Alterations in Adipokine Levels Are Associated with Human Perinatal Anxiety and Depression
Abstract
1. Introduction
2. Methods
2.1. Design of the Study
2.2. Participants
2.3. Recruitment Criteria and Clinician-Rated Instruments
2.4. Blood Sampling
2.5. Quantification of Adipokines in Serum
2.6. Statistical Analysis
3. Results
3.1. Clinical and Demographic Characteristics
3.2. Determination of Adipokines’ Serum Levels
3.3. Scatter Plots of Serum Adipokines
3.4. Bivariate Correlations
3.5. Partial Correlations Adjusted by Confounders
4. Discussion
5. Conclusions
6. Perspectives
7. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, H.; Kim, K.E.; Kim, M.Y.; Park, C.G.; Han, J.Y.; Choi, E.J. Trajectories of Depressive Symptoms and Anxiety during Pregnancy and Associations with Pregnancy Stress. Int. J. Environ. Res. Public Health 2021, 18, 2733. [Google Scholar] [CrossRef] [PubMed]
- Mughal, M.K.; Giallo, R.; Arnold, P.; Benzies, K.; Kehler, H.; Bright, K.; Kingston, D. Trajectories of maternal stress and anxiety from pregnancy to three years and child development at 3 years of age: Findings from the all our families (AOF) pregnancy cohort. J. Affect. Disord. 2018, 234, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.M.J.; Nogueira, D.A.; Clapis, M.J.; Leite, E.P.R.C. Anxiety in pregnancy: Prevalence and associated factors. Rev. Esc. Enferm. USP 2017, 51, e03253. [Google Scholar] [CrossRef]
- Leach, L.S.; Poyser, C.; Cooklin, A.R.; Giallo, R. Prevalence and course of anxiety disorders (and symptom levels) in men across the perinatal period: A systematic review. J. Affect. Disord. 2016, 190, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Radoš, S.N.; Tadinac, M.; Herman, R. Anxiety during pregnancy and postpartum: Course, predictors and comorbidity with postpartum depression. Acta Clin. Croat. 2018, 57, 39–51. [Google Scholar] [CrossRef]
- Aziz, H.A.; Yahya, H.D.B.; Ang, W.W.; Lau, Y. Global prevalence of depression, anxiety, and stress symptoms in different trimesters of pregnancy: A meta-analysis and meta-regression. J. Psychiatr. Res. 2025, 18, 528–546. [Google Scholar] [CrossRef]
- Nakamura, Y.; Okada, T.; Morikawa, M.; Yamauchi, A.; Sato, M.; Ando, M.; Ozaki, N. Perinatal depression and anxiety of primipara is higher than that of multipara in Japanese women. Sci. Rep. 2020, 10, 17060. [Google Scholar] [CrossRef]
- Pesonen, A.K.; Lahti, M.; Kuusinen, T.; Tuovinen, S.; Villa, P.; Hämäläinen, E.; Laivuori, H.; Kajantie, E.; Räikkönen, K. Maternal prenatal positive affect, depressive and anxiety symptoms, and birth outcomes: The Predo Study. PLoS ONE 2016, 11, e0150058. [Google Scholar] [CrossRef]
- Jacobson, N.C.; Newman, M.G. Anxiety and depression as bidirectional risk factors for one another: A meta-analysis of longitudinal studies. Psychol. Bull. 2017, 143, 1155–1200. [Google Scholar] [CrossRef]
- Zunszain, P.A.; Anacker, C.; Cattaneo, A.; Carvalho, L.A.; Pariante, C.M. Glucocorticoids, cytokines, and brain abnormalities in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 722–729. [Google Scholar] [CrossRef]
- GBD 2015. Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1545–1602. [Google Scholar] [CrossRef] [PubMed]
- Dadi, A.F.; Miller, E.R.; Bisetegn, T.A.; Mwanri, L. Global burden of antenatal depression and its association with adverse birth outcomes: An umbrella review. BMC Public Health 2020, 20, 173. [Google Scholar] [CrossRef] [PubMed]
