The Accuracy and Reliability of the Photometric Method—A New Noninvasive Tool for Assessing Frontal Lower Limb Alignment
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure for Taking Photographs and Radiographs of Subjects with Orthopedic Disorders
2.3. Procedure for Taking Photographs of Healthy Subjects
2.4. Radiographs Analysis
2.5. Photographs Analysis
2.6. Accuracy Analysis
2.7. Reliability Analysis
2.8. Statistical Analysis
3. Results
3.1. The Accuracy of the Photometric Method
3.2. The Reliability of the Photometric Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FLLA | frontal lower limb alignment |
HKA | hip–knee–ankle |
PKA | pelvis–knee–ankle |
FMA | femoral mechanical axis |
rFTA | radiographic femoral topographic axis |
TMA | tibial mechanical axis |
pFTA | photographic femoral topographic axis |
TTA | tibial topographic axis |
ICC | intraclass correlation coefficient |
References
- Brouwer, G.M.; van Tol, A.W.; Bergink, A.P.; Belo, J.N.; Bernsen, R.M.D.; Reijman, M.; Pols, H.A.P.; Bierma-Zeinstra, S.M.A. Association between valgus and varus alignment and the development and progression of radiographic osteoarthritis of the knee. Arthritis Rheum. 2007, 56, 1204–1211. [Google Scholar] [CrossRef] [PubMed]
- Sharma, L.; Chmiel, J.S.; Almagor, O.; Felson, D.; Guermazi, A.; Roemer, F.; Lewis, C.E.; Segal, N.; Torner, J.; Cooke, T.D.V.; et al. The role of varus and valgus alignment in the initial development of knee cartilage damage by MRI: The MOST study. Ann. Rheum. Dis. 2013, 72, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Sharma, L.; Song, J.; Felson, D.T.; Cahue, S.; Shamiyeh, E.; Dunlop, D.D. The role of knee alignment in disease progression and functional decline in knee osteoarthritis. JAMA 2001, 286, 188–195. [Google Scholar] [CrossRef]
- Collins, J.E.; Yang, Y.H.; Opare-Addo, M.B.; Losina, E. Quantifying sustained pain worsening in knee osteoarthritis. Osteoarthr. Cartil. 2023, 31, 802–808. [Google Scholar] [CrossRef]
- Suardi, C.; Stimolo, D.; Zanna, L.; Carulli, C.; Fabrizio, M.; Civinini, R.; Innocenti, M. Varus morphology and its surgical implication in osteoarthritic knee and total knee arthroplasty. J. Orthop. Surg. Research. 2022, 17, 299. [Google Scholar] [CrossRef]
- Nishida, K.; Matsumoto, T.; Takayama, K.; Ishida, K.; Nakano, N.; Matsushita, T.; Kuroda, R.; Kurosaka, M. Remaining mild varus limb alignment leads to better clinical outcome in total knee arthroplasty for varus osteoarthritis. Knee Surg. Sports Traumatol. Arthr. 2017, 25, 3488–3494. [Google Scholar] [CrossRef]
- Ohnishi, T.; Hida, M.; Nagasaki, T.; Wada, C. Novel method for evaluation of frontal plane knee alignment using bony prominences in patients with osteoarthritis. J. Phys. Ther. Sci. 2018, 30, 1168–1172. [Google Scholar] [CrossRef] [PubMed]
- Rames, R.D.; Mathison, M.; Meyer, Z.; Barrack, R.L.; Nam, D. No impact of under-correction and joint line obliquity on clinical outcomes of total knee arthroplasty for the varus knee. Knee Surg. Sports Traumatol. Arthr. 2018, 26, 1506–1514. [Google Scholar] [CrossRef]
- Stief, F.; Böhm, H.; Dussa, C.U.; Multerer, C.; Schwirtz, A.; Imhoff, A.B.; Döderlein, L. Effect of lower limb malalignment in the frontal plane on transverse plane mechanics during gait in young individuals with varus knee alignment. Knee 2014, 21, 688–693. [Google Scholar] [CrossRef]
- Sgroi, M.; Faschingbauer, M.; Reichel, H.; Kappe, T. Can the frontal tibiofemoral alignment be assessed on anteroposterior knee radiographs? J. Orthop. Traumatol. 2016, 17, 339–343. [Google Scholar] [CrossRef]
- Navali, A.M.; Bahari, L.A.S.; Nazari, B. A comparative assessment of alternativesto the full-leg radiograph for determining knee joint alignment. Sports Med. Arthrosc. Rehabil. Ther. Technol. 2012, 4, 40. [Google Scholar] [CrossRef] [PubMed]
- Hinman, R.S.; May, R.L.; Crossley, K.M. Is there an alternative to the full-leg radiograph for determining knee joint alignment in osteoarthritis? Arthritis Rheumatol. 2006, 55, 306–313. [Google Scholar] [CrossRef]
