NT-proBNP as an Independent Predictor of Long-Term All-Cause Mortality in Heart Failure Across the Spectrum of Glomerular Filtration Rate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Definitions
2.4. Statistical Analysis
3. Results
3.1. General Characteristics
3.2. Univariable Survival Analysis Stratified by the Renal Function
3.3. Multivariable Survival Analysis
4. Discussion
4.1. NT-proBNP Levels Across GFR Subgroups
4.2. Multivariable Mortality Prediction Across eGFR Subgroups
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AF | atrial fibrillation |
ALT | alanine aminotransferase |
AST | aspartate aminotransferase |
AUC | area under the curve |
COPD | chronic obstructive pulmonary eisease |
CI | confidence interval |
DM | diabetes mellitus |
eGFR | estimated glomerular filtration rate |
Hb | hemoglobin |
HFpEF | heart failure with preserved ejection fraction |
HFmEF | heart failure with mid-range ejection fraction |
HFrEF | heart failure with reduced ejection fraction |
K | potassium |
LVEF | left ventricular ejection fraction |
HTN | hypertension |
NA | sodium |
NYHA | York Heart Association |
PASP | pulmonary artery systolic pressure |
PE | pulmonary embolism |
PLT | platelets |
TIA | transient ischemic attack |
WBC | white blood cells |
References
- Schefold, J.C.; Filippatos, G.; Hasenfuss, G.; Anker, S.D.; von Haehling, S. Heart failure and kidney dysfunction: Epidemiology, mechanisms and management. Nat. Rev. Nephrol. 2016, 12, 610–623. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, M.; Wang, X.; Luo, J.; Zou, Y.; Hu, Y.; Liu, X.; Ao, H.; Yao, X.; Li, C.; et al. The Ratio of NT-proBNP to CysC1.53 Predicts Heart Failure in Patients with Chronic Kidney Disease. Front. Cardiovasc. Med. 2021, 8, 731864. [Google Scholar] [CrossRef] [PubMed]
- Damman, K.; Valente, M.A.E.; Voors, A.A.; O’Connor, C.M.; Van Veldhuisen, D.J.; Hillege, H.L. Renal impairment, worsening renal function, and outcome in patients with heart failure: An updated meta-analysis. Eur. Heart J. 2014, 35, 455–469. [Google Scholar] [CrossRef]
- Niizuma, S.; Iwanaga, Y.; Yahata, T.; Miyazaki, S. Renocardiovascular Biomarkers: From the Perspective of Managing Chronic Kidney Disease and Cardiovascular Disease. Front. Cardiovasc. Med. 2017, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Mueller, C.; McDonald, K.; de Boer, R.A.; Maisel, A.; Cleland, J.G.F.; Kozhuharov, N.; Coats, A.J.S.; Metra, M.; Mebazaa, A.; Ruschitzka, F.; et al. Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur. J. Heart Fail. 2019, 21, 715–731. [Google Scholar] [CrossRef]
- Harrison, T.G.; Shukalek, C.B.; Hemmelgarn, B.R.; Zarnke, K.B.; Ronksley, P.E.; Iragorri, N.; Graham, M.M.; James, M.T. Association of NT-proBNP and BNP With Future Clinical Outcomes in Patients With ESKD: A Systematic Review and Meta-analysis. Am. J. Kidney Dis. 2020, 76, 233–247. [Google Scholar] [CrossRef]