- Halim, N.; Beard, J.; Mesic, A.; Patel, A.; Henderson, D.; Hibberd, P. Intimate partner violence during pregnancy and perinatal mental disorders in low and lower middle-income countries: A systematic review of literature, 1990–2017. Clin. Psychol. Rev. 2018, 66, 117–135. [Google Scholar] [CrossRef] [PubMed]
- Thase, M.E. Preventing relapse and recurrence of depression: A brief review of therapeutic options. CNS Spectr. 2006, 11 (Suppl. 15), 12–21. [Google Scholar] [CrossRef]
- O’Leary, O.F.; Dinan, T.G.; Cryan, J.F. Faster, better, stronger: Towards new antidepressant therapeutic strategies. Eur. J. Pharmacol. 2015, 753, 32–50. [Google Scholar] [CrossRef]
- Accortt, E.E.; Cheadle, A.C.D.; Schetter, C.D. Prenatal depression and adverse birth outcomes: An updated systematic review. Matern. Child Health J. 2015, 19, 1306–1337. [Google Scholar] [CrossRef]
- Bennett, H.A.; Einarson, A.; Taddio, A.; Koren, G.; Einarson, T.R. Prevalence of depression during pregnancy: A systematic review. Obstet. Gynecol. 2004, 103, 698–709. [Google Scholar] [CrossRef]
- Weis, K.L.; Yuan, T.T.; Walker, K.C.; Gibbons, T.F.; Chan, W. Associations between Physiological Biomarkers and Psychosocial Measures of Pregnancy-Specific Anxiety and Depression with Support Intervention. Int. J. Environ. Res. Public Health 2021, 18, 8043. [Google Scholar] [CrossRef]
- Juarez Padilla, J.; Lara-Cinisomo, S.; Navarrete, L.; Lara, M.A. Perinatal Anxiety Symptoms: Rates and Risk Factors in Mexican Women. Int. J. Environ. Res. Public Health 2021, 18, 82. [Google Scholar] [CrossRef]
- Leff-Gelman, P.; Mancilla-Herrera, I.; Flores-Ramos, M.; Saravia-Takashima, M.F.; Cruz-Coronel, F.M.; Cruz-Fuentes, C.; Pérez-Molina, A.; Hernández-Ruiz, J.; Silva-Aguilera, F.S.; Farfan-Labonne, B.; et al. The cytokine profile of women with severe anxiety and depression during pregnancy. BMC Psychiatry. 2019, 19, 104. [Google Scholar] [CrossRef]
- Karlsson, L.; Nousiainen, N.; Scheinin, N.M.; Maksimow, M.; Salmi, M.; Lehto, S.M.; Tolvanen, M.; Lukkarinen, H.; Karlsson, H. Cytokine profile and maternal depression and anxiety symptoms in mid-pregnancy—The FinnBrain Birth Cohort Study. Arch. Womens Ment. Health 2017, 20, 39–48. [Google Scholar] [CrossRef]
- Leff-Gelman, P.; Flores-Ramos, M.; Carrasco, A.E.Á.; Martínez, M.L.; Takashima, M.F.S.; Coronel, F.M.C.; Labonne, B.F.; Dosal, J.A.Z.; Chávez-Peón, P.B.; Morales, S.G.; et al. Cortisol and DHEA-S levels in pregnant women with severe anxiety. BMC Psychiatry 2020, 20, 393. [Google Scholar] [CrossRef]
- Machado-Vieira, R.; Gold, P.W.; Luckenbaugh, D.A.; Ballard, E.D.; Richards, E.M.; Henter, I.D.; De Sousa, R.T.; Niciu, M.J.; Yuan, P.; Zarate, C.A., Jr. The role of adipokines in the rapid antidepressant effects of ketamine. Mol. Psychiatry 2017, 22, 127–133. [Google Scholar] [CrossRef]
- Parimisetty, A.; Dorsemans, A.C.; Awada, R.; Ravanan, P.; Diotel, N.; Lefebvre d’Hellencourt, C. Secret talk between adipose tissue and central nervous system via secreted factors—An emerging frontier in neurodegenerative research. J. Neuroinflamm. 2016, 13, 67. [Google Scholar] [CrossRef]
