Sequential Fractional CO2 and 1540/1570 nm Lasers: A Narrative Review of Preclinical and Clinical Evidence
Abstract
1. Introduction
2. Preclinical Background
3. Clinical Evidence
3.1. Atrophic Acne Scars
3.2. Hypertrophic Scars and Keloids
3.3. Striae Distensae
3.4. Neck Skin Laxity
3.5. Facial Wrinkles and Skin Rejuvenation
3.6. Hidradenitis Suppurativa
4. Comparative Analysis: CO2 + 1540 nm vs. CO2 + 1570 nm vs. CO2 + RF
5. Future Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Houreld, N.N. The Use of Lasers and Light Sources in Skin Rejuvenation. Clin. Dermatol. 2019, 37, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Tierney, E.P.; Eisen, R.F.; Hanke, C.W. Fractionated CO2 Laser Skin Rejuvenation. Dermatol. Ther. 2011, 24, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Prignano, F.; Bonciani, D.; Campolmi, P.; Cannarozzo, G.; Bonan, P.; Lotti, T. A Study of Fractional CO2 Laser Resurfacing: The Best Fluences through a Clinical, Histological, and Ultrastructural Evaluation. J. Cosmet. Dermatol. 2011, 10, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Buzina, D.Š.; Lipozenčić, J.; Mokos, Z.B.; Čeović, R.; Kostović, K.; Štulhofer Buzina, D. Ablative Laser Resurfacing: Is It Still the Gold Standard for Facial Rejuvenation? Acta Dermatovenerol. Croat. 2010, 18, 190–194. [Google Scholar]
- Fife, D.J.; Fitzpatrick, R.E.; Zachary, C.B. Complications of Fractional CO2 Laser Resurfacing: Four Cases. Lasers Surg. Med. 2009, 41, 179–184. [Google Scholar] [CrossRef]
- Karampinis, E.; Georgopoulou, K.-E.; Goudouras, G.; Lianou, V.; Kampra, E.; Schulze, R.; Zafiriou, A.V.; Laser, E.; Diaconu, C.; Karampinis, E.; et al. Laser-Induced Koebner-Related Skin Reactions: A Clinical Overview. Medicina 2024, 60, 1177. [Google Scholar] [CrossRef]
- Cannarozzo, G.; Sannino, M.; Tamburi, F.; Chiricozzi, A.; Saraceno, R.; Morini, C.; Nisticò, S. Deep Pulse Fractional CO2 Laser Combined with a Radiofrequency System: Results of a Case Series. Photomed. Laser Surg. 2014, 32, 409–412. [Google Scholar] [CrossRef]
- Campolmi, P.; Bonan, P.; Cannarozzo, G.; Bruscino, N.; Moretti, S. Efficacy and Safety Evaluation of an Innovative CO2 Laser/Radiofrequency Device in Dermatology. J. Eur. Acad. Dermatol. Venereol. 2013, 27, 1481–1490. [Google Scholar] [CrossRef]
- Paasch, U.; Bodendorf, M.O.; Grunewald, S.; Simon, J.C. Radiofrequency in Facial Rejuvenation. J. Dtsch. Dermatol. Ges. 2009, 7, 196–203. [Google Scholar] [CrossRef]
- Carruthers, A. Radiofrequency Resurfacing: Technique and Clinical Review. Facial Plast. Surg. Clin. N. Am. 2001, 9, 311–319. [Google Scholar] [CrossRef]
- Seirafianpour, F.; Pour Mohammad, A.; Moradi, Y.; Dehghanbanadaki, H.; Panahi, P.; Goodarzi, A.; Mozafarpoor, S. Systematic Review and Meta-Analysis of Randomized Clinical Trials Comparing Efficacy, Safety, and Satisfaction between Ablative and Non-Ablative Lasers in Facial and Hand Rejuvenation/Resurfacing. Lasers Med. Sci. 2022, 37, 2111–2122. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, V.A.; Stratigos, A.J.; Dover, J.S. Nonablative Skin Rejuvenation. J. Cosmet. Dermatol. 2005, 4, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Atiyeh, B.S.; Dibo, S.A. Nonsurgical Nonablative Treatment of Aging Skin: Radiofrequency Technologies between Aggressive Marketing and Evidence-Based Efficacy. Aesthetic Plast. Surg. 2009, 33, 283–294. [Google Scholar] [CrossRef]