- Niizuma, S.; Iwanaga, Y.; Yahata, T.; Tamaki, Y.; Goto, Y.; Nakahama, H.; Miyazaki, S. Impact of left ventricular end-diastolic wall stress on plasma B-type natriuretic peptide in heart failure with chronic kidney disease and end-stage renal disease. Clin. Chem. 2009, 55, 1347–1353. [Google Scholar] [CrossRef]
- Takase, H.; Dohi, Y. Kidney function crucially affects B-type natriuretic peptide (BNP), N-terminal proBNP and their relationship. Eur. J. Clin. Investig. 2014, 44, 303–308. [Google Scholar] [CrossRef]
- Goetze, J.P.; Jensen, G.; Møller, S.; Bendtsen, F.; Rehfeld, J.F.; Henriksen, J.H. BNP and N-terminal proBNP are both extracted in the normal kidney. Eur. J. Clin. Investig. 2006, 36, 8–15. [Google Scholar] [CrossRef]
- McCullough, P.A.; Duc, P.; Omland, T.; McCord, J.; Nowak, R.M.; Hollander, J.E.; Herrmann, H.C.; Steg, P.G.; Westheim, A.; Knudsen, C.W.; et al. B-type natriuretic peptide and renal function in the diagnosis of heart failure: An analysis from the Breathing Not Properly Multinational Study. Am. J. Kidney Dis. 2003, 41, 571–579. [Google Scholar] [CrossRef]
- Jafri, L.; Kashif, W.; Tai, J.; Siddiqui, I.; Azam, I.; Shahzad, H.; Ghani, F. B-type natriuretic peptide versus amino terminal pro-B type natriuretic peptide: Selecting the optimal heart failure marker in patients with impaired kidney function. BMC Nephrol. 2013, 14, 117. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.L.; Fahim, M.; Johnson, D.W. Pathophysiology and significance of natriuretic peptides in patients with end-stage kidney disease. Clin. Biochem. 2020, 83, 1–11. [Google Scholar] [CrossRef]
- van Kimmenade, R.R.; Januzzi, J.L.; Baggish, A.L.; Lainchbury, J.G.; Bayes-Genis, A.; Richards, A.M.; Pinto, Y.M. Amino-Terminal Pro-Brain Natriuretic Peptide, Renal Function, and Outcomes in Acute Heart Failure. Redefining the Cardiorenal Interaction? J. Am. Coll. Cardiol. 2006, 48, 1621–1627. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Xu, L.; Cai, A.; Chen, W.; Xia, S.; He, X.; Qiu, W.; Xiao, X.; Gao, Z.; Chen, J.; et al. The Prognostic Significance of Chronic Kidney Disease on the All-Cause Death of Ischemic Heart Failure in the Chinese Population: A Prospective Cohort Study. Cardiorenal Med. 2022, 12, 61–70. [Google Scholar] [CrossRef]
- Linzbach, S.; Samigullin, A.; Yilmaz, S.; Tsioga, M. Role of N-Terminal Pro-Brain Natriuretic Peptide and Cystatin C to Estimate Renal Function in Patients With and Without Heart Failure. Atlanta J. 2009, 103, 1128–1133. [Google Scholar] [CrossRef]
- Palladini, G.; Foli, A.; Milani, P.; Russo, P.; Albertini, R.; Lavatelli, F.; Obici, L.; Perlini, S.; Moratti, R.; Merlini, G. Best use of cardiac biomarkers in patients with AL amyloidosis and renal failure. Am. J. Hematol. 2012, 87, 465–471. [Google Scholar] [CrossRef]