- de Oliveira Dos Santos, A.R.; de Oliveira Zanuso, B.; Miola, V.F.B.; Barbalho, S.M.; Santos Bueno, P.C.; Flato, U.A.P.; Detregiachi, C.R.P.; Buchaim, D.V.; Buchaim, R.L.; Tofano, R.J.; et al. Adipokines, Myokines, and Hepatokines: Crosstalk and Metabolic Repercussions. Int. J. Mol. Sci. 2021, 22, 2639. [Google Scholar] [CrossRef]
- Kos, K.; Harte, A.L.; da Silva, N.F.; Tonchev, A.; Chaldakov, G.; James, S.; Snead, D.R.; Hoggar, B.; O’Hare, J.P.; McTernan, P.G.; et al. Adiponectin and Resistin in human cerebrospinal fluid and expression of adiponectin receptors in the human hypothalamus. J. Clin. Endocrinol. Metab. 2007, 92, 1129–1136. [Google Scholar] [CrossRef]
- Yu, Y.; Fernandez, I.D.; Meng, Y.; Zhao, W.; Groth, S.W. Groth Gut Hormones, Adipokines, and Pro- and Anti-inflammatory Cytokines/Markers in Loss of Control Eating: A Scoping Review. Appetite 2021, 166, 105442. [Google Scholar] [CrossRef]
- Mooldijk, S.S.; Ikram, M.K.; Ikram, M.A. Adiponectin, Leptin, and Resistin and the Risk of Dementia. J. Gerontol. A Biol. Sci. Med. Sci. 2022, 77, 1245–1249. [Google Scholar] [CrossRef]
- Bilska, K.; Dmitrzak-Węglarz, M.; Osip, P.; Pawlak, J.; Paszyńska, E.; Permoda-Pachuta, A. Metabolic Syndrome and Adipokines Profile in Bipolar Depression. Nutrients 2023, 15, 4532. [Google Scholar] [CrossRef]
- Wei, Z.; Chen, Y.; Upender, R.P. Upender. Sleep Disturbance and Metabolic Dysfunction: The Roles of Adipokines. Int. J. Mol. Sci. 2022, 23, 1706. [Google Scholar] [CrossRef]
- Papargyri, P.; Zapanti, E.; Salakos, N.; Papargyris, L.; Bargiota, A.; Mastorakos, G. Links between HPA axis and adipokines: Clinical implications in paradigms of stress-related disorders. Expert Rev. Endocrinol. Metab. 2018, 13, 317–332. [Google Scholar] [CrossRef]
- Song, J.; Kang, S.M.; Kim, E.; Kim, C.H.; Song, H.T.; Lee, J.E. Adiponectin receptor-mediated signaling ameliorates cerebral cell damage and regulates the neurogenesis of neural stem cells at high glucose concentrations: An in vivo and in vitro study. Ell. Death Dis. 2015, 6, e1844. [Google Scholar] [CrossRef]
- Liu, J.; Guo, M.; Zhang, D.; Cheng, S.Y.; Liu, M.; Ding, J.; Scherer, P.E.; Liu, F.; Lu, X.Y. Adiponectin is critical in determining susceptibility to depressive behaviors and has antidepressant-like activity. Proc. Natl. Acad. Sci. USA 2012, 109, 12248–12253. [Google Scholar] [CrossRef]
- Morris, A.A.; Ahmed, Y.; Stoyanova, N.; Hooper, W.C.; De Staerke, C.; Gibbons, G.; Quyyumi, A.; Vaccarino, V. The association between depression and leptin is mediated by adiposity. Psychosom. Med. 2012, 74, 483–488. [Google Scholar] [CrossRef]
- Yoshida-Komiya, H.; Takano, K.; Fujimori, K.; Niwa, S.I. Plasma levels of leptin in reproductive-aged women with mild depressive and anxious states. Psychiatry Clin. Neurosci. 2014, 68, 574–581. [Google Scholar] [CrossRef]
- Martins, L.B.; Delevati Colpo, G.; Calarge, C.A.; Teixeira, A.L. Inflammatory Markers Profile in Older Adolescents During Treatment with Selective Serotonin Reuptake Inhibitors. J. Child Adolesc. Psychopharmacol. 2021, 31, 439–444. [Google Scholar] [CrossRef]
- Estienne, A.; Bongrani, A.; Reverchon, M.; Ramé, C.; Ducluzeau, P.H.; Froment, P.; Dupont, J. Involvement of Novel Adipokines, Chemerin, Visfatin, Resistin and Apelin in Reproductive Functions in Normal and Pathological Conditions in Humans and Animal Models. Int. J. Mol. Sci. 2019, 20, 4431. [Google Scholar] [CrossRef]