- Elsaie, M.L.; Ibrahim, S.M.; Saudi, W. Ablative Fractional 10 600 Nm Carbon Dioxide Laser versus Non-Ablative Fractional 1540 Nm Erbium-Glass Laser in Egyptian Post-Acne Scar Patients. J. Lasers Med. Sci. 2017, 9, 32. [Google Scholar] [CrossRef]
- de Angelis, F.; Kolesnikova, L.; Renato, F.; Liguori, G. Fractional Nonablative 1540-Nm Laser Treatment of Striae Distensae in Fitzpatrick Skin Types II to IV: Clinical and Histological Results. Aesthetic Surg. J. 2011, 31, 411–419. [Google Scholar] [CrossRef]
- Hedelund, L.; Moreau, K.E.R.; Beyer, D.M.; Nymann, P.; Hædersdal, M. Fractional Nonablative 1,540-Nm Laser Resurfacing of Atrophic Acne Scars. A Randomized Controlled Trial with Blinded Response Evaluation. Lasers Med. Sci. 2010, 25, 749–754. [Google Scholar] [CrossRef]
- Haedersdal, M.; Moreau, K.E.R.; Beyer, D.M.; Nymann, P.; Alsbjorn, B. Fractional Nonablative 1540 Nm Laser Resurfacing for Thermal Burn Scars: A Randomized Controlled Trial. Lasers Surg. Med. 2009, 41, 189–195. [Google Scholar] [CrossRef]
- Fournier, N.; Mordon, S. Nonablative Remodeling with a 1,540 Nm Erbium:Glass Laser. Dermatol. Surg. 2005, 31, 1227–1236. [Google Scholar] [CrossRef]
- Farkas, J.P.; Richardson, J.A.; Hoopman, J.; Brown, S.A.; Kenkel, J.M. Micro-Island Damage with a Nonablative 1540-Nm Er: Glass Fractional Laser Device in Human Skin. J. Cosmet. Dermatol. 2009, 8, 119–126. [Google Scholar] [CrossRef]
- Yoo, K.H.; Ahn, J.Y.; Kim, J.Y.; Li, K.; Seo, S.J.; Hong, C.K. The Use of 1540 Nm Fractional Photothermolysis for the Treatment of Acne Scars in Asian Skin: A Pilot Study. Photodermatol. Photoimmunol. Photomed. 2009, 25, 138–142. [Google Scholar] [CrossRef]
- Fournier, N.; Dahan, S.; Barneon, G.; Diridollou, S.; Lagarde, J.M.; Gall, Y.; Mordon, S. Nonablative Remodeling: Clinical, Histologic, Ultrasound Imaging, and Profilometric Evaluation of a 1540 Nm Er: Glass Laser. Dermatol. Surg. 2001, 27, 799–806. [Google Scholar] [CrossRef]
- Cervelli, V.; Nicoli, F.; Spallone, D.; Verardi, S.; Sorge, R.; Nicoli, M.; Balzani, A. Treatment of Traumatic Scars Using Fat Grafts Mixed with Platelet-rich Plasma, and Resurfacing of Skin with the 1540 Nm Nonablative Laser. Clin. Exp. Dermatol. 2012, 37, 55–61. [Google Scholar] [CrossRef]
- Nisticò, S.P.; Bennardo, L.; Zingoni, T.; Pieri, L.; Fusco, I.; Rossi, F.; Magni, G.; Cannarozzo, G. Synergistic Sequential Emission of Fractional 10.600 and 1540 Nm Lasers for Skin Resurfacing: An Ex Vivo Histological Evaluation. Medicina 2022, 58, 1308. [Google Scholar] [CrossRef]
- Snast, I.; Lapidoth, M.; Levi, A. Clinical and Histological Evaluation of a Dual Sequential Application of Fractional 10,600 Nm and 1570 Nm Lasers, Compared to Single Applications in a Porcine Model. Lasers Med. Sci. 2022, 37, 1983–1992. [Google Scholar] [CrossRef]
