Foretelling the Future: Preimplantation Genetic Testing and the Coming of Polygenic Embryo Screening
Abstract
1. Introduction
2. Selected Trends Preimplantation Genetic Testing (PGT): Indications and Diagnostic Methods
2.1. Preimplantation Genetic Testing for Monogenic (Single-Gene) Disorders (PGT-M)
- Patients identified to be at increased risk of having offspring with medically actionable conditions:
- Patients seeking HLA-compatible siblings for stem cell therapy:
- Patients aiming to avoid sex-linked disorders:
- Patients endeavoring to prevent the passing of suspected autosomal dominant disorder:
2.2. Preimplantation Genetic Testing for Structural Rearrangements (PGT-SR)
- Patients with an established diagnosis of an existing balanced translocation:
2.3. Preimplantation Genetic Testing for Aneuploidy (PGT-A)
- Aging patients who desire elective single-embryo transfer (eSET):
2.4. Non-Invasive Preimplantation Genetic Testing (niPGT)
3. Polygenic Embryo Screening (PES, PGT-P) as a New Technique of Preimplantation Genetic Testing: Applications and Limitations
4. Polygenic Risk Scores (PRS): Clinical Applications and Challenges
5. The Growing Commercialization of Polygenic Embryo Screening (PES, PGT-P) and Relevant Legal Frameworks
6. Ethical Considerations in Polygenic Embryo Screening (PES, PGT-P)
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Flinter, F.A. Preimplantation genetic diagnosis. BMJ 2001, 322, 1008–1009. [Google Scholar] [CrossRef] [PubMed]
- Sermon, K. Current concepts in preimplantation genetic diagnosis (PGD): A molecular biologist’s view. Hum. Reprod. Update 2002, 8, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Thornhill, A.R.; deDie-Smulders, C.E.; Geraedts, J.P.; Harper, J.C.; Harton, G.L.; Lavery, S.A.; Moutou, C.; Robinson, M.D.; Schmutzler, A.G.; Scriven, P.N.; et al. ESHRE PGD Consortium “Best practice guidelines for clinical preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS)”. Hum. Reprod. 2005, 20, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Rebar, R.W.; Keator, C.S. The history and future of in vitro fertilization in the United States: The complex interrelationships among basic science, human medicine, and politics. F&S Sci. 2023, 4, 102–113. [Google Scholar] [CrossRef]
- Pincus, G.; Enzmann, E.V. The Comparative Behavior of Mammalian Eggs In Vivo and In Vitro: I. The Activation of Ovarian Eggs. J. Exp. Med. 1935, 62, 665–675. [Google Scholar] [CrossRef]
- Rao, K. Nobel prize for scientist Professor Robert G Edwards. J. Hum. Reprod. Sci. 2010, 3, 120. [Google Scholar] [CrossRef]
- Brinsden, P.R.; Brinsden, P.R. Thirty years of IVF: The legacy of Patrick Steptoe and Robert Edwards. Hum. Fertil. 2009, 12, 137–143. [Google Scholar] [CrossRef]
- Dow, K. Looking into the Test Tube: The Birth of IVF on British Television. Med. Hist. 2019, 63, 189–208. [Google Scholar] [CrossRef]
- Oehninger, S.; Kruger, T.F. Dr. Howard Jones, Jr. (1910–2015): In Memoriam. Facts Views Vis. ObGyn 2015, 7, 149–152. [Google Scholar]
- Shivaji, S. The journey of R. G. Edwards: From a single cell to Louise Joy Brown. Curr. Sci. 2011, 100, 488–490. [Google Scholar]
- Tellier, L.C.A.M.; Eccles, J.; Treff, N.R.; Lello, L.; Fishel, S.; Hsu, S. Embryo Screening for Polygenic Disease Risk: Recent Advances and Ethical Considerations. Genes 2021, 12, 1105. [Google Scholar] [CrossRef] [PubMed]
- Musters, A.M.; Twisk, M.; Leschot, N.J.; Oosterwijk, C.; Korevaar, J.C.; Repping, S.; van der Veen, F.; Goddijn, M. Perspectives of couples with high risk of transmitting genetic disorders. Fertil. Steril. 2010, 94, 1239–1243. [Google Scholar] [CrossRef] [PubMed]
- Practice Committees of the American Society for Reproductive Medicine and the Society for Assisted Reproductive Technology. The use of preimplantation genetic testing for aneuploidy (PGT-A): A committee opinion. Fertil. Steril. 2018, 109, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Verlinsky, Y.; Rechitsky, S.; Schoolcraft, W.; Strom, C.; Kuliev, A. Preimplantation diagnosis for Fanconi anemia combined with HLA matching. JAMA 2001, 285, 3130–3133. [Google Scholar] [CrossRef]
- Available online: https://www.uptodate.com/contents/preimplantation-genetic-testing#H2083947648 (accessed on 16 May 2025).