- Gutaj, P.; Sibiak, R.; Jankowski, M.; Awdi, K.; Bryl, R.; Mozdziak, P.; Kempisty, B.; Wender-Ozegowska, E. The Role of the Adipokines in the Most Common Gestational Complications. Int. J. Mol. Sci. 2020, 21, 9408. [Google Scholar] [CrossRef]
- Xiao, W.Q.; He, J.R.; Shen, S.Y.; Lu, J.H.; Kuang, Y.S.; Wei, X.L.; Qiu, X. Maternal circulating Leptin profile during pregnancy and gestational diabetes mellitus. Diabetes Res. Clin. Pract. 2020, 161, 108041. [Google Scholar] [CrossRef]
- Mazaki-Tovi, S.; Kanety, H.; Pariente, C.; Hemi, R.; Wiser, A.; Schiff, E.; Sivan, E. Maternal serum adiponectin levels during human pregnancy. J. Perinatol. 2007, 27, 77–781. [Google Scholar] [CrossRef]
- Cortelazzi, D.; Corbetta, S.; Ronzoni, S.; Pelle, F.; Marconi, A.; Cozzi, V.; Cetin, I.; Cortelazzi, R.; Beck-Peccoz, P.; Spada, A. Maternal and foetal Resistin and Adiponectin concentrations in normal and complicated pregnancies. Clin. Endocrinol. 2007, 66, 447–453. [Google Scholar] [CrossRef]
- Farias, D.R.; Pinto, T.D.J.P.; Teofilo, M.M.A.; Vilela, A.A.F.; dos Santos Vaz, J.; Nardi, A.E.; Kac, G. Prevalence of psychiatric disorders in the first trimester of pregnancy and factors associated with current suicide risk. Psychiatry Res. 2013, 210, 962–968. [Google Scholar] [CrossRef]
- Hamilton, M. The assessment of anxiety states by rating. Br. J. Med. Psychol. 1959, 32, 50–55. [Google Scholar] [CrossRef]
- Ramos-Brieva, J.A.; Cordero-Villafafila, A. A new validation of the Hamilton Rating Scale for Depression. J. Psychiatr. Res. 1988, 22, 21–28. [Google Scholar] [CrossRef]
- Zimmerman, M.; Thompson, J.S.; Diehl, J.M.; Balling, C.; Kiefer, R. Is the DSM-5 Anxious Distress Specifier Interview a valid measure of anxiety in patients with generalized anxiety disorder: A comparison to the Hamilton Anxiety Scale. Psychiatry Res. 2020, 286, 112859. [Google Scholar] [CrossRef]
- Cusin, C.; Yang, H.; Yeung, A.; Fava, M. Handbook of Clinical Rating Scales and Assessment in Psychiatry and Mental Health; Baer, L., Blais, M.A., Eds.; Humana Press: Boston, MA, USA, 2010; Chapter 1; pp. 7–35. [Google Scholar]
- Lobo, A.; Chamorro, L.; Luque, A.; Dal-Ré, R.; Badia, X.; Baró, E. Validation of the Spanish versions of the Montgomery-Asberg depression and Hamilton anxiety rating scales. Med. Clin. 2002, 118, 493–499. [Google Scholar] [CrossRef]
- Gonzalez-Gil, A.M.; Peschard-Franco, M.; Castillo, E.C.; Gutierrez-DelBosque, G.; Treviño, V.; Silva-Platas, C.; Perez-Villarreal, L.; Garcia-Rivas, G.; Elizondo-Montemayor, L. Myokine–adipokine cross-talk: Potential mechanisms for the association between plasma irisin and adipokines and cardiometabolic risk factors in Mexican children with obesity and the metabolic syndrome. Diabetol. Metab. Syndr. 2019, 11, 63. [Google Scholar] [CrossRef]
- Uzelac, P.S.; Li, X.; Lin, J.; Neese, L.D.; Lin, L.; Nakajima, S.T.; Bohler, H.; Lei, Z. Dysregulation of Leptin and Testosterone Production and Their Receptor Expression in the Human Placenta with Gestational Diabetes Mellitus. Placenta 2010, 31, 581–588. [Google Scholar] [CrossRef]
- Choi, H.M.; Doss, H.M.; Kim, K.S. Multifaceted Physiological Roles of Adiponectin in Inflammation and Diseases. Int. J. Mol. Sci. 2020, 21, 1219. [Google Scholar] [CrossRef]
- Żelechowska, P.; Kozłowska, E.; Pastwińska, J.; Agier, J.; Brzezińska-Błaszczyk, E. Adipocytokine Involvement in Innate Immune Mechanisms. J. Interferon Cytokine Res. 2018, 38, 527–538. [Google Scholar] [CrossRef]