- Magni, G.; Piccolo, D.; Bonan, P.; Conforti, C.; Crisman, G.; Pieri, L.; Fusco, I.; Rossi, F. 1540-Nm Fractional Laser Treatment Modulates Proliferation and Neocollagenesis in Cultured Human Dermal Fibroblasts. Front. Med. 2022, 9, 1010878. [Google Scholar] [CrossRef]
- Belletti, S.; Madeddu, F.; Amoruso, G.F.; Provenzano, E.; Nisticò, S.P.; Fusco, I.; Bennardo, L. An Innovative Dual-Wavelength Laser Technique for Atrophic Acne Scar Management: A Pilot Study. Medicina 2023, 59, 2012. [Google Scholar] [CrossRef]
- Campolmi, P.; Quintarelli, L.; Fusco, I. A Multimodal Approach to Laser Treatment of Extensive Hypertrophic Burn Scar: A Case Report. Am. J. Case Rep. 2023, 24, e939022-1. [Google Scholar] [CrossRef]
- Belletti, S.; Pennati, B.M.; Madeddu, F. A Sequential CO2 and 1540 Nm Laser for the Treatment of Neck Skin Laxity. Ski. Res. Technol. 2023, 29, e13469. [Google Scholar] [CrossRef]
- Belletti, S.; Madeddu, F.; Brando, A.; Provenzano, E.; Nisticò, S.P.; Fusco, I.; Bennardo, L. Laser Impacts on Skin Rejuvenation: The Use of a Synergistic Emission of CO2 and 1540 Nm Wavelengths. Medicina 2023, 59, 1857. [Google Scholar] [CrossRef]
- Tsur Shenhav, L.; Shehade, W.; Muravnik, G.; Horovitz, T.; Artzi, O. The Safety and Efficacy of a Dual CO2 and 1570-Nm Hybrid Laser for Periorbital Rejuvenation. Dermatol. Surg. 2023, 49, 479–482. [Google Scholar] [CrossRef] [PubMed]
- Shenhav, L.T.; Shehadeh, W.; Alcotzer, I.; Artzi, O. Hybrid Fractional Laser Facial Resurfacing: A Comparison between a Single Treatment at High Settings versus Multiple Treatments at Low to Moderate Settings. Lasers Surg. Med. 2024, 56, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Mezzana, P.; Valeriani, M.; Valeriani, R. Combined Fractional Resurfacing (10600 Nm/1540 Nm): Tridimensional Imaging Evaluation of a New Device for Skin Rejuvenation. J. Cosmet. Laser Ther. 2016, 18, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Fiorentini, F.; Fusco, I. Synergistic Sequential Emission of Fractional 1540 Nm and 10 600 Lasers for Abdominal Postsurgical Scar Management: A Clinical Case Report. Am. J. Case Rep. 2023, 24, e938607-1. [Google Scholar] [CrossRef] [PubMed]
- Lindén, O.; Lönndahl, L.; Erlendsson, A.M.; Sandberg, C.; Killasli, H. Effects of Mixed-Technology CO2 and Ga-As Laser in Patients with Hidradenitis Suppurativa–A Case Series. JAAD Case Rep. 2022, 30, 124–127. [Google Scholar] [CrossRef]
- Bonan, P.; Fusco, I.; Bruscino, N.; Madeddu, F.; Troiano, M.; Verdelli, A.; Piccolo, D.; Rampino, G. Laser-Assisted Blepharoplasty: An Innovative Safe and Effective Technique. Ski. Res. Technol. 2023, 29, e13351. [Google Scholar] [CrossRef]
- García, P.N.; Andrino, R.L. Resurfacing of Atrophic Facial Acne Scars with a Multimodality CO2 and 1570 Nm Laser System. J. Cosmet. Dermatol. 2024, 23, 13–18. [Google Scholar] [CrossRef]
- Agrawal, N.; Smith, G.; Heffelfinger, R. Ablative Skin Resurfacing. Facial Plast. Surg. 2014, 30, 55–61. [Google Scholar] [CrossRef]
