Clinical Factors Influencing Tacrolimus Metabolism and Blood Level Early After Kidney Transplantation—A Comparison of Three Different Tacrolimus Formulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Immunosuppression Protocol
2.3. Bioimpedance Analysis
2.4. Laboratory Parameters
2.5. Statistical Analysis
3. Results
3.1. Study Group Characteristics
3.2. Pre-Transplant Factors and Tacrolimus Exposure at Hospital Discharge
3.3. The Body Composition Parameters and Tacrolimus Dosing and Exposure
3.4. Markers of Intestinal Permeability and Tacrolimus Exposure
3.5. The Results of Multivariate Analyses
3.6. The Tacrolimus Trough Level Variability After Conversion to Once-Daily Formulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bentata, Y. Tacrolimus: 20 years of use in adult kidney transplantation. What we should know about its nephrotoxicity. Artif. Organs 2020, 44, 140–152. [Google Scholar] [CrossRef] [PubMed]
- Henkel, L.; Jehn, U.; Tholking, G.; Reuter, S. Tacrolimus—Why pharmacokinetics matter in the clinic. Front. Transplant. 2023, 21, 1160752. [Google Scholar] [CrossRef] [PubMed]
- Caillard, S.; Moulin, B.; Buron, F.; Mariat, C.; Audard, V.; Grimbert, P.; Marquet, P. Advagraf, a once-daily prolonged release tacrolimus formulation, in kidney transplantation: Literature review and guidelines from a panel of experts. Transplant. Int. 2016, 29, 860–869. [Google Scholar] [CrossRef]
- Tan, T.; Bunnapradist, S. Comparing the pharmacokinetics of extended-relase tacrolimus (LCP-TAC) to immediate-release formulations in kidney transplant patients. Expert. Opin. Drug Metab. Toxicol. 2021, 10, 1175–1186. [Google Scholar] [CrossRef]
- Stratta, P.; Quaglia, M.; Cena, T.; Antoniotti, R.; Fenoglio, R.; Menegotto, A.; Ferrante, D.; Genazzani, A.; Terrazzino, S.; Magnani, C. The interactions of age, sex, body mass index, genetics, and steroid weight-based doses on tacrolimus dosing requirement after adult kidney transplantation. Eur. J. Clin. Pharmacol. 2012, 68, 671–680. [Google Scholar] [CrossRef]
- Krzyżowska, K.; Kolonko, A.; Giza, P.; Chudek, J.; Więcek, A. Which kidney transplant recipients can benefit from the initial tacrolimus dose reduction? BioMed Res. Int. 2018, 2018, 4573452. [Google Scholar] [CrossRef]
- Størset, E.; Holford, N.; Midtvedt, K.; Bremer, S.; Bergan, S.; Asberg, A. Importance of hematocrit for a tacrolimus “target concentration strategy”. Eur. J. Clin. Pharmacol. 2014, 70, 65–77. [Google Scholar] [CrossRef]
- Vavic, N.; Rancic, N.; Dragojevic-Simic, V.; Draskovic-Pavlovic, B.; Boonjic, D.; Ignjatovic, L.; Mikov, M. The influence of comedication on tacrolimus blood concentration in patients subjected to kidney transplantation: A retrospective study. Eur. J. Drug Metabol. Pharmacokinet. 2014, 39, 243–253. [Google Scholar] [CrossRef]