- Guerre-Millo, M. Adipose tissue hormones. J. Endocrinol. Investig. 2002, 25, 855–861. [Google Scholar] [CrossRef]
- Wolf, A.M.; Wolf, D.; Rumpold, H.; Enrich, B.; Tilg, H. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem. Biophys. Res. Commun. 2004, 323, 630–635. [Google Scholar] [CrossRef]
- Xuan, D.; Han, Q.; Tu, Q.; Zhang, L.; Yu, L.; Murry, D.; Tu, T.; Tang, Y.; Lian, J.B.; Stein, G.S.; et al. Epigenetic Modulation in Periodontitis: Interaction of Adiponectin and JMJD3-IRF4 Axis in Macrophages. J. Cell Physiol. 2016, 231, 1090–1096. [Google Scholar] [CrossRef]
- Chandrasekar, B.; Boylston, W.H.; Venkatachalam, K.; Webster, N.J.; Prabhu, S.D.; Valente, A.J. Adiponectin blocks interleukin-18-mediated endothelial cell death via APPL1-dependent AMP-activated protein kinase (AMPK) activation and IKK/NF-κB/PTEN suppression. Biol. Chem. 2008, 283, 24889–24898. [Google Scholar] [CrossRef]
- Jain, V.; Kumar, A.; Agarwala, A.; Vikram, N.; Ramakrishnan, L. Adiponectin, interleukin-6 and high-sensitivity C-reactive protein levels in overweight/obese Indian children. Indian Pediatr. 2017, 54, 848–850. [Google Scholar] [CrossRef]
- Wong, C.K.; Cheung, P.F.; Lam, C.W. Leptin-mediated cytokine release and migration of eosinophils: Implications for immunopathophysiology of allergic inflammation. Eur. J. Immunol. 2007, 37, 2337–2348. [Google Scholar] [CrossRef]
- Suzukawa, M.; Nagase, H.; Ogahara, I.; Han, K.; Tashimo, H.; Shibui, A.; Koketsu, R.; Nakae, S.; Yamaguchi, M.; Ohta, K. Leptin enhances survival and induces migration, degranulation, and cytokine synthesis of human basophils. J. Immunol. 2011, 186, 5254–5260. [Google Scholar] [CrossRef]
- Gruen, M.L.; Hao, M.; Piston, D.W.; Hasty, A.H. Leptin requires canonical migratory signaling pathways for induction of monocyte and macrophage chemotaxis. Am. J. Physiol. Cell Physiol. 2007, 293, C1481–C1488. [Google Scholar] [CrossRef]
- Mattioli, B.; Straface, E.; Matarrese, P.; Quaranta, M.G.; Giordani, L.; Malorni, W.; Viora, M. Leptin as an immunological adjuvant: Enhanced migratory and CD8+/T cell stimulatory capacity of human dendritic cells exposed to Leptin. FASEB J. 2008, 22, 2012–2022. [Google Scholar] [CrossRef]
- Shirshev, S.V.; Nekrasova, I.V.; Orlova, E.G.; Gorbunova, O.L. Roles of Leptin and ghrelin in the regulation of the phenotype and cytokine production by NK cells from peripheral blood. Dokl. Biol. Sci. 2016, 470, 249–252. [Google Scholar] [CrossRef]
- Mattioli, B.; Straface, E.; Quaranta, M.G.; Giordani, L.; Viora, M. Leptin promotes differentiation and survival of human dendritic cells and licenses them for Th1 priming. J. Immunol. 2005, 174, 6820–6828. [Google Scholar] [CrossRef] [PubMed]
- Toossi, Z.; Hirsch, C.S.; Hamilton, B.D.; Knuth, C.K.; Friedlander, M.A.; Rich, E.A. Decreased production of TGF-b 1 by human alveolar macrophages compared with blood monocytes. J. Immunol. 1996, 156, 3461–3468. [Google Scholar] [CrossRef] [PubMed]
- Badoer, E. Cardiovascular and Metabolic Crosstalk in the Brain: Leptin and Resistin. Front. Physiol. 2021, 12, 639417. [Google Scholar] [CrossRef] [PubMed]
- Maniscalco, J.W.; Rinaman, L. Systemic Leptin dose-dependently increases STAT3 phosphorylation within hypothalamic and hindbrain nuclei. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 306, R576–R585. [Google Scholar] [CrossRef]