- Al-Waiz, M.M.; Al-Sharqi, A.I. Medium-Depth Chemical Peels in the Treatment of Acne Scars in Dark-Skinned Individuals. Dermatol. Surg. 2022, 28, 383–387. [Google Scholar]
- Castillo, D.E.; Keri, J.E. Chemical Peels in the Treatment of Acne: Patient Selection and Perspectives. Clin. Cosmet. Investig. Dermatol. 2018, 11, 11–365. [Google Scholar] [CrossRef]
- Magnani, L.R.; Schweiger, E.S. Fractional CO2 Lasers for the Treatment of Atrophic Acne Scars: A Review of the Literature. J. Cosmet. Laser Ther. 2014, 16, 48–56. [Google Scholar] [CrossRef]
- Zhang, D.D.; Zhao, W.Y.; Fang, Q.Q.; Wang, Z.C.; Wang, X.F.; Zhang, M.X.; Hu, Y.Y.; Zheng, B.; Tan, W.Q. The Efficacy of Fractional CO2 Laser in Acne Scar Treatment: A Meta-Analysis. Dermatol. Ther. 2021, 34, e14539. [Google Scholar] [CrossRef] [PubMed]
- Ansari, F.; Sadeghi-Ghyassi, F.; Yaaghoobian, B. The Clinical Effectiveness and Cost-Effectiveness of Fractional CO2 Laser in Acne Scars and Skin Rejuvenation: A Meta-Analysis and Economic Evaluation. J. Cosmet. Laser Ther. 2018, 20, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.U.; Gantsetseg, D.; Jung, J.Y.; Jung, I.; Shin, S.; Lee, J.H. Comparison of Non-Ablative and Ablative Fractional Laser Treatments in a Postoperative Scar Study. Lasers Surg. Med. 2014, 46, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Gokalp, H. Evaluation of Nonablative Fractional Laser Treatment in Scar Reduction. Lasers Med. Sci. 2017, 32, 1629–1635. [Google Scholar] [CrossRef]
- Clementi, A.; Cannarozzo, G.; Amato, S.; Zappia, E.; Bennardo, L.; Michelini, S.; Morini, C.; Sannino, M.; Longo, C.; Nistico, S.P. Dye Laser Applications in Cosmetic Dermatology: Efficacy and Safety in Treating Vascular Lesions and Scars. Cosmetics 2024, 11, 227. [Google Scholar] [CrossRef]
- Mamalis, A.D.; Lev-Tov, H.; Nguyen, D.H.; Jagdeo, J.R. Laser and Light-Based Treatment of Keloids—A Review. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 689–699. [Google Scholar] [CrossRef]
- Srivastava, S.; Kumari, H.; Singh, A. Comparison of Fractional CO2 Laser, Verapamil, and Triamcinolone for the Treatment of Keloid. Adv. Wound Care 2019, 8, 7–13. [Google Scholar] [CrossRef]
- Wang, J.; Yu, Q.; Zhou, Q.; Tao, M.; Cao, Y.; Yang, X. Application of Fractional Carbon Dioxide Laser Monotherapy in Keloids: A Meta-Analysis. J. Cosmet. Dermatol. 2024, 23, 1178–1186. [Google Scholar] [CrossRef]
- Wang, J.; Wu, J.; Xu, M.; Gao, Q.; Chen, B.; Wang, F.; Song, H. Combination Therapy of Refractory Keloid with Ultrapulse Fractional Carbon Dioxide (CO2) Laser and Topical Triamcinolone in Asians-Long-Term Prevention of Keloid Recurrence. Dermatol. Ther. 2020, 33, e14359. [Google Scholar] [CrossRef]
- Khatri, K.A.; Mahoney, D.L.; McCartney, M.J. Laser Scar Revision: A Review. J. Cosmet. Laser Ther. 2011, 13, 54–62. [Google Scholar] [CrossRef]
- Guertler, A.; Reinholz, M.; Poetschke, J.; Steckmeier, S.; Schwaiger, H.; Gauglitz, G.G. Objective Evaluation of the Efficacy of a Non-Ablative Fractional 1565 Nm Laser for the Treatment of Deliberate Self-Harm Scars. Lasers Med. Sci. 2018, 33, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Menashe, S.; Heller, L. Keloid and Hypertrophic Scars Treatment. Aesthetic Plast. Surg. 2024, 48, 2553–2560. [Google Scholar] [CrossRef]