- Goossens, V.; Harton, G.; Moutou, C.; Traeger-Synodinos, J.; Van Rij, M.; Harper, J.C. ESHRE PGD Consortium data collection IX: Cycles from January to December 2006 with pregnancy follow-up to October 2007. Hum. Reprod. 2009, 24, 1786–1810. [Google Scholar] [CrossRef]
- Fischer, J.; Colls, P.; Escudero, T.; Munné, S. Preimplantation genetic diagnosis (PGD) improves pregnancy outcome for translocation carriers with a history of recurrent losses. Fertil. Steril. 2010, 94, 283–289. [Google Scholar] [CrossRef]
- Munné, S.; Kaplan, B.; Frattarelli, J.L.; Child, T.; Nakhuda, G.; Shamma, F.N.; Silverberg, K.; Kalista, T.; Handyside, A.H.; Katz-Jaffe, M.; et al. Preimplantation genetic testing for aneuploidy versus morphology as selection criteria for single frozen-thawed embryo transfer in good-prognosis patients: A multicenter randomized clinical trial. Fertil. Steril. 2019, 112, 1071–1079.e7. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, Y.; Deng, H.; Feng, Y.; Chong, W.; Hai, Y.; Hao, P.; He, J.; Li, T.; Peng, L.; et al. Preimplantation Genetic Testing for Aneuploidy With Comprehensive Chromosome Screening in Patients Undergoing In Vitro Fertilization: A Systematic Review and Meta-analysis. Obstet. Gynecol. 2022, 140, 769–777. [Google Scholar] [CrossRef]
- Preimplantation Genetic Testing: ACOG Committee Opinion, Number 799. Obstet. Gynecol. 2020, 135, e133–e137. [CrossRef]
- Brezina, P.R.; Anchan, R.; Kearns, W.G. Preimplantation genetic testing for aneuploidy: What technology should you use and what are the differences? J. Assist. Reprod. Genet. 2016, 33, 823–832. [Google Scholar] [CrossRef]
- Franco, J.G.J.; Vagnini, L.D.; Petersen, C.G.; Renzi, A.; Canas, M.C.T.; Petersen, B.; Ricci, J.; Nicoletti, A.; Zamara, C.; Dieamant, F.; et al. Noninvasive Preimplantation Genetic Testing for Aneuploidy (niPGT-A): The first Brazilian baby. JBRA Assist. Reprod. 2020, 24, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Kamenova, K.; Haidar, H. The First Baby Born After Polygenic Embryo Screening: Key Issues Through the Lens of Experts and Science Reporters. Voices Bioeth. 2022, 8. [Google Scholar] [CrossRef]
- Johnston, J.; Matthews, L.J. Polygenic embryo testing: Understated ethics, unclear utility. Nat. Med. 2022, 28, 446–448. [Google Scholar] [CrossRef] [PubMed]
- Lencz, T.; Backenroth, D.; Granot-Hershkovitz, E.; Green, A.; Gettler, K.; Cho, J.H.; Weissbrod, O.; Zuk, O.; Carmi, S. Utility of polygenic embryo screening for disease depends on the selection strategy. eLife 2021, 10, e64716. [Google Scholar] [CrossRef]
- Pereira, S.; Carmi, S.; Altarescu, G.; Austin, J.; Barlevy, D.; Hershlag, A.; Juengst, E.; Kostick-Quenet, K.; Kovanci, E.; Lathi, R.B.; et al. Polygenic embryo screening: Four clinical considerations warrant further attention. Hum. Reprod. 2022, 37, 1375–1378. [Google Scholar] [CrossRef]
- Treff, N.R.; Marin, D.; Lello, L.; Hsu, S.; Tellier, L.C.A.M. Preimplantation Genetic Testing: Preimplantation genetic testing for polygenic disease risk. Reproduction 2020, 160, A13–A17. [Google Scholar] [CrossRef]
- Karavani, E.; Zuk, O.; Zeevi, D.; Barzilai, N.; Stefanis, N.C.; Hatzimanolis, A.; Smyrnis, N.; Avramopoulos, D.; Kruglyak, L.; Atzmon, G.; et al. Screening Human Embryos for Polygenic Traits Has Limited Utility. Cell 2019, 179, 1424–1435.e8. [Google Scholar] [CrossRef]
- Kumar, A.; Im, K.; Banjevic, M.; Ng, P.C.; Tunstall, T.; Garcia, G.; Galhardo, L.; Sun, J.; Schaedel, O.N.; Levy, B.; et al. Whole-genome risk prediction of common diseases in human preimplantation embryos. Nat. Med. 2022, 28, 513–516. [Google Scholar] [CrossRef]
