The Rainbow and the Umbrella of Temporomandibular Disorders—Total Antioxidant Capacity and Total Oxidant Status in Patients with Myofascial Pain with Referral
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Issues
2.2. Subjects and the Sample Size
- Diagnosis of myofascial pain with referral with respect to DC/TMD;
- Pain within the craniofacial and/or craniomandibular area (Visual analogue scale—VAS ≥ 8 points);
- Full natural dentition, class I of Angle’s Molar Classification and canine position—all considered as a criteria of normal physiological occlusion;
- No current history of orthodontic treatment or retention status above three years after completion of treatment.
- Injuries within the craniofacial and/or craniomandibular area;
- Any surgical treatment within the craniofacial and/or craniomandibular region;
- Any occlusal splint therapy;
- Any prosthetic treatment;
- Any physiotherapy within the craniofacial and/or craniomandibular area;
- Any diseases associated with the activity of the masticatory muscles;
- Metabolic disorders;
- Any medications, regardless of whether they have been used chronically in the past or present;
- Any individually tailored diet and taking supplements in the last six months.
2.3. Saliva Collection
2.4. Biochemical Determination
2.4.1. Non-Enzymatic Antioxidants
2.4.2. Oxidation-Reduction Balance Parameters
2.5. Statistical Analysis
3. Results
Biomarkers and Saliva Flow Rate | Gender | Study Group Patients with Myofascial Pain with Referral n = 44 | Control Group n = 44 | Mann–Whitney U-Test | Power | Effect Size | Sample Size for 80% Test Power | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | ± SD | Median | Mean | ± SD | Median | p | 1-β | Cohen’s d | n | ||
GSH | Women | 71.610 | 31.810 | 69.380 | 11.280 | 12.060 | 6.231 | <0.000 **** | 1.000 | 2.508 | 9 |
Men | 86.240 | 122.000 | 45.550 | 8.966 | 9.169 | 5.974 | <0.000 **** | 0.654 | 0.893 | 47 | |
Women + Men | 75.600 | 67.670 | 57.380 | 10.120 | 10.650 | 6.231 | <0.000 **** | 1.000 | 1.355 | 21 | |
TAC | Women | 4.329 | 1.625 | 4.202 | 6.061 | 10.080 | 1.502 | 0.056 | 0.132 | 0.240 | 594 |
Men | 4.857 | 5.805 | 3.022 | 5.020 | 6.699 | 2.457 | 0.403 | 0.051 | 0.026 | 53,221 | |
Women + Men | 4.473 | 3.253 | 4.069 | 5.541 | 8.474 | 2.049 | 0.027 * | 0.117 | 0.166 | 1190 | |
TOS | Women | 17.060 | 11.580 | 15.770 | 12.390 | 15.080 | 6.690 | 0.045 * | 0.225 | 0.347 | 284 |
Men | 19.370 | 24.940 | 12.250 | 13.210 | 16.820 | 5.618 | 0.179 | 0.119 | 0.290 | 432 | |
Women + Men | 17.690 | 16.030 | 13.350 | 12.800 | 15.790 | 6.130 | 0.015 * | 0.286 | 0.307 | 351 | |
OSI | Women | 424.900 | 339.800 | 363.300 | 1329.000 | 2775.000 | 307.300 | 0.841 | 0.353 | 0.457 | 165 |
Men | 387.900 | 257.500 | 355.700 | 717.400 | 1005.000 | 235.700 | 0.763 | 0.220 | 0.449 | 180 | |
Women + Men | 414.800 | 317.000 | 361.700 | 1023.000 | 2085.000 | 247.900 | 0.633 | 0.455 | 0.408 | 200 | |
Saliva flow rate | Women | 0.593 | 0.305 | 0.600 | 0.427 | 0.126 | 0.400 | 0.040 * | 0.692 | 0.711 | 70 |
Men | 0.675 | 0.415 | 0.500 | 0.498 | 0.183 | 0.525 | 0.375 | 0.309 | 0.554 | 120 | |
Women + Men | 0.616 | 0.335 | 0.550 | 0.463 | 0.159 | 0.400 | 0.039 * | 0.752 | 0.583 | 99 |
4. Discussion
5. Conclusions
- Patients with temporomandibular myofascial pain with referral exhibit oxidative imbalance, as evidenced by increased salivary concentrations of the non-enzymatic antioxidant glutathione, elevated total oxidative status, and statistically significant differences in total antioxidant capacity compared to the control group.