- Cavalié, M.; Sillard, L.; Montaudié, H.; Bahadoran, P.; Lacour, J.P.; Passeron, T. Treatment of Keloids with Laser-Assisted Topical Steroid Delivery: A Retrospective Study of 23 Cases. Dermatol. Ther. 2015, 28, 74–78. [Google Scholar] [CrossRef]
- Connell, P.G.; Harland, C.C. Treatment of Keloid Scars with Pulsed Dye Laser and Intralesional Steroid. J. Cutan. Laser Ther. 2000, 2, 147–150. [Google Scholar] [CrossRef]
- Al-Himdani, S.; Ud-Din, S.; Gilmore, S.; Bayat, A. Striae Distensae: A Comprehensive Review and Evidence-based Evaluation of Prophylaxis and Treatment. Br. J. Dermatol. 2014, 170, 527–547. [Google Scholar] [CrossRef]
- Lokhande, A.; Mysore, V. Striae Distensae Treatment Review and Update. Indian Dermatol. Online J. 2019, 10, 380–395. [Google Scholar] [CrossRef]
- Guida, S.; Galimberti, M.G.; Bencini, M.; Pellacani, G.; Bencini, P.L. Treatment of Striae Distensae with Non-Ablative Fractional Laser: Clinical and in Vivo Microscopic Documentation of Treatment Efficacy. Lasers Med. Sci. 2018, 33, 75–78. [Google Scholar] [CrossRef]
- Yang, Y.J.; Lee, G.Y. Treatment of Striae Distensae with Nonablative Fractional Laser versus Ablative CO2 Fractional Laser: A Randomized Controlled Trial. Ann. Dermatol. 2011, 23, 481–489. [Google Scholar] [CrossRef]
- Menashe, S.; Heller, L. Striae Distensae Treatment: Evaluating Laser Efficacy and Safety. Int. J. Dermatol. 2024, 63, 46–50. [Google Scholar] [CrossRef]
- Goldberg, D.J.; Hussain, M.; Fazeli, A.; Berlin, A.L. Treatment of Skin Laxity of the Lower Face and Neck in Older Individuals with a Broad-Spectrum Infrared Light Device. J. Cosmet. Laser Ther. 2007, 9, 35–40. [Google Scholar] [CrossRef]
- Chen, K.H.; Tam, K.W.; Chen, I.F.; Huang, S.K.; Tzeng, P.C.; Wang, H.J.; Chen, C. A Systematic Review of Comparative Studies of CO2 and Erbium:YAG Lasers in Resurfacing Facial Rhytides (Wrinkles). J. Cosmet. Laser Ther. 2017, 19, 199–204. [Google Scholar] [CrossRef]
- Gao, N.; Gao, L.; Wang, Y.; Wang, L.; Song, P.; Lu, M.; Gao, L. Efficacy and Safety of Ultra-Pulsed CO2 Fractional Laser (UP) for the Treatment of Periorbital Static Wrinkles. Lasers Med. Sci. 2025, 40, 94. [Google Scholar] [CrossRef]
- Bjerring, P.; Egevist, H.; Clement, M.; Heickendorff, L.; Kiernan, M. Selective Non-Ablative Wrinkle Reduction by Laser. J. Cutan. Laser Ther. 2000, 2, 9–15. [Google Scholar] [CrossRef]
- Sabat, R.; Alavi, A.; Wolk, K.; Wortsman, X.; McGrath, B.; Garg, A.; Szepietowski, J.C. Hidradenitis Suppurativa. Lancet 2025, 405, 420–438. [Google Scholar] [CrossRef]
- John, H.; Manoloudakis, N.; Stephen Sinclair, J. A Systematic Review of the Use of Lasers for the Treatment of Hidradenitis Suppurativa. J. Plast. Reconstr. Aesthetic Surg. 2016, 69, 1374–1381. [Google Scholar] [CrossRef]
- Campolmi, P.; Cannarozzo, G.; Bennardo, L.; Clementi, A.; Sannino, M.; Nisticò, S.P. Fractional Micro-Ablative CO2 Laser as Therapy in Penile Lichen Sclerosus. J. Lasers Med. Sci. 2021, 12, e61. [Google Scholar] [CrossRef]