- Kraus, V.B.; Vail, T.P.; Worrell, T.; McDaniel, G. A comparative assessment of alignment angle of the knee by radiographic and physical examination methods. Arthritis Rheumatol. 2005, 52, 1730–1735. [Google Scholar] [CrossRef]
- Liodakis, E.; Kenawey, M.; Doxastaki, I.; Krettek, C.; Haasper, C.; Hankemeier, S. Upright MRI measurement of mechanical axis and frontal plane alignment as a new technique: A comparative study with weight bearing full length radiographs. Skelet. Radiol. 2011, 40, 885–889. [Google Scholar] [CrossRef] [PubMed]
- Böhm, H.; Stief, F.; Sander, K.; Hösl, M.; Döderlein, L. Correction of static axial alignment in children with knee varus or valgus deformities through guided growth: Does it also correct dynamic frontal plane moments during walking? Gait Posture 2015, 42, 394–397. [Google Scholar] [CrossRef] [PubMed]
- Vanwanseele, B.; Parker, D.; Coolican, M. Frontal knee alignment: Three-dimensional marker positions and clinical assessment. Clin. Orthop. Relat. Res. 2009, 467, 504–509. [Google Scholar] [CrossRef]
- Mündermann, A.; Dyrby, C.O.; Andriacchi, T.P. A comparison of measuring mechanical axis alignment using three-dimensional position capture with skin markers and radiographic measurement in patients with bilateral medial compartment knee osteoarthrosis. Knee 2008, 15, 480–485. [Google Scholar] [CrossRef]
- Sheehy, L.; Cooke, T.D.V.; McLean, L.; Culham, E. Standardized standing pelvis-to-floor photographs for the assessment of lower-extremity alignment. Osteoarthr. Cartil. 2015, 23, 379–382. [Google Scholar] [CrossRef]
- Schmitt, H.; Kappel, H.; Moser, M.T.; Cardenas-Montemayor, E.; Engelleiter, K.; Kuni, B.; Clarius, M. Determining knee joint alignment using digital photographs. Knee Surg. Sports Traumatol. Arthr. 2008, 16, 776–780. [Google Scholar] [CrossRef]
- Gibson, K.; Sayers, S.P.; Minor, M.A. Measurement of varus/valgus alignment in obese individuals with knee osteoarthritis. Arthritis Care Res. 2010, 62, 690–696. [Google Scholar] [CrossRef]
- Park, S.C.; Lee, S.; Yoon, J.; Choi, C.-H.; Yoon, C.; Ha, Y.-C. Validity and reliability of an artificial intelligence-based posture estimation software for measuring cervical and lower-limb alignment versus radiographic imaging. Diagnostics 2025, 15, 1340. [Google Scholar] [CrossRef] [PubMed]
- Revelle, W. R Package, version 2.3.12. psych: Procedures for Psychological, Psychometric, and Personality Research. Northwestern University: Evanston, IL, USA, 2023.
- Moncrieff, M.J.; Livingston, L.A. Reliability of a digital-photographic-goniometric method for coronal-plane lower limb measurement. J. Sport Rehab. 2009, 18, 296–315. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.D.; Boling, M.C.; Slye, C.A.; Hartley, E.M.; Parisi, G.L. Various methods for assessing static lower extremity alignment: Implications for prospective risk-factor screenings. J. Athl. Train. 2013, 48, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.D.; Schultz, S.J. Sex differences in clinical measures of lower extremity alignment. J. Orthop. Sports Phys. Ther. 2007, 37, 389–398. [Google Scholar] [CrossRef]
- Wu, C.C. Is clinical measurement of anatomic axis of the femur adequate? A radiographic verification. Acta Orthop. 2017, 88, 407–410. [Google Scholar] [CrossRef]
- Baldwin, J.N.; McKay, M.J.; Simic, M.; Hiller, C.E.; Moloney, N.; Nightingale, E.J.; Burns, J.; On behalf of the 1000 Norms Project Consortium. Self-reported knee pain and disability among healthy individuals: Reference data and factors associated with the Knee injury and Osteoarthritis Outcome Score (KOOS) and KOOS-Child. Osteoarthr. Cartil. 2017, 25, 1282–1290. [Google Scholar] [CrossRef]
- Hoch, M.C.; Weinhandl, J.T. Effect of valgus knee alignment on gait biomechanics in healthy women. J. Electromyogr. Kinesiol. 2017, 35, 17–23. [Google Scholar] [CrossRef]