- Bruch, C.; Fischer, C.; Sindermann, J.; Stypmann, J.; Breithardt, G.; Gradaus, R. Comparison of the Prognostic Usefulness of N-Terminal Pro-Brain Natriuretic Peptide in Patients With Heart Failure With Versus Without Chronic Kidney Disease. Am. J. Cardiol. 2008, 102, 469–474. [Google Scholar] [CrossRef]
- Virani, S.A.; Khosla, A.; Levin, A. Chronic kidney disease, heart failure and anemia. Can. J. Cardiol. 2008, 24 (Suppl. B), 22B–24B. [Google Scholar] [CrossRef] [PubMed]
- Spanaus, K.S.; Kronenberg, F.; Ritz, E.; Schlapbach, R.; Fliser, D.; Hersberger, M.; Kollerits, B.; König, P.; von Eckardstein, A.; Mild-to-Moderate Kidney Disease Study Group. B-type natriuretic peptide concentrations predict the progression of nondiabetic chronic kidney disease: The mild-to-moderate kidney disease study. Clin. Chem. 2007, 53, 1264–1272. [Google Scholar] [CrossRef]
- Satyan, S.; Light, R.P.; Agarwal, R. Relationships of N-Terminal Pro-B-Natriuretic Peptide and Cardiac Troponin T to Left Ventricular Mass and Function and Mortality in Asymptomatic Hemodialysis Patients. Am. J. Kidney Dis. 2007, 50, 1009–1019. [Google Scholar] [CrossRef]
- Haapio, M.; Ronco, C. BNP and a renal patient: Emphasis on the unique characteristics of B-type natriuretic peptide in end-stage kidney disease. Contrib. Nephrol. 2008, 161, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhang, S.; Chen, Z.; Adhikari, B.K.; Zhang, Y.; Zhang, J.; Sun, J.; Wang, Y. Cardiac biomarkers of heart failure in chronic kidney disease. Clin. Chim. Acta 2020, 510, 298–310. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Stevens, P.E.; Levin, A. Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann. Intern. Med. 2013, 158, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Breha, A.; Delcea, C.; Ivanescu, A.C.; Dan, G.A. The Prognostic Value of Troponin Levels Adjusted for Renal Function in Heart Failure-A Systematic Review. Rom. J. Intern. Med. 2025. [Google Scholar] [CrossRef]
- Fadini, G.P.; Bonora, B.M.; Albiero, M.; Zaninotto, M.; Plebani, M.; Avogaro, A. DPP-4 inhibition has no acute effect on BNP and its N-terminal pro-hormone measured by commercial immune-assays. A randomized cross-over trial in patients with type 2 diabetes. Cardiovasc. Diabetol. 2017, 16, 22. [Google Scholar] [CrossRef]
- Bansal, N.; Katz, R.; Seliger, S.; deFilippi, C.; Wettersten, N.; Zelnick, L.R.; Berry, J.D.; de Lemos, J.A.; Christenson, R.; Killeen, A.A. Kidney Function Specific Reference Limits for N-terminal Pro Brain Natriuretic Peptide and High Sensitivity Troponin T: The Systolic Blood Pressure Intervention Trial. Kidney Med. 2022, 4, 100517. [Google Scholar] [CrossRef]
- Horii, M.; Matsumoto, T.; Uemura, S.; Sugawara, Y.; Takitsume, A.; Ueda, T.; Nakagawa, H.; Nishida, T.; Soeda, T.; Okayama, S.; et al. Prognostic value of B-type natriuretic peptide and its amino-terminal proBNP fragment for cardiovascular events with stratification by renal function. J. Cardiol. 2013, 61, 410–416. [Google Scholar] [CrossRef]