- Han, S.S.; Kim, D.H.; Lee, S.M.; Han, N.Y.; Oh, J.M.; Ha, J.; Kim, Y.S. Pharmacokinetics of tacrolimus according to body composition in recipients of kidney transplants. Kidney Res. Clin. Pract. 2012, 31, 157–162. [Google Scholar] [CrossRef]
- Francke, M.I.; Visser, W.J.; Severs, D.; de Mik-van Egmond, A.M.E.; Hesselink, D.A.; De Winter, B.C.M. Body composition is associated with tacrolimus pharmacokinetics in kidney transplant recipients. Eur. J. Clin. Pharmacol. 2022, 78, 1273–1287. [Google Scholar] [CrossRef]
- Kolonko, A.; Pokora, P.; Słabiak-Błaż, N.; Czerwieńska, B.; Karkoszka, H.; Kuczera, P.; Piecha, G.; Więcek, A. The relationship between initial tacrolimus metabolism rate and recipients body composition in kidney transplantation. J. Clin. Med. 2021, 10, 5793. [Google Scholar] [CrossRef] [PubMed]
- Piotti, G.; Cremaschi, E.; Maggiore, U. Once-daily prolonged-release tacrolimus formulations for kidney transplantation: What the nephrologist needs to know. J. Nephrol. 2017, 30, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Vanhove, T.; Annaert, P.; Kuypers, D.R.J. Clinical determinants of calcineurin inhibitor disposition: A mechanistic review. Drug Metab. Rev. 2016, 48, 88–112. [Google Scholar] [CrossRef]
- Bulbuloglu, S.; Gunes, H.; Saritas, S. The effect of long-term immunosuppressive therapy on gastrointestinal symptoms after kidney transplantation. Transplant. Immunol. 2022, 70, 101515. [Google Scholar] [CrossRef]
- Lee, J.R.; Muthukumar, T.; Dadhania, D.; Toussaint, N.C.; Ling, L.; Pamer, E.; Suthanthiran, M. Gut microbiota community structure and complications after kidney transplantation: A pilot study. Transplantation 2014, 98, 697–705. [Google Scholar]
- Lee, J.R.; Muthukumar, T.; Dadhania, D.; Taur, Y.; Jenq, R.R.; Toussaint, N.C.; Ling, L.; Pamer, E.; Suthanthiran, M. Gut microbiota and tacrolimus dosing in kidney transplantation. PLoS ONE 2015, 10, e0122399. [Google Scholar] [CrossRef]
- Terpstra, M.L.; Singh, R.; Geerlings, S.E.; Bemelman, F.J. Measurement of the intestinal permeability in chronic kidney disease. World J. Nephrol. 2016, 5, 378–388. [Google Scholar] [CrossRef]
- Funaoka, H.; Kanda, T.; Fujii, H. Intestinal fatty acid-binding protein (I-FABP) as a new biomarker for intestinal disease. Rinsho Byori 2010, 58, 162–168. [Google Scholar]
- Piton, G.; Capellier, G. Biomarkers of gut barrier failure in the ICU. Curr. Opin. Crit. Care 2016, 22, 152–160. [Google Scholar] [CrossRef]
- Seethaler, B.; Basrai, M.; Neyrinck, A.M.; Nazare, J.-A.; Walter, J.; Delzenne, N.M.; Bischoff, S.C. Biomarkers for assessment of intestinal permeability in clinical practice. Am. J. Physiol. Gastroinvest. Liver Physiol. 2021, 321, G11–G17. [Google Scholar] [CrossRef]