- Palad, Y.Y.; Leaver, A.M.; McKay, M.J.; Baldwin, J.N.; Lunar, F.R.M.; Caube, F.D.M.; Burns, J.; Simic, M. Knee thrust prevalence and normative hip-knee-ankle angle deviation values among healthy individuals across the lifespan. Osteoarthr. Cartil. 2018, 26, 1326–1332. [Google Scholar] [CrossRef]
- Cooke, T.D.V.; Sled, E.A. Optimizing limb position for measuring knee anatomical axis alignment from standing knee radiographs. J. Rheumatol. 2009, 36, 472–477. [Google Scholar] [CrossRef]
- Cooke, T.D.V.; Sled, E.A.; Scudamore, R.A. Frontal plane knee alignment: A call for standardized measurement. J. Rheumatol. 2007, 34, 1796–1801. [Google Scholar]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Yang, B.; Xiao, S.; Yan, Y.; Liu, Z.; Yuan, L.; Wang, X.; Sun, B.; Yao, J.; Fan, Y. Effect of limb rotation on radiographic alignment measurement in mal-aligned knees. BioMed. Eng. OnLine 2021, 20, 119. [Google Scholar] [CrossRef] [PubMed]
- Donati, D.; Giorgi, F.; Fari, G.; Tarallo, L.; Catani, F.; Tedeschi, R. The influence of pelvic tilt and femoral torsion on hip biomechanics: Implications for clinical assessment and treatment. Appl. Sci. 2024, 14, 9564. [Google Scholar] [CrossRef]
Method | Reference | n * | r *, p Value |
---|---|---|---|
Short knee radiographs | [10] | n = 200 | r = 0.888, p < 0.001 (20 cm) |
r = 0.161, p = 0.109 (10 cm) | |||
[11] | n = 100 | r = 0.932, p < 0.0001 (10 cm) | |
[12] | n = 40 | r = 0.88, p < 0.001 (10 cm) | |
[13] | n = 114 | r = 0.75, p < 0.0001 (10 cm) | |
Magnetic resonance imaging | [14] | n = 30 | r = 0.95, p < 0.05 |
Motion-capture systems | [15] | n = 15 | r = 0.62, p = 0.012 (1st session) |
r = 0.78, p < 0.001 (2nd session) | |||
[9] | n = 18 | r = 0.834, p < 0.001 | |
[16] | n = 20 | r = 0.934, p < 0.001 | |
[17] | n = 124 | r = 0.738, p = 0.001 | |
Digital photography | [7] | n = 39 | r = 0.94, p < 0.001 |
[18] | n = 50 | r = 0.92, p < 0.0001 | |
[19] | n = 20 | r = 0.98, p < 0.001 | |
Goniometer | [11] | n = 100 | r = 0.674, p < 0.0001 |
[20] | n = 55 | r = 0.74, p < 0.001 | |
[12] | n = 26 | r = 0.32, p = 0.12 | |
[13] | n = 114 | r = 0.70, p < 0.0001 | |
Caliper | [11] | n = 100 | r = 0.899, p < 0.0001 |
[12] | n = 40 | r = 0.76, p < 0.001 | |
Inclinometer | [16] | n = 20 | r = 0.831, p < 0.001 |
[12] | n = 40 | r = 0.80, p < 0.001 | |
Artificial intelligence-based posture-estimation software | [21] | n = 36 | r = 0.754, p < 0.001 |
Reliability | ICC(2,k) (95% Confident Interval) | Bland–Altman Bias (Limits of Agreement) [°] |
---|---|---|
Intrarater | ||
Rater 1 | 0.999 (0.999, 0.999) | −0.03 (−0.24, 0.19) |
Rater 2 | 0.993 (0.988, 0.996) | 0.08 (−0.67, 0.82) |
Rater 3 | 0.972 (0.950, 0.984) | −0.07 (−1.65, 1.51) |
Interrater | ||
Raters 1 & 2 & 3 | 0.991 (0.986, 0.995) | - |
Rater 1 & 2 | - | 0.01 (−0.33, 0.35) |
Rater 1 & 3 | - | 0.1 (−1.12, 1.34) |
Rater 2 & 3 | - | 0.1 (−1.19, 1.39) |
Test–retest | ||
Photographs 1 & 2 | 0.980 (0.973, 0.986) | 0.04 (−1.28, 1.35) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fryzowicz, A.; Szymczak, J.; Koczewski, P. The Accuracy and Reliability of the Photometric Method—A New Noninvasive Tool for Assessing Frontal Lower Limb Alignment. J. Clin. Med. 2025, 14, 4244. https://doi.org/10.3390/jcm14124244
Fryzowicz A, Szymczak J, Koczewski P. The Accuracy and Reliability of the Photometric Method—A New Noninvasive Tool for Assessing Frontal Lower Limb Alignment. Journal of Clinical Medicine. 2025; 14(12):4244. https://doi.org/10.3390/jcm14124244
Chicago/Turabian StyleFryzowicz, Anna, Jan Szymczak, and Paweł Koczewski. 2025. "The Accuracy and Reliability of the Photometric Method—A New Noninvasive Tool for Assessing Frontal Lower Limb Alignment" Journal of Clinical Medicine 14, no. 12: 4244. https://doi.org/10.3390/jcm14124244
APA StyleFryzowicz, A., Szymczak, J., & Koczewski, P. (2025). The Accuracy and Reliability of the Photometric Method—A New Noninvasive Tool for Assessing Frontal Lower Limb Alignment. Journal of Clinical Medicine, 14(12), 4244. https://doi.org/10.3390/jcm14124244