- Amato, S.; Nisticò, S.P.; Clementi, A.; Stabile, G.; Cassalia, F.; Dattola, A.; Rizzuto, G.; Cannarozzo, G. Multispectral Imaging and OCT-Guided Precision Treatment of Rhinophyma with CO2 and Dye Lasers: A Comprehensive Diagnostic and Therapeutic. Cosmetics 2024, 11, 221. [Google Scholar] [CrossRef]
- Filippini, M.; Elmi, S.; Sozzi, J.; Pieri, L.; Fusco, I.; Zingoni, T.; González-Isaza, P. Thermo-Ablative Fractional CO2 Lasers Combined with 1540 Nm Wavelengths Is a Promising Treatment Option in Stress Urinary Incontinence. Med. Sci. 2025, 13, 25. [Google Scholar] [CrossRef]
Author | Model | Laser Combination | Key Findings |
---|---|---|---|
Nisticò et al. [23] | Excised ovine skin | CO2 + 1540 nm | Wider coagulation halo around ablation columns; improved dermal heating |
Snast et al. [24] | Porcine skin (in vivo) | CO2 + 1570 nm | Broader coagulation zone without increased depth; good healing profile |
Magni et al. [25] | Human dermal fibroblast culture | 1540 nm only | Upregulation of collagen genes; increased mitochondrial activity |
Study (Indication, Skin Type, Level of Evidence) | Laser Wavelengths and Device | Laser Settings | Sessions (Interval) | Adverse Effects |
---|---|---|---|---|
Belletti et al., 2023 [26]—Acne scars (FP I–II) Low | CO2 + 1540 nm (DuoGlide) | CO2 10–15 W, 900–1000 µs pulse (SP), spacing ~600 µm, Stack 1–2 (≈20–50 mJ); 1540 nm: 15–20 mJ/spot | 2–4 sessions (6–12 weeks apart) | Mild oedema in all; moderate erythema in 3/4 patients; downtime ~5–6 days; no PIH or scarring |
Campolmi et al., 2023 [27]—Burn hypertrophic scar (FP VI) Low | CO2 + 1540 nm (DuoGlide) | Initial 2 sessions CO2 -only: 25 W, 500 µm, HP mode, Stack 2; then CO2 ~15 W, 500 µm, HP mode (1 ms); 1540 nm: ~3 W, 5 ms, single-pass | 3 combined sessions (monthly) | Moderate erythema/swelling; no infection; scar softening; no PIH |
Pennati (Fiorentini) et al., 2023 [28]—Neck laxity (FP III) Low | CO2 + 1540 nm (DuoGlide) | CO2 ~26 mJ/dot; 1540 nm ~10 mJ/dot; scanner with contact sensor; single pass over entire neck | 3 sessions (45-day intervals) | Mild to moderate erythema up to 1 week; no PIH, scarring, or contracture; well tolerated with topical anaesthesia |
Belletti et al., 2023 [29]—Facial wrinkles (FP II–III) Medium | CO2 + 1540 nm (DuoGlide) | CO2 ~12 W average, 1 ms, 600 µm spacing (≈30 mJ); 1540 ~15 mJ; 1 pass full-face, ~15% coverage | 2–4 sessions (6–12 weeks apart) | Erythema in 90% (resolved <10 days); 1 transient severe; oedema mild (75%) or moderate (25%); no infection, PIH, or scarring |
Shenhav et al., 2023 [30]—Periorbital (FP II–III) Medium | CO2 + 1570 nm (Alma Hybrid) | CO2 ~30 mJ/spot; 1570 nm: ~20 mJ/spot; 1:1 Hybrid mode; 1 pass around each eye | 1 session | Mild-moderate erythema/oedema; ~12% transient PIH (resolved); no scarring or infection; tolerable pain with topical anaesthesia |