- Schaub, J.A.; Coca, S.G.; Moledina, D.G.; Gentry, M.; Testani, J.M.; Parikh, C.R. Amino-Terminal Pro-B-Type Natriuretic Peptide for Diagnosis and Prognosis in Patients with Renal Dysfunction: A Systematic Review and Meta-Analysis. JACC Heart Fail. 2015, 3, 977–989. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Luo, L.; Ye, P.; Yi, S.; Liu, Y.; Zhu, B.; Wang, L.; Xiao, T.; Bai, Y. The ability of NT-proBNP to detect chronic heart failure and predict all-cause mortality is higher in elderly Chinese coronary artery disease patients with chronic kidney disease. Clin. Interv. Aging 2013, 8, 409–417. [Google Scholar] [CrossRef]
- Navaneethan, S.D.; Roy, J.; Tao, K.; Brecklin, C.S.; Chen, J.; Deo, R.; Flack, J.M.; Ojo, A.O.; Plappert, T.J.; Raj, D.S.; et al. Prevalence, Predictors, and Outcomes of Pulmonary Hypertension in CKD. J. Am. Soc. Nephrol. 2016, 27, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Yigla, M.; Fruchter, O.; Aharonson, D.; Yanay, N.; Reisner, S.A.; Lewin, M. Pulmonary hypertension is an independent predictor of mortality in hemodialysis patients. Kidney Int. 2009, 75, 969–975. [Google Scholar] [CrossRef]
- Vrabie, A.M.; Totolici, S.; Delcea, C.; Badila, E. Biomarkers in Heart Failure with Preserved Ejection Fraction: A Perpetually Evolving Frontier. J. Clin. Med. 2024, 13, 4627. [Google Scholar] [CrossRef]
- Delcea, C.; Buzea, C.A.; Dobrev, D.; Dan, G.A. Prognostic roles of neutrophil–lymphocyte, monocyte-lymphocyte and platelet-lymphocyte ratios for long-term all-cause mortality in heart failure. IJC Heart Vasc. 2024, 54, 101502. [Google Scholar] [CrossRef]
- Turi, V.; Sosdeanet, R.; Moleriu, L.; Damian, G.; Stoichescu-Hogeaal, G.; Iurciuc, S.; Dragan, S. Correlations between left ventricle ejection fraction, global longitudinal strain by two-dimensional speckle tracking and pulse wave velocity in coronary artery disease. Med. Evol. 2020, 26, 104–110. [Google Scholar] [CrossRef]
- Canepa, M.; Fonseca, C.; Chioncel, O.; Laroche, C.; Crespo-Leiro, M.G.; Coats, A.J.S.; Mebazaa, A.; Piepoli, M.F.; Tavazzi, L.; Maggioni, A.P.; et al. Performance of Prognostic Risk Scores in Chronic Heart Failure Patients Enrolled in the European Society of Cardiology Heart Failure Long-Term Registry. JACC Heart Fail. 2018, 6, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Ivănescu, A.C.; Dan, G.-A. Stroke risk scores to predict hospitalization for acute decompensated heart failure in atrial fibrillation patients. Rom. J. Intern. Med. 2021, 59, 73–82. [Google Scholar] [CrossRef]
- Codina, P.; Lupón, J.; Borrellas, A.; Spitaleri, G.; Cediel, G.; Domingo, M.; Simpson, J.; Levy, W.C.; Santiago-Vacas, E.; Zamora, E.; et al. Head-to-head comparison of contemporary heart failure risk scores. Eur. J. Heart Fail. 2021, 23, 2035–2044. [Google Scholar] [CrossRef]