- Forzano, F.; Antonova, O.; Clarke, A.; de Wert, G.; Hentze, S.; Jamshidi, Y.; Moreau, Y.; Perola, M.; Prokopenko, I.; Read, A.; et al. The use of polygenic risk scores in pre-implantation genetic testing: An unproven, unethical practice. Eur. J. Hum. Genet. 2022, 30, 493–495. [Google Scholar] [CrossRef]
- ESHRE. Position Statement, Polygenic Risk Scores. February 2022. Available online: https://www.eshre.eu/ (accessed on 16 May 2025).
- Choi, S.W.; Mak, T.S.-H.; O’Reilly, P.F. Tutorial: A guide to performing polygenic risk score analyses. Nat. Protoc. 2020, 15, 2759–2772. [Google Scholar] [CrossRef]
- Babb de Villiers, C.; Kroese, M.; Moorthie, S. Understanding polygenic models, their development and the potential application of polygenic scores in healthcare. J. Med. Genet. 2020, 57, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Lambert, S.A.; Abraham, G.; Inouye, M. Towards clinical utility of polygenic risk scores. Hum. Mol. Genet. 2019, 28, R133–R142. [Google Scholar] [CrossRef] [PubMed]
- Khera, A.V.; Chaffin, M.; Aragam, K.G.; Haas, M.E.; Roselli, C.; Choi, S.H.; Natarajan, P.; Lander, E.S.; Lubitz, S.A.; Ellinor, P.T.; et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 2018, 50, 1219–1224. [Google Scholar] [CrossRef] [PubMed]
- Martens, F.K.; Tonk, E.C.M.; Janssens, A.C.J.W. Evaluation of polygenic risk models using multiple performance measures: A critical assessment of discordant results. Genet. Med. Off. J. Am. Coll. Med. Genet. 2019, 21, 391–397. [Google Scholar] [CrossRef]
- Visscher, P.M.; Wray, N.R.; Zhang, Q.; Sklar, P.; McCarthy, M.I.; Brown, M.A.; Yang, J. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am. J. Hum. Genet. 2017, 101, 5–22. [Google Scholar] [CrossRef]
- Lewis, C.M.; Vassos, E. Polygenic risk scores: From research tools to clinical instruments. Genome Med. 2020, 12, 44. [Google Scholar] [CrossRef]
- Curtis, D. Polygenic risk score for schizophrenia is more strongly associated with ancestry than with schizophrenia. Psychiatr. Genet. 2018, 28, 85–89. [Google Scholar] [CrossRef]
- Du, R.-Q.; Zhao, D.-D.; Kang, K.; Wang, F.; Xu, R.-X.; Chi, C.-L.; Kong, L.-Y.; Liang, B. A review of preimplantation genetic testing technologies and applications. Reprod. Dev. Med. 2023, 7, 20–31. [Google Scholar] [CrossRef]
- Polyakov, A.; Amor, D.J.; Savulescu, J.; Gyngell, C.; Georgiou, E.X.; Ross, V.; Mizrachi, Y.; Rozen, G. Polygenic risk score for embryo selection-not ready for prime time. Hum. Reprod. 2022, 37, 2229–2236. [Google Scholar] [CrossRef]
- Purcell, S.M.; Wray, N.R.; Stone, J.L.; Visscher, P.M.; O’Donovan, M.C.; Sullivan, P.F.; Sklar, P. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009, 460, 748–752. [Google Scholar] [CrossRef]
- Sullivan, P.F.; Owen, M.J. Increasing the Clinical Psychiatric Knowledge Base About Pathogenic Copy Number Variation. Am. J. Psychiatry 2020, 177, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Wray, N.R.; Lin, T.; Austin, J.; McGrath, J.J.; Hickie, I.B.; Murray, G.K.; Visscher, P.M. From Basic Science to Clinical Application of Polygenic Risk Scores: A Primer. JAMA Psychiatry 2021, 78, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Dyba, T.; Randi, G.; Bettio, M.; Gavin, A.; Visser, O.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer 2018, 103, 356–387. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Mavaddat, N.; Wilcox, A.N.; Cunningham, A.P.; Carver, T.; Hartley, S.; Babb de Villiers, C.; Izquierdo, A.; Simard, J.; Schmidt, M.K.; et al. BOADICEA: A comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. Genet. Med. Off. J. Am. Coll. Med. Genet. 2019, 21, 1708–1718. [Google Scholar] [CrossRef]