- Despite the observed alterations in individual markers of oxidative stress (TAC, TOS), no statistically significant differences were found in the oxidative stress index between patients with temporomandibular myofascial pain with referral and the control group.
- Patients with temporomandibular disorders—specifically myofascial pain with referral may benefit from individually tailored physical activity, proper nutrition and eating behaviors, as well as targeted supplementation, in order to maintain oxidative-antioxidant balance. The “rainbow strategy” could play a key role in this approach.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TMDs | Temporomandibular disorders |
ROS | Reactive oxygen species |
RNS | Reactive nitrogen species |
DC/TMD | Diagnostic Criteria for Temporomandibular Disorders |
VAS | Visual analogue scale |
GSH | Reduced glutathione |
TOS | The total oxidant status |
TAC | The total antioxidant capacity |
OSI | The oxidative stress index |
References
- Brighenti, N.; Battaglino, A.; Sinatti, P.; Abuín-Porras, V.; Sánchez Romero, E.A.; Pedersini, P.; Villafañe, J.H. Effects of an interdisciplinary approach in the management of temporomandibular disorders: A scoping review. Int. J. Environ. Res. Public Health 2023, 20, 2777. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, E.; Ohrbach, R.; Truelove, E.; Look, J.; Anderson, G.; Goulet, J.-P.; List, T.; Svensson, P.; Gonzalez, Y.; Lobbezoo, F. Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: Recommendations of the International RDC/TMD Consortium Network and Orofacial Pain Special Interest Group. J. Oral Facial Pain Headache 2014, 28, 6. [Google Scholar] [CrossRef] [PubMed]
- Kapos, F.P.; Exposto, F.G.; Oyarzo, J.F.; Durham, J. Temporomandibular disorders: A review of current concepts in aetiology, diagnosis and management. Oral Surg. 2020, 13, 321–334. [Google Scholar] [CrossRef]
- Widyadharma, I.P.E. The role of oxidative stress, inflammation and glial cell in pathophysiology of myofascial pain. Adv. Psychiatry Neurol./Postępy Psychiatr. Neurologii 2021, 29, 180–186. [Google Scholar] [CrossRef]
- Koca, İ.; Tutoglu, A.; Boyacı, A.; Pehlivan, Y.; Yıldız, H.; Turkbeyler, I.; Sarıcicek, E.; Taysi, S.; Onat, A.M. An evaluation of oxidative stress and antioxidant capacity in patients with myofascial pain syndrome. Mod. Rheumatol. 2014, 24, 992–996. [Google Scholar] [CrossRef] [PubMed]
- Duarte, F.C.; West, D.W.; Linde, L.D.; Hassan, S.; Kumbhare, D.A. Re-examining myofascial pain syndrome: Toward biomarker development and mechanism-based diagnostic criteria. Curr. Rheumatol. Rep. 2021, 23, 69. [Google Scholar] [CrossRef]
- Gianò, M.; Franco, C.; Castrezzati, S.; Rezzani, R. Involvement of Oxidative Stress and Nutrition in the Anatomy of Orofacial Pain. Int. J. Mol. Sci. 2023, 24, 13128. [Google Scholar] [CrossRef]
- Kuć, J.; Szarejko, K.D.; Maciejczyk, M.; Dymicka-Piekarska, V.; Żendzian-Piotrowska, M.; Zalewska, A. Oxidative imbalance as a co-player in jaw functional limitations and biopsychosocial profile in patients with temporomandibular disorder—Myofascial pain with referral. Front. Neurol. 2025, 15, 1509845. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, Y.; Ye, X.; Zhang, N.; Pan, L.; Wang, B. TRP (transient receptor potential) ion channel family: Structures, biological functions and therapeutic interventions for diseases. Signal Transduct. Target. Ther. 2023, 8, 261. [Google Scholar] [CrossRef]
- Seebohm, G.; Schreiber, J.A. Beyond hot and spicy: TRPV channels and their pharmacological modulation. Cell Physiol. Biochem. 2021, 55, 108–130. [Google Scholar]
- Khan, S.; Tao, F. Mechanisms for Orofacial Pain: Roles of Immunomodulation, Metabolic Reprogramming, Oxidative Stress and Epigenetic Regulation. Biomedicines 2025, 13, 434. [Google Scholar] [CrossRef] [PubMed]
- Iwata, K.; Takeda, M.; Oh, S.B.; Shinoda, M. Neurophysiology of orofacial pain. In Contemporary Oral Medicine; Farah, C., Balasubramaniam, R., McCullough, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 1–23. [Google Scholar]
- Ohrbach, R.; Gonzalez, Y.; List, T.; Michelotti, A.; Schiffman, E. Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) Clinical Examination Protocol. 2014. Available online: www.rdc-tmdinternational.org (accessed on 2 June 2013).
