Prognostic Value of Systemic Inflammatory Response Markers for CIN2+ Recurrence After Loop Electrosurgical Excision Procedure: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size
2.2. Statistical Analysis
3. Results
3.1. Comparison of Recurrent and Non-Recurrent Cases
3.2. Comparison of DFS Based on SIR Parameters
3.3. Evaluation of Factors Associated with Recurrence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Montz, F.J. Management of High-Grade Cervical Intraepithelial Neoplasia and Low-Grade Squamous Intraepithelial Lesion and Potential Complications. Clin. Obstet. Gynecol. 2000, 43, 394–409. [Google Scholar] [CrossRef] [PubMed]
- Walboomers, J.M.M.; Jacobs, M.V.; Manos, M.M.; Bosch, F.X.; Kummer, J.A.; Shah, K.V.; Snijders, P.J.F.; Peto, J.; Meijer, C.J.L.M.; Muñoz, N. Human Papillomavirus Is a Necessary Cause of Invasive Cervical Cancer Worldwide. J. Pathol. 1999, 189, 12–19. [Google Scholar] [CrossRef]
- Bansal, N.; Wright, J.D.; Cohen, C.J.; Herzog, T.J. Natural History of Established Low Grade Cervical Intraepithelial (CIN 1) Lesions. Anticancer. Res. 2008, 28, 1763–1766. [Google Scholar] [PubMed]
- ACOG Practice Bulletin #66: Management of Abnormal Cervical. Obstet. Gynecol. 2005, 106, 645–664. [CrossRef]
- Pinto, A.P.; Crum, C.P. Natural History of Cervical Neoplasia: Defining Progression and Its Consequence. Clin. Obstet. Gynecol. 2000, 43, 352–362. [Google Scholar] [CrossRef]
- Castle, P.E.; Gage, J.C.; Wheeler, C.M.; Schiffman, M. The Clinical Meaning of a Cervical Intraepithelial Neoplasia Grade 1 Biopsy. Obstet. Gynecol. 2011, 118, 1222–1229. [Google Scholar] [CrossRef]
- Sørbye, S.W.; Arbyn, M.; Fismen, S.; Gutteberg, T.J.; Mortensen, E.S. HPV E6/E7 MRNA Testing Is More Specific than Cytology in Post-Colposcopy Follow-Up of Women with Negative Cervical Biopsy. PLoS ONE 2011, 6, e26022. [Google Scholar] [CrossRef]
- Arbyn, M.; Redman, C.W.E.; Verdoodt, F.; Kyrgiou, M.; Tzafetas, M.; Ghaem-Maghami, S.; Petry, K.-U.; Leeson, S.; Bergeron, C.; Nieminen, P.; et al. Incomplete Excision of Cervical Precancer as a Predictor of Treatment Failure: A Systematic Review and Meta-Analysis. Lancet Oncol. 2017, 18, 1665–1679. [Google Scholar] [CrossRef]
- Oğlak, S.C.; Obut, M. Comparison of Pap-smear and Colposcopy in the Absence of HPV Test for the Diagnosis of Premalignant and Malignant Cervical Lesions. East. J. Med. 2020, 25, 299–304. [Google Scholar] [CrossRef]
- Paraskevaidis, E. Human Papillomavirus Testing and the Outcome of Treatment for Cervical Intraepithelial Neoplasia. Obstet. Gynecol. 2001, 98, 833–836. [Google Scholar] [CrossRef]
- Santesso, N.; Mustafa, R.A.; Wiercioch, W.; Kehar, R.; Gandhi, S.; Chen, Y.; Cheung, A.; Hopkins, J.; Khatib, R.; Ma, B.; et al. Systematic Reviews and Meta-Analyses of Benefits and Harms of Cryotherapy, LEEP, and Cold Knife Conization to Treat Cervical Intraepithelial Neoplasia. Int. J. Gynecol. Obstet. 2016, 132, 266–271. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, P.; Arduino, B.; Borgo, M.; Saccone, G.; Venturella, R.; Di Cello, A.; Zullo, F. Loop Electrosurgical Excision Procedure versus Cryotherapy in the Treatment of Cervical Intraepithelialneoplasia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Gynecol. Minim. Invasive Ther. 2018, 7, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Bottazzi, B.; Riboli, E.; Mantovani, A. Aging, Inflammation and Cancer. Semin. Immunol. 2018, 40, 74–82. [Google Scholar] [CrossRef]