- Li, H.; Feng, B.; Miron, A.; Chen, X.; Beesley, J.; Bimeh, E.; Barrowdale, D.; John, E.M.; Daly, M.B.; Andrulis, I.L.; et al. Breast cancer risk prediction using a polygenic risk score in the familial setting: A prospective study from the Breast Cancer Family Registry and kConFab. Genet. Med. Off. J. Am. Coll. Med. Genet. 2017, 19, 30–35. [Google Scholar] [CrossRef]
- Esserman, L.J. The WISDOM Study: Breaking the deadlock in the breast cancer screening debate. NPJ Breast Cancer 2017, 3, 34. [Google Scholar] [CrossRef]
- Evans, D.G.R.; Harkness, E.F.; Brentnall, A.R.; van Veen, E.M.; Astley, S.M.; Byers, H.; Sampson, S.; Southworth, J.; Stavrinos, P.; Howell, S.J.; et al. Breast cancer pathology and stage are better predicted by risk stratification models that include mammographic density and common genetic variants. Breast Cancer Res. Treat. 2019, 176, 141–148. [Google Scholar] [CrossRef]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; et al. Heart Disease and Stroke Statistics-2022 Update: A Report from the American Heart Association. Circulation 2022, 145, e153–e639. [Google Scholar] [CrossRef]
- Elliott, J.; Bodinier, B.; Bond, T.A.; Chadeau-Hyam, M.; Evangelou, E.; Moons, K.G.M.; Dehghan, A.; Muller, D.C.; Elliott, P.; Tzoulaki, I. Predictive Accuracy of a Polygenic Risk Score-Enhanced Prediction Model vs. a Clinical Risk Score for Coronary Artery Disease. JAMA 2020, 323, 636–645. [Google Scholar] [CrossRef]
- Inouye, M.; Abraham, G.; Nelson, C.P.; Wood, A.M.; Sweeting, M.J.; Dudbridge, F.; Lai, F.Y.; Kaptoge, S.; Brozynska, M.; Wang, T.; et al. Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention. J. Am. Coll. Cardiol. 2018, 72, 1883–1893. [Google Scholar] [CrossRef]
- Mars, N.; Koskela, J.T.; Ripatti, P.; Kiiskinen, T.T.J.; Havulinna, A.S.; Lindbohm, J.V.; Ahola-Olli, A.; Kurki, M.; Karjalainen, J.; Palta, P.; et al. Polygenic and clinical risk scores and their impact on age at onset and prediction of cardiometabolic diseases and common cancers. Nat. Med. 2020, 26, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Torkamani, A.; Wineinger, N.E.; Topol, E.J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 2018, 19, 581–590. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, J.W.; Raghavan, S.; Marquez-Luna, C.; Luzum, J.A.; Damrauer, S.M.; Ashley, E.A.; O’Donnell, C.J.; Willer, C.J.; Natarajan, P. Polygenic Risk Scores for Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2022, 146, e93–e118. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.T.; McCarthy, J.J.; Shin, J. Clinical application of pharmacogenetics: Focusing on practical issues. Pharmacogenomics 2015, 16, 1733–1741. [Google Scholar] [CrossRef]
- Pirmohamed, M. Personalized pharmacogenomics: Predicting efficacy and adverse drug reactions. Annu. Rev. Genomics Hum. Genet. 2014, 15, 349–370. [Google Scholar] [CrossRef]
- Mallal, S.; Phillips, E.; Carosi, G.; Molina, J.-M.; Workman, C.; Tomazic, J.; Jägel-Guedes, E.; Rugina, S.; Kozyrev, O.; Cid, J.F.; et al. HLA-B*5701 screening for hypersensitivity to abacavir. N. Engl. J. Med. 2008, 358, 568–579. [Google Scholar] [CrossRef]
- Johnson, D.; Wilke, M.A.P.; Lyle, S.M.; Kowalec, K.; Jorgensen, A.; Wright, G.E.B.; Drögemöller, B.I. A Systematic Review and Analysis of the Use of Polygenic Scores in Pharmacogenomics. Clin. Pharmacol. Ther. 2022, 111, 919–930. [Google Scholar] [CrossRef]