- Kolonko, A.; Słabiak-Błaż, N.; Pokora, P.; Piecha, G.; Więcek, A. Intestinal permeability in patients early after kidney transplantation treated with two different formulations of once-daily tacrolimus. Int. J. Mol. Sci. 2023, 24, 8344. [Google Scholar] [CrossRef] [PubMed]
- Sanchez Fructuoso, A.; Ruiz, J.C.; Franco, A.; Diekmann, F.; Redondo, D.; Calvino, J.; Serra, N.; Aladren, M.J.; Cigarran, S.; Manonelles, A.; et al. Effectiveness and safety of the conversion to MeltDose Extended-release tacrolimus from other formulations of tacrolimus in stable kidney transplant patients: A retrospective study. Clin. Transplant. 2020, 34, e13767. [Google Scholar] [CrossRef] [PubMed]
- Glander, P.; Waiser, J.; Kasbohm, S.; Friedersdorff, F.; Peters, R.; Rudolph, B.; Wu, K.; Budde, K.; Liefeldt, L. Bioavailability and costs of once-daily and twice-daily tacrolimus formulations in de novo kidney transplantation. Clin. Transplant. 2018, 32, e13311. [Google Scholar] [CrossRef] [PubMed]
- Coilly, A.; Calmus, Y.; Chermak, F.; Dumotier, J.; Duvoux, C.; Guillaud, O.; Houssel-Debry, P.; Neau-Cransac, M.; Stocco, J. Once-daily prolonged release tacrolimus in liver transplantation: Experts’ literature review and recommendations. Liver Transplant. 2015, 21, 1312–1321. [Google Scholar] [CrossRef]
- Zheng, Y.P.; Masand, A.; Wagner, M.; Kapur, S.; Dadhania, D.; Lubetzky, M.; Lee, J.R. Identification of antibiotic administration as a potential novel factor associated with tacrolimus trough variability in kidney transplant recipients: A preliminary study. Transplant. Direct 2019, 5, e485. [Google Scholar] [CrossRef]
- Vaziri, N.D.; Goshtasbi, N.; Yuan, J.; Jellbauer, S.; Moradi, H.; Rafatellu, M.; Kalantar-Zadeh, K. Uremic plasma impairs barrier function and depletes the tight junction protein constituents of intestinal epithelium. Am. J. Nephrol. 2012, 36, 438–443. [Google Scholar] [CrossRef]
- Carron, C.; Pais de Barros, J.-P.; Gaiffe, E.; Deckert, V.; Adda-Rezig, H.; Roubiou, C.; Laheurte, C.; Masson, D.; Simula-Faivre, D.; Louvat, P.; et al. End-stage renal disease-associated gut bacterial translocation: Evolution and impact on chronic inflammation and acute rejection after renal transplantation. Front. Immunol. 2019, 10, 1630. [Google Scholar] [CrossRef]
- Mercuri, A.; Wu, S.; Stranzinger, S.; Mohr, S.; Salar-Behzadi, S.; Bresciani, M.; Frohlich, E. In vitro and in silico characterization of tacrolimus released under biorelevant conditions. Int. J. Pharm. 2016, 515, 271–280. [Google Scholar] [CrossRef]
- Tremblay, S.; Nigro, V.; Weinberg, J.; Woodle, E.S.; Alloway, R.R. A steady-state head-to-head pharmacokinetic comparison of all FK-506 (tacrolimus) formulations (ASTCOFF): An open-label, prospective, randomized, two-arm, three-period crossover study. Am. J. Transplant. 2017, 17, 432–444. [Google Scholar] [CrossRef]
Prograf N = 56 | Advagraf N = 59 | Envarsus N = 50 | p | |