Shenhav et al., 2024 [31]—Full-face resurfacing (FP II–III) Medium | CO2 + 1570 nm (Alma Hybrid) | Group A: CO2 ~60 mJ, 1570 ~50 mJ (1 session, high fluence); Group B: CO2 ~30–40 mJ, 1570 ~20–30 mJ (2–3 sessions, 20% density) | A: 1 session B: 2–3 sessions (1 month apart) | A: downtime 7.3 ± 2.3 days, more crusting B: downtime 4.3 ± 1.6 days; milder erythema; no persistent complications in either group |
Mezzana et al., 2016 [32]—Facial rejuvenation (FP II–III) Medium | CO2 + 1540 nm (YouLaser MT) | Group A: CO2 ~20 W, 1 ms, 300 μm spot; Group B: CO2 ~15 W, 0.5 ms + 1540 ~7 W, 4 ms | 1 session | A: erythema/swelling resolved in 48 h, downtime 5.9 days B: resolved in 24 h, downtime 3.7 days. No long-term side effects in either group after 3 months |
Fiorentini et al., 2023 [33]—Post-surgical scar (FP II) Low | CO2 + 1540 nm (DuoGlide) | CO2: 16 W, 1 ms pulse, stack 2, 500 µm spacing;1540 nm: 3 W, 5 ms pulse, stack 2; | 3 sessions (every 50 days) | None reported |
Lindén et al., 2022 [34]—Hidradenitis suppurativa (FP I–IV) Low | CO2 + 1540 nm (YouLaser MT) | Skin type I–III: CO2 ~16 W, 0.5 ms, 8 mJ; 1540 ~8 W, 6 ms, 48 mJSkin type IV–VI: CO2 ~16 W, 0.25 ms, 4 mJ; 1540 ~8 W, 4 ms, 32 mJ | 5–33 sessions | Mild redness and burning lasting 1–2 h post-treatment; no long-term adverse effects |
Bonan et al., 2023 [35]—Upper and lower eyelid rejuvenation (FP II–III) Medium | CO2 + 1540 nm (DuoGlide) | CO2 ~12 W, 500 μm spacing, 800 µs dwell time, DP pulse, stack 2; 1540 nm ~5 W, 3 ms dwell time | 1 session | Mild erythema and oedema in 24% of cases, resolved within ~7 days; no serious adverse effects reported |
García et al., 2024 [36]—Atrophic acne scars (FP II–IV) Medium | CO2 + 1570 nm (Alma Hybrid) | CO2 ~45 W, 1 ms; 1570 nm ~10 W, 3 ms; sequential grid mode | 3 sessions (2 months apart) | Temporary erythema (1–2 days), swelling (2–4 days); no serious AEs reported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clementi, A.; Cannarozzo, G.; Guarino, L.; Zappia, E.; Cassalia, F.; Alma, A.; Sannino, M.; Longo, C.; Nisticò, S.P. Sequential Fractional CO2 and 1540/1570 nm Lasers: A Narrative Review of Preclinical and Clinical Evidence. J. Clin. Med. 2025, 14, 3867. https://doi.org/10.3390/jcm14113867
Clementi A, Cannarozzo G, Guarino L, Zappia E, Cassalia F, Alma A, Sannino M, Longo C, Nisticò SP. Sequential Fractional CO2 and 1540/1570 nm Lasers: A Narrative Review of Preclinical and Clinical Evidence. Journal of Clinical Medicine. 2025; 14(11):3867. https://doi.org/10.3390/jcm14113867
Chicago/Turabian StyleClementi, Alessandro, Giovanni Cannarozzo, Luca Guarino, Elena Zappia, Fortunato Cassalia, Antonio Alma, Mario Sannino, Caterina Longo, and Steven Paul Nisticò. 2025. "Sequential Fractional CO2 and 1540/1570 nm Lasers: A Narrative Review of Preclinical and Clinical Evidence" Journal of Clinical Medicine 14, no. 11: 3867. https://doi.org/10.3390/jcm14113867
APA StyleClementi, A., Cannarozzo, G., Guarino, L., Zappia, E., Cassalia, F., Alma, A., Sannino, M., Longo, C., & Nisticò, S. P. (2025). Sequential Fractional CO2 and 1540/1570 nm Lasers: A Narrative Review of Preclinical and Clinical Evidence. Journal of Clinical Medicine, 14(11), 3867. https://doi.org/10.3390/jcm14113867