- Cross, B.; Turner, R.; Pirmohamed, M. Polygenic risk scores: An overview from bench to bedside for personalised medicine. Front. Genet. 2022, 13, 1000667. [Google Scholar] [CrossRef]
- Treff, N.R.; Eccles, J.; Lello, L.; Bechor, E.; Hsu, J.; Plunkett, K.; Zimmerman, R.; Rana, B.; Samoilenko, A.; Hsu, S.; et al. Utility and First Clinical Application of Screening Embryos for Polygenic Disease Risk Reduction. Front. Endocrinol. 2019, 10, 845. [Google Scholar] [CrossRef]
- Bayefsky, M. Who Should Regulate Preimplantation Genetic Diagnosis in the United States? AMA J. Ethics 2018, 20, E1160–E1167. [Google Scholar] [CrossRef]
- Kaiser, J. Screening embryos for complex genetic traits called premature. Science 2019, 366, 405–406. [Google Scholar] [CrossRef] [PubMed]
- Widen, E.; Lello, L.; Raben, T.G.; Tellier, L.C.A.M.; Hsu, S.D.H. Polygenic Health Index, General Health, and Pleiotropy: Sibling Analysis and Disease Risk Reduction. Sci. Rep. 2022, 12, 18173. [Google Scholar] [CrossRef] [PubMed]
- Pagnaer, T.; Siermann, M.; Borry, P.; Tšuiko, O. Polygenic risk scoring of human embryos: A qualitative study of media coverage. BMC Med. Ethics 2021, 22, 125. [Google Scholar] [CrossRef] [PubMed]
- Turley, P.; Meyer, M.N.; Wang, N.; Cesarini, D.; Hammonds, E.; Martin, A.R.; Neale, B.M.; Rehm, H.L.; Wilkins-Haug, L.; Benjamin, D.J.; et al. Problems with Using Polygenic Scores to Select Embryos. N. Engl. J. Med. 2021, 385, 78–86. [Google Scholar] [CrossRef]
- Gonzalez-Pena, V.; Natarajan, S.; Xia, Y.; Klein, D.; Carter, R.; Pang, Y.; Shaner, B.; Annu, K.; Putnam, D.; Chen, W.; et al. Accurate genomic variant detection in single cells with primary template-directed amplification. Proc. Natl. Acad. Sci. USA 2021, 118, e2024176118. [Google Scholar] [CrossRef]
- Ginoza, M.E.C.; Isasi, R. Regulating Preimplantation Genetic Testing across the World: A Comparison of International Policy and Ethical Perspectives. Cold Spring Harb. Perspect. Med. 2020, 10, a036681. [Google Scholar] [CrossRef]
- European Commission. JRC F7—Knowledge Health and Consumer Safety, Genome-Wide Association Studies, Polygenic Scores and Social Science Genetics: Overview and Policy Implications; JRC Technical Report; EUR 29815 EN; European Commission: Luxembourg, 2019. [Google Scholar]
- Munday, S.; Savulescu, J. Three models for the regulation of polygenic scores in reproduction. J. Med. Ethics 2021, 47, e91. [Google Scholar] [CrossRef]
- Harris, B.S.; Bishop, K.C.; Kuller, J.A.; Alkilany, S.; Price, T.M. Preimplantation genetic testing: A review of current modalities. F&S Rev. 2021, 2, 43–56. [Google Scholar] [CrossRef]
- Fletcher, J.M.; Wu, Y.; Lu, Q. What’s the use? eLife 2021, 12, e73193. [Google Scholar] [CrossRef]
- Siermann, M.; Valcke, O.; Vermeesch, J.R.; Raivio, T.; Tšuiko, O.; Borry, P. Limitations, concerns and potential: Attitudes of healthcare professionals toward preimplantation genetic testing using polygenic risk scores. Eur. J. Hum. Genet. 2023, 31, 1133–1138. [Google Scholar] [CrossRef]
- Treff, N.R. Polygenic risk scoring in the human embryo: Reproductive genetics, final frontier? F&S Sci. 2020, 1, 14–15. [Google Scholar] [CrossRef]
- Treff, N.R.; Tellier, L.C.A.M.; Hsu, S.D.H. Use of Polygenic Scores to Select Embryos. N. Engl. J. Med. 2021, 385, 1727. [Google Scholar] [CrossRef] [PubMed]
- Anomaly, J. What is Informed Choice? Polygenic Risk and Reproductive Autonomy. Fertility & Sterility Dialog News, 17 January 2023.