- Whiteside, T.L. The Tumor Microenvironment and Its Role in Promoting Tumor Growth. Oncogene 2008, 27, 5904–5912. [Google Scholar] [CrossRef]
- Lin, W.-W.; Karin, M. A Cytokine-Mediated Link between Innate Immunity, Inflammation, and Cancer. J. Clin. Investig. 2007, 117, 1175–1183. [Google Scholar] [CrossRef]
- de Visser, K.E.; Eichten, A.; Coussens, L.M. Paradoxical Roles of the Immune System during Cancer Development. Nat. Rev. Cancer 2006, 6, 24–37. [Google Scholar] [CrossRef]
- Pesic, M.; Greten, F.R. Inflammation and Cancer: Tissue Regeneration Gone Awry. Curr. Opin. Cell Biol. 2016, 43, 55–61. [Google Scholar] [CrossRef]
- Huang, G.; Gao, H.; Chen, Y.; Lin, W.; Shen, J.; Xu, S.; Liu, D.; Wu, Z.; Lin, X.; Jiang, T.; et al. Platelet-to-Lymphocyte Ratio (PLR) as the Prognostic Factor for Recurrence/Residual Disease in HSIL Patients After LEEP. J. Inflamm. Res. 2023, 16, 1923–1936. [Google Scholar] [CrossRef] [PubMed]
- Tas, M.; Yavuz, A.; Ak, M.; Ozcelik, B. Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio in Discriminating Precancerous Pathologies from Cervical Cancer. J. Oncol. 2019, 2019, 1–6. [Google Scholar] [CrossRef]
- Xu, M.; Wu, Q.; Cai, L.; Sun, X.; Xie, X.; Sun, P. Systemic Inflammatory Score Predicts Overall Survival in Patients with Cervical Cancer. J. Cancer 2021, 12, 3671–3677. [Google Scholar] [CrossRef]
- Roxburgh, C.S.; McMillan, D.C. Role of Systemic Inflammatory Response in Predicting Survival in Patients with Primary Operable Cancer. Future Oncol. 2010, 6, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Audrito, V.; Managò, A.; Gaudino, F.; Sorci, L.; Messana, V.G.; Raffaelli, N.; Deaglio, S. NAD-Biosynthetic and Consuming Enzymes as Central Players of Metabolic Regulation of Innate and Adaptive Immune Responses in Cancer. Front. Immunol. 2019, 10, 1720. [Google Scholar] [CrossRef] [PubMed]
- Solomon, D. The 2001 Bethesda System: Terminology for Reporting Results of Cervical Cytology. JAMA 2002, 287, 2114. [Google Scholar] [CrossRef]
- Perkins, R.B.; Guido, R.S.; Castle, P.E.; Chelmow, D.; Einstein, M.H.; Garcia, F.; Huh, W.K.; Kim, J.J.; Moscicki, A.-B.; Nayar, R.; et al. 2019 ASCCP Risk-Based Management Consensus Guidelines for Abnormal Cervical Cancer Screening Tests and Cancer Precursors. J. Low. Genit. Tract. Dis. 2020, 24, 102–131. [Google Scholar] [CrossRef]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. PROC: An Open-Source Package for R and S+ to Analyze and Compare ROC Curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Sjoberg, D.D.; Whiting, K.; Curry, M.; Lavery, J.A.; Larmarange, J. Reproducible Summary Tables with the Gtsummary Package. R. J. 2021, 13, 570. [Google Scholar] [CrossRef]
- Kassambara, A.; Kosinski, M.; Biecek, P. Survminer: Drawing Survival Curves Using “Ggplot2”. Available online: https://cran.r-project.org/web/packages/survminer/index.html (accessed on 13 October 2024).
- Therneau, T. A Package for Survival Analysis in R. Available online: https://cran.r-project.org/web/packages/survival/index.html (accessed on 13 October 2024).
- Ertorsun, A.D.; Bağ, B.; Uzar, G.; Turanoğlu, M.A. ROC (Receiver Operating Characteristic) Egrisi Yontemi Ile Tani Testlerinin Performanslarinin Degerlendirilmesi. Available online: http://tip.baskent.edu.tr/kw/upload/464/dosyalar/cg/sempozyum/ogrsmpzsnm12/10.2.pdf (accessed on 29 December 2022).