- Liu, J.; Guo, M.; Lu, X.Y. Leptin/LepRb in the Ventral Tegmental Area Mediates Anxiety-Related Behaviors. Int. J. Neuropsychopharmacol. 2015, 19, pyv115. [Google Scholar] [CrossRef]
- Zarouna, S.; Wozniak, G.; Papachristou, A.I. Mood disorders: A potential link between ghrelin and Leptin on human body? World J. Exp. Med. 2015, 5, 103–109. [Google Scholar] [CrossRef]
- Guo, M.; Lu, Y.; Garza, J.C.; Li, Y.; Chua, S.C.; Zhang, W.; Lu, B.; Lu, X.Y. Forebrain glutamatergic neurons mediate Leptin action on depression-like behaviors and synaptic depression. Transl. Psychiatry 2012, 2, e83. [Google Scholar] [CrossRef]
- Finger, B.C.; Dinan, T.G.; Cryan, J.F. Leptin-deficient mice retain normal appetitive spatial learning yet exhibit marked increases in anxiety-related behaviors. Psychopharmacology 2010, 210, 559–568. [Google Scholar] [CrossRef]
- Liu, J.; Perez, S.M.; Zhang, W.; Lodge, D.J.; Lu, X.Y. Selective deletion of the Leptin receptor in dopamine neurons produces anxiogenic-like behavior and increases dopaminergic activity in the amygdala. Mol. Psychiatry 2011, 16, 1024–1038. [Google Scholar] [CrossRef]
- Zhu, Y.; Wei, Y.; Duan, J.; Li, J.; Zhang, R.; Sun, J.; Wang, P.; Liu, Z.; Lu, J.; Wei, S.; et al. The role of Leptin in indirectly mediating “somatic anxiety” symptoms in major depressive disorder. Front. Psychiatry 2022, 13, 757958. [Google Scholar] [CrossRef]
- Lawson, E.A.; Miller, K.K.; Blum, J.I.; Meenaghan, E.; Misra, M.; Eddy, K.T.; Herzog, D.B.; Klibanski, A. Leptin levels are associated with decreased depressive symptoms in women across the weight spectrum, independent of body fat. Clin. Endocrinol. 2012, 76, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Bouillon-Minois, J.B.; Trousselard, M.; Thivel, D.; Benson, A.C.; Schmidt, J.; Moustafa, F.; Bouvier, D.; Dutheil, F. Leptin as a Biomarker of Stress: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 3350. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, L.; Orlando, G.; Recinella, L.; Michelotto, B.; Ferrante, C.; Vacca, M. Resistin, but not adiponectin, inhibits dopamine and norepinephrine release in the hypothalamus. Eur. J. Pharmacol. 2004, 493, 41–44. [Google Scholar] [CrossRef]
- Tripathi, D.; Kant, S.; Pandey, S.; Ehtesham, N.Z. Resistin in metabolism, inflammation, and disease. FEBS J. 2020, 287, 3141–3149. [Google Scholar] [CrossRef]
- López-Jaramillo, P.; Gómez-Arbeláez, D.; López-López, J.; López-López, C.; Martínez-Ortega, J.; Gómez-Rodríguez, A.; Triana-Cubillos, S. The role of leptin/adiponectin ratio in metabolic syndrome and diabetes. Horm. Mol. Biol. Clin. Investig. 2014, 18, 37–45. [Google Scholar] [CrossRef]
- Achari, A.E.; Jain, S.K. Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction. Int. J. Mol. Sci. 2017, 18, 1321. [Google Scholar] [CrossRef]
- Dos Santos, E.; Duval, F.; Vialard, F.; Dieudonné, M.N. The roles of leptin and adiponectin at the fetal-maternal interface in humans. Horm. Mol. Biol. Clin. Investig. 2015, 24, 47–63. [Google Scholar] [CrossRef]
- Kang, H.J.; Kim, J.W.; Choi, W.; Lee, J.Y.; Kim, S.W.; Shin, I.S.; Kim, J.M. Use of Serum Biomarkers to Aid Antidepressant Selection in Depressive Patients. Clin. Psychopharmacol. Neurosci. 2024, 22, 182–187. [Google Scholar] [CrossRef]
- Mahar, I.; Bambico, F.R.; Mechawar, N.; Nobrega, J.N. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci. Biobehav. Rev. 2014, 38, 173–192. [Google Scholar] [CrossRef]