- Lázaro-Muñoz, G.; Pereira, S.; Carmi, S.; Lencz, T. Screening embryos for polygenic conditions and traits: Ethical considerations for an emerging technology. Genet. Med. Off. J. Am. Coll. Med. Genet. 2021, 23, 432–434. [Google Scholar] [CrossRef]
- De Souza, M. Testing Embryos for IQ. Law Technol. Hum. 2023, 5, 74–89. [Google Scholar] [CrossRef]
- Lencz, T.; Sabatello, M.; Docherty, A.; Peterson, R.E.; Soda, T.; Austin, J.; Bierut, L.; Crepaz-Keay, D.; Curtis, D.; Degenhardt, F.; et al. Concerns about the use of polygenic embryo screening for psychiatric and cognitive traits. Lancet Psychiatry 2022, 9, 838–844. [Google Scholar] [CrossRef]
- Verbanck, M.; Chen, C.-Y.; Neale, B.; Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018, 50, 693–698. [Google Scholar] [CrossRef]
Indication | Explanation/Context | Role of PGT-A |
---|---|---|
IVF outcomes in general | PGT-A proposed to improve live birth and miscarriage rates. | No clear evidence for benefit in live birth or miscarriage rates. |
Recurrent IVF implantation failure | Embryos may look normal but carry chromosomal abnormalities. | Helps select embryos with normal chromosomes, especially after 3 failed transfers. |
Recurrent miscarriages | ~50% due to embryo chromosome abnormalities. | Helps select embryos free from structural or numeric chromosomal issues. |
Male factor infertility | Male factor is a major cause of embryonic aneuploidy. | Enables selection of embryos with chromosomal integrity. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smolarczyk, R.; Szeliga, A.; Duszewska, A.M.; Kostrzak, A.; Rudnicka, E.; Szczesnowicz, A.; Kunicki, M.; Bochynska, S.; Bala, G.; Meczekalski, B.; et al. Foretelling the Future: Preimplantation Genetic Testing and the Coming of Polygenic Embryo Screening. J. Clin. Med. 2025, 14, 3885. https://doi.org/10.3390/jcm14113885
Smolarczyk R, Szeliga A, Duszewska AM, Kostrzak A, Rudnicka E, Szczesnowicz A, Kunicki M, Bochynska S, Bala G, Meczekalski B, et al. Foretelling the Future: Preimplantation Genetic Testing and the Coming of Polygenic Embryo Screening. Journal of Clinical Medicine. 2025; 14(11):3885. https://doi.org/10.3390/jcm14113885
Chicago/Turabian StyleSmolarczyk, Roman, Anna Szeliga, Anna M. Duszewska, Anna Kostrzak, Ewa Rudnicka, Aleksandra Szczesnowicz, Michał Kunicki, Stefania Bochynska, Gregory Bala, Blazej Meczekalski, and et al. 2025. "Foretelling the Future: Preimplantation Genetic Testing and the Coming of Polygenic Embryo Screening" Journal of Clinical Medicine 14, no. 11: 3885. https://doi.org/10.3390/jcm14113885
APA StyleSmolarczyk, R., Szeliga, A., Duszewska, A. M., Kostrzak, A., Rudnicka, E., Szczesnowicz, A., Kunicki, M., Bochynska, S., Bala, G., Meczekalski, B., & Adashi, E. Y. (2025). Foretelling the Future: Preimplantation Genetic Testing and the Coming of Polygenic Embryo Screening. Journal of Clinical Medicine, 14(11), 3885. https://doi.org/10.3390/jcm14113885