10.3390/jcm14124297
Frydrysiak-Brzozowska A, Haor B, Pluta A, Głowacka M. Population-Based Analysis of Vaccination Status and Post-Vaccination Adverse Events in Adults Aged 55 and Older. Journal of Clinical Medicine. 2025; 14(12):4297. https://doi.org/10.3390/jcm14124297
Chicago/Turabian StyleFrydrysiak-Brzozowska, Adrianna, Beata Haor, Agnieszka Pluta, and Mariola Głowacka. 2025. "Population-Based Analysis of Vaccination Status and Post-Vaccination Adverse Events in Adults Aged 55 and Older" Journal of Clinical Medicine 14, no. 12: 4297. https://doi.org/10.3390/jcm14124297
APA StyleFrydrysiak-Brzozowska, A., Haor, B., Pluta, A., & Głowacka, M. (2025). Population-Based Analysis of Vaccination Status and Post-Vaccination Adverse Events in Adults Aged 55 and Older. Journal of Clinical Medicine, 14(12), 4297. https://doi.org/10.3390/jcm14124297