- Wada, H.; Shinozaki, T.; Suzuki, M.; Sakagami, S.; Ajiro, Y.; Funada, J.; Matsuda, M.; Shimizu, M.; Takenaka, T.; Morita, Y. Impact of Chronic Kidney Disease on the Associations of Cardiovascular Biomarkers with Adverse Outcomes in Patients with Suspected or Known Coronary Artery Disease: The EXCEED-J Study. J. Am. Heart Assoc. 2022, 11, e023464. [Google Scholar] [CrossRef] [PubMed]
- Aletras, G.; Bachlitzanaki, M.; Stratinaki, M.; Lamprogiannakis, E.; Panagoutsos, S.; Kantartzi, K.; Georgopoulou, T.; Petrakis, I.; Foukarakis, E.; Pantazis, Y.; et al. Unraveling Acute Cardiorenal Syndrome: Predictors and Consequences in Acute Heart Failure. J. Clin. Med. 2025, 14, 2270. [Google Scholar] [CrossRef] [PubMed]
- Lauer, M.S.; Blackstone, E.H.; Young, J.B.; Topol, E.J. Cause of death in clinical research: Time for a reassessment? J. Am. Coll. Cardiol. 1999, 34, 618–620. [Google Scholar] [CrossRef] [PubMed]
- Morrow, D.A.; Wiviott, S.D. Classification of Deaths in Cardiovascular Outcomes Trials Circulation. Circulation 2019, 139, 874–876. [Google Scholar] [CrossRef]
All Patients (N = 716) | Surviving Patients (N = 465) | Deceased Patients (N = 251) | p-Value | ||
---|---|---|---|---|---|
General characteristics | |||||
Age (years) | 71 ± 10.04 | 69 ± 9.66 | 75 ± 9.8 | <0.0001 | |
Gender (male) | 348 (48.6%) | 214 (46%) | 134 (53.3%) | 0.06 | |
Clinical characteristics | |||||
Heart rate (bpm) | 79.85 ± 22.86 | 79.38 ± 22.48 | 80.66 ± 23.74 | 0.48 | |
Systolic blood pressure (mmHg) | 136.23 ± 24.04 | 137.38 ± 23.58 | 134.18 ± 24.98 | 0.09 | |
Diastolic blood pressure (mmHg) | 79.33 ± 12.17 | 80.35 ± 12.03 | 77.29 ± 12.34 | <0.001 | |
Heart failure characteristics | |||||
LVEF (%) | 46.5 ± 13.3 | 48.06 ± 12.28 | 43.8 ± 14.73 | <0.0001 | |
HFpEF | 420 (58.65%) | 279 (60%) | 141 (56.1%) | 0.1 | |
HFmrEF | 131 (18.29%) | 90 (19.35%) | 41 (16.33%) | ||
HFrEF | 165 (23%) | 96 (20.6%) | 69 (27.49%) | ||
NYHA I | 40 (5.58%) | 28 (6.02%) | 12 (4.78%) | <0.0001 | |
NYHA II | 488 (68.1%) | 350 (75.2%) | 138 (54.98%) | 0.002 | |
NYHA III | 170 (23.74%) | 83 (17.84%) | 87 (34.66%) | <0.0001 | |
NYHA IV | 18 (2.51%) | 4 (0.86%) | 14 (5.57%) | 0.04 | |
Renal function characteristics | |||||
Creatinine (mg/dL) | 1.05 (0.66) | 0.96 (0.33) | 1.22 (1.00) | <0.0001 | |
eGFR (ml/min/1.73 m2) | 69.6 (22.7) | 73.62 (21.47) | 62.19 (23.15) | <0.0001 | |
eGFR > 60 mL/min/1.73 m2 | 83.02 ± 13.79 | 84.15 ± 14.29 | 80.02 ± 11.99 | 0.003 | |
eGFR 30–60 mL/min/1.73 m2 | 47.86 ± 7.74 | 48.46 ± 7.47 | 46.93 ± 8.02 | 0.15 | |
eGFR < 30 mL/min/1.73 m2 | 21.93 ± 6.15 | 24.88 ± 5.04 | 20.52 ± 6.23 | 0.05 | |
Uric acid (mg/dL) | 6.33 ± 1.86 | 6.1 ± 1.67 | 6.77 ± 2.1 | <0.0001 | |
Risk factors and comorbidities | |||||
Ischemic heart disease | 302 (42.17%) | 206 (44.3%) | 96 (38.2%) | 0.11 | |