---|---|---|---|---|
Recipient | ||||
Age [years] | 50 (47–53) | 50 (47–54) | 49 (46–52) | 0.88 |
Sex (M/F) | 35/21 | 35/24 | 29/21 | 0.89 |
BMI * [kg/m2] | 24.2 (21.9–26.6) | 25.2 (23.0–29.6) | 25.9 (23.3–29.0) | <0.05 |
Dialysis vintage * [months] | 34 (21–55) | 33 (21–45) | 31 (22–45) | 0.71 |
Residual diuresis * [mL] | 300 (25–1000) | 500 (100–1500) | 500 (100–1200) | 0.85 |
Transplant procedure | ||||
Donor age * [years] | 46.5 (36.5–57.0) | 50.0 (39.0–59.0) | 50.0 (37.0–57.0) | 0.39 |
Retransplant [%] | 19.6 | 13.6 | 6.0 | 0.12 |
Induction therapy [%]: IL-2 RB ATG | ||||
48.2 | 72.9 | 66.0 | <0.05 | |
51.8 | 27.1 | 34.0 | ||
CIT [h] | 18 (16–19) | 17 (15–19) | 19 (17–21) | 0.22 |
DGF [%] | 16.1 | 23.7 | 20.0 | 0.59 |
Length of hospital stay [days] | 13 (12–15) | 14 (13–21) # | 15 (13–19) ## | <0.05 |
Tacrolimus dosing and exposure | ||||
Tacrolimus daily dose * [mg] | 8 (5–10) ^^^ | 7 (5–11) ^^^ | 5 (3–7) | <0.001 |
Tacrolimus dose/kg * [mg/kg] | 0.11 (0.08–0.15) ^^^ | 0.10 (0.07–0.16) ^^^ | 0.07 (0.04–0.11) | <0.01 |
Tacrolimus through level * [ng/mL] | 9.2 (7.7–11.0) | 8.4 (7.2–9.7) | 9.3 (7.9–11.6) | 0.37 |
Tacrolimus 3h post-dose level * [ng/mL] | 18.2 (16.2–20.3) ^^ | 20.0 (16.5–22.5) ^^ | 14.9 (11.4–19.6) | <0.05 |
Tacrolimus AUC * [ng.h/mL] | 149 (137–168) | 156 (133–170) | 137 (113–171) | 0.20 |
Tacrolimus C/D ratio * | 1.20 (0.84–1.68) ^^^ | 1.17 (0.77–1.70) ^^^ | 1.93 (1.29–3.00) | <0.001 |
Whole Study Group N = 165 | Prograf Group N = 56 | Advagraf Group N = 59 | Envarsus Group N = 50 | |
---|---|---|---|---|
Tc daily dose [mg] | R = −0.332; p < 0.001 | NS | R = −0.344; p < 0.01 | R = −0.599; p < 0.001 |
Tc dose per body kg [mg/kg] | R = −0.392; p < 0.001 | R = −0.297; p < 0.01 | R = −0.397; p < 0.01 | R = −0.603; p < 0.001 |
AUC [ng.h/mL] | R = −0.262; p < 0.001 | R = −0.302; p < 0.05 | R = −0.269; p < 0.05 | NS |
Prograf N = 56 | Advagraf N = 59 | Envarsus N = 50 | p | |
---|---|---|---|---|
Body composition parameters | ||||
Body weight [kg] | 71.1 (66.3–74.0) | 73.9 (69.6–78.2) | 73.7 (69.8–77.7) | 0.33 |
Body fat mass [%] | 22.9 (20.5–25.2) | 25.5 (23.2–27.9) | 25.5 (22.7–28.3) | 0.63 |
ICW * [L] | 23.7 (19.5–28.1) | 24.5 (20.6–28.1) | 24.0 (20.4–28.0) | 0.81 |
ECW * [L] | 15.5 (12.6–18.0) | 16.4 (13.3–18.4) | 15.6 (13.4–17.8) | 0.68 |
ECW/TBW | 0.385 (0.391–0.400) | 0.384 (0.391–0.399) | 0.383 (0.390–0.398) | 0.80 |
Phase angle [o] | 4.7 (4.5–5.0) | 4.6 (4.4–4.8) | 4.8 (4.5–5.1) | 0.56 |
VFA [cm2] * | 84.1 (48.5–104.2) | 89.0 (61.8–129.7) | 98.8 (56.9–125.5) | 0.60 |
LBM [%] | 72.4 (70.2–74.6) | 70.1 (67.8–72.3) | 70.0 (67.4–72.6) | 0.24 |
LBMI [kg/m2] | 18.3 (17.5–19.1) | 18.4 (17.8–19.1) | 18.5 (17.8–19.2) | 0.95 |
Markers of intestinal permeability | ||||
FABP-2 [ng/mL] * | 1.8 ^^ (1.1–2.5) | 1.4 (0.83–1.9) | 1.1 (0.6–1.7) | <0.01 |