- Leff-Gelman, P.; Mancilla-Herrera, I.; Flores-Ramos, M.; Cruz-Fuentes, C.; Reyes-Grajeda, J.P.; García-Cuétara Mdel, P.; Bugnot-Pérez, M.D.; Pulido-Ascencio, D.E. The immune system and the role of inflammation in perinatal depression. Neurosci. Bull. 2016, 32, 398–420. [Google Scholar] [CrossRef]
Subjects n = 139 | CTRL n = 33 | ANX n = 45 | AND + DEP n = 61 | |
---|---|---|---|---|
CLINICAL | Tukey Test | |||
(Parameters) | mean (SD) | mean (SD) | mean (SD) | p value |
age (years) | 27.6 (7.6) | 25.5 (5.8) | 25.2 (6.3) | 0.19 a |
gwk | 34.9 (3.7) | 34.8 (4.0) | 34.8 (3.6) | 0.96 a |
weight (Kg) | 68.2 (9.8) | 66.5 (8.9) | 67.4 (11.6) | 0.75 a |
BMI (Kg/m2) | 28.1 (3.7) | 28.1 (3.5) | 27.7 (4.0) | 0.82 a |
HARS (score) | 3.0 (0.6) | 24.1 (5.5) | 28.1 (5.3) | <0.001 b,c,d |
HDRS (score) | 4.5 (0.8) | 6.9 (1.0) | 32.3 (7.1) | <0.04 b,c,d |
gestation weeks | n (%) | n (%) | n (%) | |
27–29 | 4 (12.2) | 6 (13.3) | 7 (11.5) | |
30–32 | 8 (24.2) | 11 (24.4) | 16 (26.6) | |
33–35 | 8 (24.2) | 8 (17.8) | 12 (19.7) | |
36–38 | 7 (21.2) | 12 (26.7) | 12 (19.7) | |
39–41 | 6 (18.2) | 8 (17.8) | 14 (22.9) |
Demographic Parameters | CTRL | ANX | ANX + DEP |
---|---|---|---|
Participants | n = 33 | n = 45 | n = 61 |
Marital status | n (%) | n (%) | n (%) |
Never Married | 4 (12.2) | 6 (13.3) | 8 (13.1) |
Married | 7 (21.2) | 12 (26.7) | 16 (26.2) |
Divorced | 10 (30.3) | 8 (17.8) | 13 (21.3) |
Cohabiting | 17 (42.5) | 19 (42.2) | 24 (39.4) |
Education level | n (%) | n (%) | n (%) |
Elementary school | 0 (0) | 4 (8.9) | 9 (14.8) |
Middle school | 9 (27.3) | 14 (31.1) | 23 (37.7) |
High school | 13 (39.3) | 17 (37.8) | 16 (26.2) |
Bachelor’s degree | 8 (24.2) | 7 (15.5) | 8 (13.1) |
Postgraduate | 3 (9.1) | 3 (6.7) | 4 (6.6) |
Technician degree | 0 (0) | 0 (0) | 1 (1.6) |
Working status | n (%) | n (%) | n (%) |
Employee | 5 (15.1) | 10 (22.2) | 12 (19.7) |
Self-Employed | 3 (9.0) | 6 (13.3) | 8 (13.1) |
Unemployed | 12 (36.3) | 13 (28.9) | 21 (34.4) |
Home labor | 8 (24.2) | 8 (17.8) | 14 (23.0) |
Commerce | 2 (6.0) | 6 (13.3) | 6 (9.8) |
Profession | 3 (9.0) | 2 (4.5) | 0 (0) |
Adiponectin | Group | Mean (ng/mL) | SD | Tukey Test |
---|---|---|---|---|
p Value | ||||
CTRL | 2107.8 | 775.4 | ||
ANX a | 4401.6 | 1547.6 | <0.001 * | |
ANX + DEP b | 4845.7 | 1351.7 | <0.001 * | |
ANX vs ANX + DEP | 0.24 | |||
Tukey test | ||||
Adipsin | group | mean (ng/mL) | SD | p value |
CTRL | 581.2 | 159.9 | ||
ANX a | 1120.1 | 308.8 | <0.001 * | |
ANX + DEP b | 1038.9 | 290 | <0.001 * | |
ANX vs ANX + DEP | 0.31 | |||
Tukey test | ||||
Leptin | group | mean (ng/mL) | SD | p value |
CTRL | 62.7 | 9.8 | ||
ANX a | 96.7 | 21.7 | <0.001 * | |
ANX + DEP b | 99.8 | 22.6 | <0.001 * | |
ANX vs ANX + DEP | 0.71 | |||
Tukey test | ||||
Resistin | group | mean (ng/mL) | SD | p value |
CTRL | 60.6 | 11.5 | ||
ANX a | 71.3 | 18.5 | 0.06 | |
ANX + DEP b | 93.3 | 25.7 | <0.001 * | |
ANX vs ANX + DEP | <0.001 * |
(A) | |||||||||
ANX | Adipokine | gwk | Weight | BMI | HARS | Adiponectin | Leptin | Resistin | |
Adiponectin | |||||||||
Corr. | 0.47 ** | — | — | 0.33 * | — | — | 0.40 * | ||
Sig. | 0.001 | — | — | 0.02 | — | — | 0.006 | ||
Leptin | |||||||||
Corr. | 0.67 ** | 0.34 * | 0.33 * | 0.48 ** | — | — | 0.38 ** | ||
Sig. | <0.001 | 0.02 | 0.02 | 0.003 | — | — | 0.009 | ||