Prior myocardial infarction | 130 (18.15%) | 78 (16.77%) | 52 (20.7%) | 0.19 | |
Stable angina | 121 (16.89%) | 87 (18.7%) | 34 (13.5%) | 0.07 | |
HTN | 621 (86.7%) | 412 (88.6%) | 209 (83.2%) | 0.037 | |
Diabetes mellitus | 250 (34.9%) | 149 (32%) | 101 (40.2%) | 0.028 | |
Dyslipidemia | 550 (76.8%) | 376 (80%) | 174 (69.3%) | <0.0001 | |
History of stroke/TIA | 96 (13.4%) | 51 (10.96%) | 45 (17.9%) | 0.009 | |
AF | 419 (58.5%) | 249 (53.5%) | 170 (67.7%) | <0.0001 | |
Type of AF | Paroxysmal | 91 (12.7%) | 55 (11.82%) | 36 (14.34%) | <0.001 |
Persistent | 108 (15%) | 74 (15.9%) | 34 (13.54%) | 0.38 | |
Permanent | 218 (30.4%) | 120 (25.8%) | 98 (39%) | 0.02 | |
Peripheral arterial disease | 67 (9.35%) | 43 (9.24%) | 24 (9.56%) | 0.89 | |
Obesity | 265 (37%) | 184 (39.5%) | 81 (32.2%) | 0.054 | |
COPD | 40 (5.58%) | 22 (4.73%) | 18 (7.17%) | 0.178 | |
Laboratory parameters | |||||
Serum sodium (mmol/L) | 140.55 ± 3.47 | 140.9 ± 2.79 | 139.78 ± 4.3 | <0.0001 | |
Serum potassium (mmol/L) | 4.45 ± 0.5 | 4.46 ± 0.5 | 4.44 ± 0.51 | 0.71 | |
Serum chloride (mmol/L) | 101.28 ± 5.43 | 101.69 ± 5.76 | 100.51 ± 4.77 | 0.03 | |
Blood glucose (mg/dL) | 118 ± 40 | 116.9 ± 37.5 | 120.6 ± 44.7 | 0.24 | |
Total cholesterol (mg/dL) | 165 ± 47.74 | 171.68 ± 47.9 | 153.45 ± 45.2 | <0.0001 | |
AST (UI/L) | 19.5 [14.4–30] | 19.3 [14.5–31.2] | 19.1 [14.1–27] | 0.43 | |
ALT (UI/L) | 21.8 [17.8–28.5] | 21.5 [17.7–27.5] | 23.1 [18.2–31.1] | 0.66 | |
NT-proBNP (pg/mL) | 1187 [580–2713] | 967 [485–1796] | 2398 [1091–5084] | <0.0001 |
eGFR1 eGFR > 60 mL/min/1.73 m2 | eGFR2 eGFR 30–60 mL/min/1.73 m2 | eGFR3 eGFR < 30 mL/min/1.73 m2 | ||||
---|---|---|---|---|---|---|
NT-proBNP (pg/mL) | 997 [461–2110] | 1586 [871–3473] | 4928.5 [2030–17,464] | |||
p value for trend * < 0.001 | ||||||
Surviving patients | Deceased patients | Surviving patients | Deceased patients | Surviving patients | Deceased patients | |
NT-proBNP (pg/mL) | 799.4 [404–1624] | 1850 [685.2–3818] | 1135 [751–2472] | 2795 [1281–4879] | 1667 [1163–3497] | 9690 [3143–23,738] |
p value ** | <0.001 | <0.001 | <0.001 |
eGFR1 eGFR > 60 mL/min/1.73 m2 N = 471 | eGRF2 eGFR 30–60 mL/min/1.73 m2 N = 211 | eGFR3 eGFR < 30 mL/min/1.73 m2 N = 34 | |
---|---|---|---|
Clinical characteristics and comorbidities | |||
AUC, 95% CI p value | |||
Age | 0.637, 0.581–0.693 p < 0.001 | 0.655, 0.576–0.733 p < 0.001 | 0.470, 0.255–0.685 p = 0.78 |
RR, 95% CI p value | |||
Male sex | 1.19, 1.06–1.34 p = 0.005 | 1.10, 0.86–1.41 p = 0.51 | 0.77, 0.17–3.48 p = 0.73 |
NYHA 3/4 | 1.42, 1.17–1.71 p < 0.001 | 1.67, 1.21–2.31 p < 0.001 | 2.91, 0.61–13.83 p = 0.32 |
IHD | 0.99, 0.88–1.12 p = 1.00 | 0.79, 0.63–1.101 p = 0.08 | 0.07, 0.01–0.59 p = 0.01 |
Prior MI | 1.15, 0.95–1.39 p = 0.12 | 0.99, 0.74–1.33 p = 0.96 | 0.23, 0.05–1.08 p = 0.13 |