- Chalise, H.N. Aging: Basic concept. Am. J. Biomed. Sci. Res. 2019, 1, 8–10. [Google Scholar] [CrossRef]
- Ebert, T.; Tran, N.; Schurgers, L.; Stenvinkel, P.; Shiels, P.G. Ageing–oxidative stress, PTMs and disease. Mol. Asp. Med. 2022, 86, 101099. [Google Scholar] [CrossRef] [PubMed]
- Navazesh, M. Methods for collecting saliva. Ann. N. Y. Acad. Sci. 1993, 694, 72–77. [Google Scholar] [CrossRef]
- Moron, M.S.; Depierre, J.W.; Mannervik, B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim. Biophys. Acta (BBA)-Gen. Subj. 1979, 582, 67–78. [Google Scholar] [CrossRef]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, G.; Gawda, P. Defining effect size standards in temporomandibular joint and masticatory muscle research. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2025, 31, e948365. [Google Scholar] [CrossRef]
- Minich, D.M.; Brown, B.I. A review of dietary (phyto) nutrients for glutathione support. Nutrients 2019, 11, 2073. [Google Scholar] [CrossRef]
- Vázquez-Meza, H.; Vilchis-Landeros, M.M.; Vázquez-Carrada, M.; Uribe-Ramírez, D.; Matuz-Mares, D. Cellular compartmentalization, glutathione transport and its relevance in some pathologies. Antioxidants 2023, 12, 834. [Google Scholar] [CrossRef]
- Pizzorno, J. Glutathione! Integr. Med. Clin. J. 2014, 13, 8. [Google Scholar]
- Ege, B.; Kucuk, A.O.; Koparal, M.; Koyuncu, I.; Gonel, A. Evaluation of serum prolidase activity and oxidative stress in patients with temporomandibular joint internal derangement. CRANIO® 2021, 39, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Sekhar, R.V. GlyNAC Supplementation improves glutathione deficiency, oxidative stress, mitochondrial dysfunction, inflammation, aging hallmarks, metabolic defects, muscle strength, cognitive decline, and body composition: Implications for healthy aging. J. Nutr. 2021, 151, 3606–3616. [Google Scholar] [CrossRef]
- Iskusnykh, I.Y.; Zakharova, A.A.; Pathak, D. Glutathione in brain disorders and aging. Molecules 2022, 27, 324. [Google Scholar] [CrossRef]
- Giustarini, D.; Milzani, A.; Dalle-Donne, I.; Rossi, R. How to increase cellular glutathione. Antioxidants 2023, 12, 1094. [Google Scholar] [CrossRef]
- Jafri, M.S. Mechanisms of myofascial pain. Int. Sch. Res. Not. 2014, 2014, 523924. [Google Scholar] [CrossRef]
- Melis, M.; Di Giosia, M. The role of genetic factors in the etiology of temporomandibular disorders: A review. Cranio® 2016, 34, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Jefferies, H.; Coster, J.; Khalil, A.; Bot, J.; McCauley, R.D.; Hall, J.C. Glutathione. ANZ J. Surg. 2003, 73, 517–522. [Google Scholar] [CrossRef]
- Kuć, J.; Szarejko, K.D.; Gołębiewska, M. Evaluation of soft tissue mobilization in patients with temporomandibular disorder-myofascial pain with referral. Int. J. Environ. Res. Public Health 2020, 17, 9576. [Google Scholar] [CrossRef]
- Channarong, P.; Phongamwong, C. Prevalence and risk factors of vitamin D deficiency among patients with chronic myofascial pain syndrome: A cross-sectional study. BMC Nutr. 2023, 9, 129. [Google Scholar] [CrossRef]
- Piriyaprasath, K.; Kakihara, Y.; Hasegawa, M.; Iwamoto, Y.; Hasegawa, Y.; Fujii, N.; Yamamura, K.; Okamoto, K. Nutritional Strategies for Chronic Craniofacial Pain and Temporomandibular Disorders: Current Clinical and Preclinical Insights. Nutrients 2024, 16, 2868. [Google Scholar] [CrossRef]
- Demir, C.Y.; Kocak, O.F.; Bozan, N.; Ersoz, M.E.; Demir, H. Is there a role for oxidative stress in temporomandibular joint disorders? J. Oral Maxillofac. Surg. 2018, 76, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Rezazadeh, F.; Fassihi, N.; Mahdavi, D.; Tabesh, A.; Khorami, E.T. Evaluation Salivary Level of Glutathion Reductase, Catalase and Free Thiol in Patients with Temporomandibular Joint Disorder. 2022. Available online: https://assets-eu.researchsquare.com/files/rs-1552798/v1/43c734cf-ec3f-4428-b3ca-04857e254618.pdf?c=1674996276I (accessed on 30 May 2025).
- Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dhama, K. Oxidative stress, prooxidants, and antioxidants: The interplay. BioMed Res. Int. 2014, 2014, 761264. [Google Scholar] [CrossRef]
- Wan, Y.; Liu, J.; Mai, Y.; Hong, Y.; Jia, Z.; Tian, G.; Liu, Y.; Liang, H.; Liu, J. Current advances and future trends of hormesis in disease. npj Aging 2024, 10, 26. [Google Scholar] [CrossRef] [PubMed]
- Radak, Z.; Ishihara, K.; Tekus, E.; Varga, C.; Posa, A.; Balogh, L.; Boldogh, I.; Koltai, E. Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve. Redox Biol. 2017, 12, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Schirrmacher, V. Less can be more: The hormesis theory of stress adaptation in the global biosphere and its implications. Biomedicines 2021, 9, 293. [Google Scholar] [CrossRef]
- Rattan, S. Nutritional hormetins and ageing. In Bioactive Food as Dietary Interventions for the Aging Population; Watson, R.R., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2013; pp. 201–207. [Google Scholar]
- Lee, D.-H.; Jacobs, D.R. Hormesis and public health: Can glutathione depletion and mitochondrial dysfunction due to very low-dose chronic exposure to persistent organic pollutants be mitigated? J. Epidemiol. Community Health 2015, 69, 294–300. [Google Scholar] [CrossRef]
- Minich, D.M. A review of the science of colorful, plant-based food and practical strategies for “Eating the Rainbow”. J. Nutr. Metab. 2019, 2019, 2125070. [Google Scholar] [CrossRef]
- Szarejko, K.D.; Gołębiewska, M.; Lukomska-Szymanska, M.; Kuć, J. Stress Experience, Depression and Neck Disability in Patients with Temporomandibular Disorder—Myofascial Pain with Referral. J. Clin. Med. 2023, 12, 1988. [Google Scholar] [CrossRef]
- Negruțiu, B.-M.; Vaida, L.L.; Judea-Pusta, C.; Romanec, C.; Moca, A.E.; Costea, C.P.; Staniș, C.-E.; Rus, M. Orthodontic pain and dietary impact considering age groups: A comparative study. J. Clin. Med. 2024, 13, 1069. [Google Scholar] [CrossRef]
- Peluso, I.; Raguzzini, A. Salivary and urinary total antioxidant capacity as biomarkers of oxidative stress in humans. Pathol. Res. Int. 2016, 2016, 5480267. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L. Biomechanics and clinical implications of complete edentulous state. J. Clin. Gerontol. Geriatr. 2014, 5, 101–104. [Google Scholar] [CrossRef]
- Antonelli, J.; Hottel, T.L.; Siegel, S.C.; Brandt, R.; Silva, G. The occlusal guard: A simplified technique for fabrication and equilibration. Gen. Dent. 2013, 61, 49–54. [Google Scholar] [PubMed]
- Lawaf, S.; Azizi, A.; Tabarestani, T. Comparison of serum and salivary antioxidants in patients with temporomandibular joint disorders and healthy subjects. J. Dent. 2015, 12, 263. [Google Scholar]
- Ozcan-Kucuk, A.; Ege, B.; Koparal, M.; Gonel, A.; Koyuncu, I. Evaluation of the oxidative stress level and serum prolidase activity in patients with sleep bruxism. Comb. Chem. High Throughput Screen. 2021, 24, 286–293. [Google Scholar] [CrossRef]
- Madariaga, V.I.; Jasim, H.; Ghafouri, B.; Ernberg, M. Myogenous temporomandibular disorders and salivary markers of oxidative stress—A cross-sectional study. J. Oral Rehabil. 2021, 48, 1–9. [Google Scholar] [CrossRef]