Resistin | |||||||||
Corr. | 0.72 ** | — | — | 0.46 ** | 0.40 ** | 0.38 ** | — | ||
Sig. | <0.001 | — | — | 0.001 | 0.006 | 0.009 | — | ||
(B) | |||||||||
ANX+ DEP | Adipokine | gwk | weight | BMI | HARS | HDRS | Adiponectin | Leptin | Resistin |
Adiponectin | |||||||||
Corr. | 0.35 * | 0.34 * | — | 0.28 | — | — | 0.40 ** | 0.38* | |
Sig. | 0.01 | 0.02 | — | 0.06 | — | — | 0.006 | 0.01 | |
Leptin | |||||||||
Corr. | 0.46 ** | 0.44 ** | 0.31 * | 0.52 ** | — | 0.40 ** | — | 0.43 ** | |
Sig. | 0.001 | 0.002 | 0.02 | <0.001 | — | 0.006 | — | 0.002 | |
Resistin | |||||||||
Corr. | 0.54 ** | — | 0.34 * | 0.41 ** | 0.46 ** | 0.38 * | 0.43 ** | — | |
Sig. | <0.001 | — | 0.02 | 0.004 | 0.001 | 0.01 | 0.002 | — |
Group | Controled for | Adipokine | Weight | BMI | HARS | HDRS | Adiponectin | Leptin | Resistin |
ANX | gwk | Adiponectin | |||||||
ANX + DEP | Corr. | — | — | 0.33 ** | — | — | 0.47 ** | 0.31 ** | |
Sig. | — | — | 0.001 | — | — | <0.001 | 0.001 | ||
Leptin | |||||||||
Corr. | 0.21 * | 0.23 * | 0.34 ** | — | 0.47 ** | — | 0.49 ** | ||
Sig. | 0.03 | 0.01 | 0.001 | — | <0.001 | — | <0.001 | ||
Resistin | |||||||||
Corr. | — | 0.21 | 0.30 * | 0.48 ** | 0.31 ** | 0.49 ** | — | ||
Sig. | — | 0.05 | 0.001 | <0.001 | 0.001 | <0.001 | — | ||
Group | Controled for | Adipokine | gwk | Weight | HARS | HDRS | Adiponectin | Leptin | Resistin |
ANX | BMI | Adiponectin | |||||||
ANX + DEP | Corr. | — | — | 0.23 * | — | — | 0.49 ** | 0.32 ** | |
Sig. | — | — | 0.01 | — | — | <0.001 | 0.001 | ||
Leptin | |||||||||
Corr. | 0.27 ** | 0.29 ** | 0.25 ** | — | 0.49 ** | — | 0.23 * | ||
Sig. | 0.003 | 0.007 | 0.005 | — | <0.001 | — | 0.03 | ||
Resistin | |||||||||
Corr. | 0.34 ** | — | 0.45 ** | 0.24 ** | 0.32 ** | 0.23 * | — | ||
Sig. | 0.002 | — | <0.001 | 0.009 | 0.001 | 0.03 | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camacho-Arroyo, I.; Flores-Ramos, M.; Mancilla-Herrera, I.; Cruz-Coronel, F.M.; Farfan-Labonne, B.; Jiménez-Aquino, L.E.; Meza-Rodríguez, M.d.P.; Hernández-Ruiz, J.; Leff-Gelman, P. Alterations in Adipokine Levels Are Associated with Human Perinatal Anxiety and Depression. J. Clin. Med. 2025, 14, 4102. https://doi.org/10.3390/jcm14124102
Camacho-Arroyo I, Flores-Ramos M, Mancilla-Herrera I, Cruz-Coronel FM, Farfan-Labonne B, Jiménez-Aquino LE, Meza-Rodríguez MdP, Hernández-Ruiz J, Leff-Gelman P. Alterations in Adipokine Levels Are Associated with Human Perinatal Anxiety and Depression. Journal of Clinical Medicine. 2025; 14(12):4102. https://doi.org/10.3390/jcm14124102
Chicago/Turabian StyleCamacho-Arroyo, Ignacio, Mónica Flores-Ramos, Ismael Mancilla-Herrera, Fausto Manuel Cruz-Coronel, Blanca Farfan-Labonne, Laura Elena Jiménez-Aquino, María del Pilar Meza-Rodríguez, Joselin Hernández-Ruiz, and Philippe Leff-Gelman. 2025. "Alterations in Adipokine Levels Are Associated with Human Perinatal Anxiety and Depression" Journal of Clinical Medicine 14, no. 12: 4102. https://doi.org/10.3390/jcm14124102
APA StyleCamacho-Arroyo, I., Flores-Ramos, M., Mancilla-Herrera, I., Cruz-Coronel, F. M., Farfan-Labonne, B., Jiménez-Aquino, L. E., Meza-Rodríguez, M. d. P., Hernández-Ruiz, J., & Leff-Gelman, P. (2025). Alterations in Adipokine Levels Are Associated with Human Perinatal Anxiety and Depression. Journal of Clinical Medicine, 14(12), 4102. https://doi.org/10.3390/jcm14124102