AF | 1.124, 1.02–1.28 p = 0.03 | 1.34, 1.07–1.69 p = 0.02 | 3.00, 0.64–14.08 p = 0.31 |
HTN | 0.84, 0.69–1.03 p = 0.08 | 0.74, 0.44–1.23 p = 0.27 | 0.48, 0.50–4.84 p = 0.90 |
DM | 1.11, 0.97–1.27 p = 0.10 | 1.06, 0.82–1.36 p = 0.78 | 1.91, 0.44–8.35 p = 0.62 |
History of stroke | 126, 1.01–1.58 p = 0.03 | 1.02, 0.71–1.46 p = 0.92 | 5.33, 0.57–49.48 p = 0.24 |
COPD | 1.18, 0.82–1.70 p = 0.40 | 1.23, 0.70–2.13 p = 0.60 | 0.95, 0.08–11.79 p = 0.97 |
Thyroid disease | 1.15, 0.88–1.49 p = 0.32 | 1.17, 0.75–1.80 p = 0.062 | 0.80, 0.04–17.19 p = 0.89 |
Infection | 1.30, 1.00–1.70, p = 0.03 | 1.87, 1.01–3.48 p = 0.024 | 4.37, 0.47–41.07 p = 0.35 |
Malignancy | 1.49, 1.09–2.06 p = 0.002 | 3.39, 0.96–11.99 p = 0.013 | N/A |
PE | 1.06, 0.60–1.87 p = 1.00 | 1.23, 0.46–3.31 p = 0.64 | N/A |
Cirrhosis | 2.14, 0.85–5.41 p = 0.03 | N/A | N/A |
Laboratory parameters | |||
AUC (95% CI), p value | |||
WBC * | 0.510, 0.439–0.581 p = 0.78 | 0.434, 0.352–0.517 p = 0.12 | 0.712, 0.519–0.906 p = 0.06 |
Neutrophils | 0.565, 0.504–0.627 p = 0.03 | 0.508, 0.428–0.587 p = 0.85 | 0.561, 0.356–0.766 p = 0.60 |
Hb * | 0.672, 0.613–0.730 p < 0.001 | 0.678, 0.603–0.752 p < 0.001 | 0.737, 0.564–0.910 p = 0.04 |
PLT * | 0.555, 0.495–0.615 p = 0.06 | 0.514, 0.432–0.596 p = 0.73 | 0.765, 0.604–0.927 p = 0.02 |
Blood glucose | 0.533, 0.465–0.600 p = 0.34 | 0.449, 0.365–0.532 p = 0.225 | 0.623, 0.407–0.838 p = 0.27 |
Serum Na * | 0.555, 0.494–0.616 p = 0.07 | 0.602, 0.524–0.681 p = 0.01 | 0.491, 0.289–0.692 p = 0.93 |
Serum K * | 0.538, 0.479–0.597 p = 0.21 | 0.514, 0.433–0.594 p = 0.74 | 0.766, 0.570–0.961 p = 0.02 |
Serum Cl * | 0.551, 0.491–0.611 p = 0.09 | 0.558, 0.479–0.638 p = 0.15 | 0.483, 0.273–0.692 p = 0.87 |
Creatinine | 0.566, 0.510–0.622 p = 0.03 | 0.528, 0.443–0.612 p = 0.514 | 0.676, 0.486–0.866 p = 0.10 |
eGFR * | 0.583, 0.528–0.638 p = 0.005 | 0.553, 0.474–0.632 p = 0.19 | 0.700, 0.509–0.890 p = 0.06 |
AST | 0.582, 0.515–0.650 p = 0.02 | 0.472, 0.380–0.564 p = 0.55 | 0.561, 0.344–0.779 p = 0.59 |
ALT | 0.488, 0.422–0.555 p = 0.74 | 0.465, 0.372–0.557 p = 0.45 | 0.628, 0.388–0.867 p = 0.27 |
Total cholesterol * | 0.642, 0.578–0.707 p < 0.001 | 0.528, 0.432–0.625 p = 0.56 | 0.826, 0.685–0.967 p = 0.003 |
Echocardiography parameters | |||
AUC (95% CI), p value | |||
LVEF | 0.567, 0.507–0.627 p = 0.03 | 0.584, 0.505–0.663 p = 0.04 | 0.511, 0.302–0.721 p = 0.92 |
PASP | 0.698, 0.634–0.762 p < 0.001 | 0.700, 0.621–0.778 p < 0.001 | 0.759, 0.599–0.919 p = 0.016 |
eGFR Category (mL/min/1.73 m2) | AUC (95% CI) | Cut-Off Value (pg/mL) Sensitivity, Specificity | p Value |
---|---|---|---|
All group | 0.726, 0.692–0.759 | >1991 55.78%, 78.91% | <0.001 |
eGFR1 eGFR > 60 | 0.684, 0.640–0.726 | >1837 50.40%, 80.10% | <0.001 |
eGFR2 eGFR 30–60 | 0.717, 0.651–0.777 | >1413 74.73%, 58.82% | <0.001 |
eGFR3 eGFR < 30 | 0.850, 0.686–0.949 | >6415 58.33%, 100% | <0.001 |