LPS [ng/mL] * | 27.8 (23.0–33.2) | 28.8 (22.5–38.0) | 28.8 (22.5–39.0) | 0.75 |
LBP [µg/mL] * | 5.8 ^ (4.9–6.6) | 5.1 (3.1–6.6) | 4.5 (3.8–6.3) | <0.05 |
IL-6 [pg/mL] * | 5.4 (2.9–8.6) # | 3.6 (2.1–5.6) | 4.1 (2.6–7.3) | 0.1 |
Daily Dose [mg] | Dose per kg [mg/kg] | Trough Level [ng/mL] | 3h Post-Dose Level [ng/mL] | AUC [ng.h/mL] | C/D Ratio | |
---|---|---|---|---|---|---|
ECW/TBW | ||||||
Prograf | - | - | - | R = −0.331; p < 0.02 | R = −0.340; p < 0.02 | - |
Advagraf | - | - | - | - | - | - |
Envarsus | - | - | - | - | - | - |
ECW [L] | ||||||
Prograf | R = 0.334; p < 0.02 | - | - | - | - | R = −0.384; p < 0.01 |
Advagraf | - | R = −0.292; p < 0.05 | - | - | - | - |
Envarsus | - | - | - | - | - | - |
ICW [L] | ||||||
Prograf | R = 0.357; p < 0.01 | - | - | - | - | R = −0.380; p < 0.01 |
Advagraf | - | R = −0.287; p < 0.05 | - | - | - | - |
Envarsus | - | - | - | - | - | - |
LBM [%] | ||||||
Prograf | R = 0.267; p < 0.05 | R = 0.275; p < 0.05 | - | - | - | R = −0.307; p < 0.05 |
Advagraf | - | R = 0.351; p < 0.01 | - | - | - | - |
Envarsus | - | R = 0.333; p < 0.02 | - | - | - | - |
Phase angle [°] | ||||||
Prograf | - | - | - | R = 0.280; p < 0.05 | R = 0.235; p = 0.08 | - |
Advagraf | - | - | - | - | - | - |
Envarsus | R = 0.28; p < 0.05 | - | - | - | - | - |
LBMI [kg/m2] | ||||||
Prograf | R = 0.371; p < 0.01 | - | - | - | - | R = −0.446; p < 0.001 |
Advagraf | - | R = −0.314; p < 0.02 | - | - | - | - |
Envarsus | - | - | - | - | - | - |
VFA [cm2] | ||||||
Prograf | - | R = −0.347; p < 0.01 | - | - | - | - |
Advagraf | - | R = −0.504; p < 0.001 | - | - | - | - |
Envarsus | R = −0.293; p < 0.05 | R = −0.453; p < 0.001 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolonko, A.; Więcek, A. Clinical Factors Influencing Tacrolimus Metabolism and Blood Level Early After Kidney Transplantation—A Comparison of Three Different Tacrolimus Formulations. J. Clin. Med. 2025, 14, 4223. https://doi.org/10.3390/jcm14124223
Kolonko A, Więcek A. Clinical Factors Influencing Tacrolimus Metabolism and Blood Level Early After Kidney Transplantation—A Comparison of Three Different Tacrolimus Formulations. Journal of Clinical Medicine. 2025; 14(12):4223. https://doi.org/10.3390/jcm14124223
Chicago/Turabian StyleKolonko, Aureliusz, and Andrzej Więcek. 2025. "Clinical Factors Influencing Tacrolimus Metabolism and Blood Level Early After Kidney Transplantation—A Comparison of Three Different Tacrolimus Formulations" Journal of Clinical Medicine 14, no. 12: 4223. https://doi.org/10.3390/jcm14124223
APA StyleKolonko, A., & Więcek, A. (2025). Clinical Factors Influencing Tacrolimus Metabolism and Blood Level Early After Kidney Transplantation—A Comparison of Three Different Tacrolimus Formulations. Journal of Clinical Medicine, 14(12), 4223. https://doi.org/10.3390/jcm14124223