- Fulek, M.; Frosztega, W.; Wieckiewicz, M.; Szymanska-Chabowska, A.; Gac, P.; Poreba, R.; Mazur, G.; Sciskalska, M.; Kepinska, M.; Martuszewski, A. The link between sleep bruxism and oxidative stress based on a polysomnographic study. Sci. Rep. 2025, 15, 3567. [Google Scholar] [CrossRef]
- Etoz, O.A.; Ataoglu, H.; Erel, O.; Celik, H.; Herken, E.N.; Bayazit, Y.A. Association of serum total antioxidant capacity and total oxidant status with pain perception in patients with myofacial pain dysfunction. Int. J. Neurosci. 2009, 119, 1282–1291. [Google Scholar] [CrossRef]
- Kamodyová, N.; Tóthová, L.u.; Celec, P. Salivary markers of oxidative stress and antioxidant status: Influence of external factors. Dis. Markers 2013, 34, 313–321. [Google Scholar] [CrossRef]
- Buczko, P.; Knaś, M.; Grycz, M.; Szarmach, I.; Zalewska, A. Orthodontic treatment modifies the oxidant–antioxidant balance in saliva of clinically healthy subjects. Adv. Med. Sci. 2017, 62, 129–135. [Google Scholar] [CrossRef]
- Vrbanović, E.; Lapić, I.; Rogić, D.; Alajbeg, I. Changes in salivary oxidative status, salivary cortisol, and clinical symptoms in female patients with temporomandibular disorders during occlusal splint therapy: A 3-month follow up. BMC Oral Health 2019, 19, 100. [Google Scholar] [CrossRef] [PubMed]
- Simioni, C.; Zauli, G.; Martelli, A.M.; Vitale, M.; Sacchetti, G.; Gonelli, A.; Neri, L.M. Oxidative stress: Role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget 2018, 9, 17181. [Google Scholar] [CrossRef] [PubMed]
- Osiewicz, M.; Ciapała, B.; Bolt, K.; Kołodziej, P.; Więckiewicz, M.; Ohrbach, R. Diagnostic criteria for temporomandibular disorders (DC/TMD): Polish assessment instruments. Dent. Med. Probl. 2024, 61, 5–8. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuć, J.; Zalewska, A.; Szarejko, K.D.; Żendzian-Piotrowska, M.; Tarnawski, W.; Zięba, S.; Maciejczyk, M. The Rainbow and the Umbrella of Temporomandibular Disorders—Total Antioxidant Capacity and Total Oxidant Status in Patients with Myofascial Pain with Referral. J. Clin. Med. 2025, 14, 4022. https://doi.org/10.3390/jcm14124022
Kuć J, Zalewska A, Szarejko KD, Żendzian-Piotrowska M, Tarnawski W, Zięba S, Maciejczyk M. The Rainbow and the Umbrella of Temporomandibular Disorders—Total Antioxidant Capacity and Total Oxidant Status in Patients with Myofascial Pain with Referral. Journal of Clinical Medicine. 2025; 14(12):4022. https://doi.org/10.3390/jcm14124022
Chicago/Turabian StyleKuć, Joanna, Anna Zalewska, Krzysztof Dariusz Szarejko, Małgorzata Żendzian-Piotrowska, Walery Tarnawski, Sara Zięba, and Mateusz Maciejczyk. 2025. "The Rainbow and the Umbrella of Temporomandibular Disorders—Total Antioxidant Capacity and Total Oxidant Status in Patients with Myofascial Pain with Referral" Journal of Clinical Medicine 14, no. 12: 4022. https://doi.org/10.3390/jcm14124022
APA StyleKuć, J., Zalewska, A., Szarejko, K. D., Żendzian-Piotrowska, M., Tarnawski, W., Zięba, S., & Maciejczyk, M. (2025). The Rainbow and the Umbrella of Temporomandibular Disorders—Total Antioxidant Capacity and Total Oxidant Status in Patients with Myofascial Pain with Referral. Journal of Clinical Medicine, 14(12), 4022. https://doi.org/10.3390/jcm14124022