- Lei, H.; Xu, S.; Mao, X.; Chen, X.; Chen, Y.; Sun, X.; Sun, P. Systemic Immune-Inflammatory Index as a Predictor of Lymph Node Metastasis in Endometrial Cancer. J. Inflamm. Res. 2021, 14, 7131–7142. [Google Scholar] [CrossRef]
- Chun, S.; Shin, K.; Kim, K.H.; Kim, H.Y.; Eo, W.; Lee, J.Y.; Namkung, J.; Kwon, S.H.; Koh, S.B.; Kim, H.-B. The Neutrophil-Lymphocyte Ratio Predicts Recurrence of Cervical Intraepithelial Neoplasia. J. Cancer 2017, 8, 2205–2211. [Google Scholar] [CrossRef]
- Farzaneh, F.; Faghih, N.; Hosseini, M.S.; Arab, M.; Ashrafganjoei, T.; Bahman, A. Evaluation of Neutrophil–Lymphocyte Ratio as a Prognostic Factor in Cervical Intraepithelial Neoplasia Recurrence. Asian Pac. J. Cancer Prev. 2019, 20, 2365–2372. [Google Scholar] [CrossRef]
- Sun, P.; Song, Y.; Ruan, G.; Mao, X.; Kang, Y.; Dong, B.; Lin, F. Clinical Validation of the PCR-Reverse Dot Blot Human Papillomavirus Genotyping Test in Cervical Lesions from Chinese Women in the Fujian Province: A Hospital-Based Population Study. J. Gynecol. Oncol. 2017, 28, e50. [Google Scholar] [CrossRef]
- Chen, L.; Dong, B.; Zhang, Q.; Mao, X.; Lin, W.; Ruan, G.; Kang, Y.; Sun, P. HR-HPV Viral Load Quality Detection Provide More Accurate Prediction for Residual Lesions after Treatment: A Prospective Cohort Study in Patients with High-Grade Squamous Lesions or Worse. Med. Oncol. 2020, 37, 37. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, S.R.; Le, T.; Lockhart, A.; Sanusi, A.; Dal Santo, L.; Davis, M.; McKinney, D.A.; Brown, M.; Poole, C.; Willame, C.; et al. Patterns of Persistent HPV Infection after Treatment for Cervical Intraepithelial Neoplasia (CIN): A Systematic Review. Int. J. Cancer 2017, 141, 8–23. [Google Scholar] [CrossRef]
- Bilir, F.; Chkhikvadze, M.; Yilmaz, A.Y.; Kose, O.; Arıöz, D.T. Prognostic Value of Systemic Inflammation Response Index in Patients with Persistent Human Papilloma Virus Infection. Ginekol. Pol. 2022, 93, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, F.; Bonetti, E.; Oliveri, G.; Giannini, A.; Gozzini, E.; Conforti, J.; Ferrari, F.A.; Salinaro, F.; Tisi, G.; Ciravolo, G.; et al. Cold Knife Versus Carbon Dioxide for the Treatment of Preinvasive Cervical Lesion. Medicina 2024, 60, 1056. [Google Scholar] [CrossRef] [PubMed]
- Mosseri, J.; Benoit, L.; Koual, M.; Nguyen-Xuan, H.-T.; Bentivegna, E.; Bats, A.-S.; Azaïs, H. Margin Status after Loop Electrosurgical Excision Procedure (LEEP) and Laser Excision in Patients with High-Grade Cervical Neoplasia. J. Gynecol. Obstet. Hum. Reprod. 2024, 53, 102707. [Google Scholar] [CrossRef]
- Athanasiou, A.; Veroniki, A.A.; Efthimiou, O.; Kalliala, I.; Naci, H.; Bowden, S.; Paraskevaidi, M.; Arbyn, M.; Lyons, D.; Martin-Hirsch, P.; et al. Comparative Effectiveness and Risk of Preterm Birth of Local Treatments for Cervical Intraepithelial Neoplasia and Stage IA1 Cervical Cancer: A Systematic Review and Network Meta-Analysis. Lancet Oncol. 2022, 23, 1097–1108. [Google Scholar] [CrossRef]
- Wolrd Health Organization. WHO Guidelines: Use of Cryotherapy for Cervical Intraepithelial Neoplasia; WHO: Geneva, Switzerland, 2011; ISBN 9789241502856. [Google Scholar]