eGFR (mL/min/1.73 m2) | NT-proBNP Cut-Off Level (pg/mL) | Surviving Patients Follow-Up Time (Months) | Deceased Patients Survival Duration (Months) | Chi Square | Logrank p Value |
---|---|---|---|---|---|
>60 | >1837 | 71.46 ± 1.22 | 50.92 ± 2.85 | 55.47 | <0.001 |
30–60 | >1413 | 69.81 ± 2.16 | 46.21 ± 2.96 | 29.69 | <0.001 |
<30 | >6415 | 46.45 ± 5.53 | 20.57 ± 6.39 | 8.99 | 0.003 |
eGFR >60 mL/min/1.73 m2 | eGFR 30–60 mL/min/1.73 m2 | eGFR <30 mL/min/1.73 m2 | ||||
---|---|---|---|---|---|---|
Step 1 | Male sex | 2.60, 1.56–4.35 p = 0.001 | Age | 1.06, 1.03–1.10 p < 0.001 | PASP | 1.04, 1.02–1.10 p = 0.042 |
NYHA 3/4 | 2.28, 1.35–3.84 p = 0.002 | Hb | 0.85, 0.76–0.90 p = 0.004 | TC | 0.99, 0.98–1.00 p = 0.045 | |
Malignancy | 2.05, 1.05–4.01 p = 0.036 | PASP | 1.03, 1.01–1.04 p = 0.002 | |||
Hb | 0.81, 0.71–0.94 p = 0.004 | LVEF | 0.97, 0.95–0.99 p < 0.001 | |||
Neutrophils | 1.00, 1.00–1.00 p < 0.001 | Serum Na | 0.93, 0.86–0.99 p = 0.036 | |||
PASP | 1.03, 1.01–1.04 p < 0.001 | |||||
Step 2 = Step 1 + Log10BNP | PASP | 1.03, 1.01–1.04 p < 0.001 | PASP | 1.02, 1.01–1.04 p = 0.005 | PASP | 1.06, 1.03–1.10 p = 0.02 |
Hb | 0.77, 0.69–0.86 p < 0.001 | Hb | 0.86, 0.77–0.96 p = 0.006 | Log10BNP | 2.53, 1.05–6.10 p = 0.04 | |
NYHA 3/4 | 1.92, 1.25–2.96 p = 0.003 | Log10BNP | 3.32, 1.96–5.63 p < 0.001 | |||
Sex | 2.59, 1.69–3.95 p < 0.001 | |||||
Neutrophils | 1.00, 1.00–1.00 | |||||
Malignancy | 2.11, 1.20–3.72 p = 0.010 | |||||
Log10BNP | 1.87, 1.11–3.18 p = 0.020 | |||||
Variables without independent predictive value | Age, AF, stroke, infection, cirrhosis, GOT, total cholesterol, LVEF, eGFR | NYHA 3/4, Malignancy, AF, Infection | Serum potassium, Hemoglobin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breha, A.; Delcea, C.; Ivanescu, A.C.; Dan, G.-A. NT-proBNP as an Independent Predictor of Long-Term All-Cause Mortality in Heart Failure Across the Spectrum of Glomerular Filtration Rate. J. Clin. Med. 2025, 14, 3886. https://doi.org/10.3390/jcm14113886
Breha A, Delcea C, Ivanescu AC, Dan G-A. NT-proBNP as an Independent Predictor of Long-Term All-Cause Mortality in Heart Failure Across the Spectrum of Glomerular Filtration Rate. Journal of Clinical Medicine. 2025; 14(11):3886. https://doi.org/10.3390/jcm14113886
Chicago/Turabian StyleBreha, Anca, Caterina Delcea, Andreea Cristina Ivanescu, and Gheorghe-Andrei Dan. 2025. "NT-proBNP as an Independent Predictor of Long-Term All-Cause Mortality in Heart Failure Across the Spectrum of Glomerular Filtration Rate" Journal of Clinical Medicine 14, no. 11: 3886. https://doi.org/10.3390/jcm14113886
APA StyleBreha, A., Delcea, C., Ivanescu, A. C., & Dan, G.-A. (2025). NT-proBNP as an Independent Predictor of Long-Term All-Cause Mortality in Heart Failure Across the Spectrum of Glomerular Filtration Rate. Journal of Clinical Medicine, 14(11), 3886. https://doi.org/10.3390/jcm14113886