Variables | n (%) | |
---|---|---|
Preoperative cervical cytology | NILM | 303 (29.0%) |
Low-grade cytology (ASCUS/LSIL) | 346 (33.0%) | |
High-grade cytology (ASC-H/HSIL/AGC) | 370 (35.3%) | |
Insufficient | 17 (1.6%) | |
Preoperative HPV-DNA * | HPV-DNA 16 and/or 18 positive | 364 (72) |
Other HPV-DNA types positive | 134 (27) | |
Negative | 5 (1.0) | |
Postoperative HPV-DNA ** | HPV-DNA 16 and/or 18 positive | 14 (25) |
Other HPV-DNA types positive | 5 (8.9) | |
Negative | 37 (66) | |
Histological results of colposcopy | CIN1 | 138 (13) |
CIN2 | 518 (50) | |
CIN3 | 237 (23) | |
Negative | 133 (13) | |
Histological results of colposcopy + ECC | CIN1 | 43 (4.2) |
CIN2 | 72 (7.0) | |
CIN3 | 53 (5.2) | |
Negative | 858 (84) | |
LEEP | CIN1 | 225 (21) |
CIN2 | 286 (27) | |
CIN3 | 299 (28) | |
Negative | 258 (24) | |
LEEP + ECC | CIN1 | 19 (1.8) |
CIN2 | 20 (1.9) | |
CIN3 | 18 (1.7) | |
Negative | 1011 (95) | |
Surgical margin | Negative | 980 (91.8) |
Positive | 88 (8.2) | |
Gland involvement | Negative | 836 (78) |
Positive | 232 (22) |
Variables | Recurrence-Positive (N = 32) n (%) | Recurrence-Negative (N = 694) n (%) | p | |
---|---|---|---|---|
Age | <30 | 3 (9.4) | 59 (8.5) | 0.548 a |
30–50 | 27 (84) | 543 (78) | ||
>50 | 2 (6.2) | 92 (13) | ||
Preoperative cervical cytology | NILM (Negative) | 8 (25.0%) | 183 (26.4%) | 0.801 b |
Low-grade cytology (ASCUS/LSIL) | 13 (40.6%) | 244 (35.2%) | ||
High-grade cytology (ASC-H/HSIL/AGC) | 10 (31.3%) | 236 (34.0%) | ||
Insufficient | 0 (0.0%) | 14 (2.0%) | ||
Preoperative HPV-DNA | HPV-DNA 16 and/or 18 positive | 13 (76) | 240 (73) | 1.0 a |
Other HPV-DNA types positive | 4 (24) | 86 (26) | ||
Negative | 0 (0) | 3 (0.9) | ||
Postoperative HPV-DNA | HPV-DNA 16 and/or 18 positive | 1 (100) | 13 (24) | 0.339 a |
Other HPV-DNA types positive | 0 (0) | 5 (9.1) | ||
Negative | 0 (0) | 37 (67) | ||
Histological results of colposcopy | CIN1 | 3 (11) | 100 (15) | 0.650 a |
CIN2 | 16 (57) | 331 (49) | ||
CIN3 | 8 (29) | 166 (25) | ||
Negative | 1 (3.6) | 72 (11) | ||
Histological result of colposcopy + ECC | CIN1 | 1 (3.6) | 30 (4.5) | 0.050 a |
CIN2 | 6 (21) | 44 (6.6) | ||
CIN3 | 1 (3.6) | 35 (5.2) | ||
Negative | 20 (71) | 559 (84) | ||
LEEP | CIN1 | 3 (9.4) | 148 (21) | 0.134 a |
CIN2 | 12 (38) | 193 (28) | ||
CIN3 | 13 (41) | 204 (29) | ||
Negative | 4 (12) | 149 (21) | ||
LEEP + ECC | CIN1 | 1 (3.1) | 13 (1.9) | 0.320 b |
CIN2 | 1 (3.1) | 10 (1.4) | ||
CIN3 | 1 (3.1) | 12 (1.7) | ||
Negative | 29 (91) | 659 (95) | ||
Surgical margin | Negative | 30 (94) | 638 (92) | 1.0 b |
Positive | 2 (6.2) | 56 (8.1) | ||
Gland involvement | Negative | 24 (75) | 538 (78) | 0.739 c |
Positive | 8 (25) | 156 (22) | ||
Median (25th–75th quartile) | Median (25th–75th quartile) | |||
LEEP specimen size (cm) | 0.90 (0.58–1.13) | 1.00 (0.70–1.00) | 0.840 d | |
Follow-up duration (month) | 18 (9–31) | 22 (10–41) | 0.270 d | |
Hemoglobin (g/dL) | 12.90 (12.20–13.72) | 12.90 (12.10–13.60) | 0.869 d | |
Hematocrit (%) | 39.0 (36.9–42.1) | 38.7 (36.5–40.7) | 0.456 d | |
RBC (106/µL) | 4.64 (4.40–4.90) | 4.55 (4.30–4.80) | 0.161 d | |
MCV (fL) | 85 (81–87) | 85 (82–89) | 0.331 d | |
Platelet (103/µL) | 261 (227–306) | 273 (234–315) | 0.385 d | |
WBC (103/µL) | 7.51 (6.08–8.33) | 7.71 (6.37–9.27) | 0.193 d | |
Neutrophil (103/µL) | 4.38 (3.50–5.16) | 4.52 (3.57–5.70) | 0.438 d | |
Monocyte (103/µL) | 0.54 (0.44–0.61) | 0.50 (0.40–0.64) | 0.746 d | |
Eosinophil (103/µL) | 0.12 (0.08–0.20) | 0.12 (0.08–0.21) | 0.886 d | |
Lymphocyte (103/µL) | 2.15 (1.60–2.42) | 2.40 (1.90–2.80) | 0.031 d | |
NLR | 2.07 (1.74–2.68) | 1.94 (1.53–2.50) | 0.213 d | |
PLR | 136 (113–155) | 116 (95–145) | 0.057 d | |
LMR | 3.86 (3.18–5.00) | 4.57 (3.72–5.62) | 0.011 d |
Variables | Univariate | Multivariate | |||
---|---|---|---|---|---|
HR (%95 CI) | p | HR (%95 CI) | p | ||
Age | <30 | 0.718 | |||
30–50 | 0.87 (0.26–2.88) | ||||
>50 | 0.52 (0.09–3.12) | ||||
Preoperative HPV-DNA | Negative | 0.845 | |||
HPV-DNA 16 and/or 18 positive | 0.81 (0.06–11.1) | ||||
Other HPV-DNA types positive | 0.60 (0.05–8.06) | ||||
Postoperative HPV-DNA | Negative | 0.424 | |||
HPV-DNA 16 and/or 18 positive | 1.37 (0.08–22.8) | ||||
Other HPV-DNA types positive | 8.21 (0.38–176) | ||||
LEEP | Negative | 0.123 | |||
CIN1 | 0.82 (0.18–3.67) | ||||
CIN2 | 2.36 (0.76–7.33) | ||||
CIN3 | 2.36 (0.77–7.24) | ||||
Surgical margin positivity | 0.74 (0.18–3.08) | 0.660 | |||
Gland involvement | 1.21 (0.54–2.70) | 0.646 | |||
Lymphocyte ≤ 1600 cell/µL) | 2.53 (1.16–5.50) | 0.030 * | 1.21 (0.52–2.82) | 0.655 | |
NLR > 1.71 | 2.38 (0.98–5.79) | 0.038 * | 1.41 (0.55–3.63) | 0.467 | |
PLR > 118.4 | 4.02 (1.73–9.35) | <0.001 * | 3.06 (1.23–7.58) | 0.011 * | |
LMR ≤ 3.41 | 2.77 (1.36–5.63) | 0.007 * | 1.84 (0.85–3.95) | 0.127 | |
LEEP specimen size >1.4 cm | 1.90 (0.81–4.47) | 0.166 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katran, S.E.; Arkan, K.; Oğlak, S.C.; Özçivit Erkan, İ.B.; Cebeci, G.; Çelik, E. Prognostic Value of Systemic Inflammatory Response Markers for CIN2+ Recurrence After Loop Electrosurgical Excision Procedure: A Retrospective Cohort Study. J. Clin. Med. 2025, 14, 4059. https://doi.org/10.3390/jcm14124059
Katran SE, Arkan K, Oğlak SC, Özçivit Erkan İB, Cebeci G, Çelik E. Prognostic Value of Systemic Inflammatory Response Markers for CIN2+ Recurrence After Loop Electrosurgical Excision Procedure: A Retrospective Cohort Study. Journal of Clinical Medicine. 2025; 14(12):4059. https://doi.org/10.3390/jcm14124059
Chicago/Turabian StyleKatran, Sevim Ezgi, Kevser Arkan, Süleyman Cemil Oğlak, İpek Betül Özçivit Erkan, Gözde Cebeci, and Engin Çelik. 2025. "Prognostic Value of Systemic Inflammatory Response Markers for CIN2+ Recurrence After Loop Electrosurgical Excision Procedure: A Retrospective Cohort Study" Journal of Clinical Medicine 14, no. 12: 4059. https://doi.org/10.3390/jcm14124059
APA StyleKatran, S. E., Arkan, K., Oğlak, S. C., Özçivit Erkan, İ. B., Cebeci, G., & Çelik, E. (2025). Prognostic Value of Systemic Inflammatory Response Markers for CIN2+ Recurrence After Loop Electrosurgical Excision Procedure: A Retrospective Cohort Study. Journal of Clinical Medicine, 14(12), 4059. https://doi.org/10.3390/jcm14124059