Perioperative Blood Management
Abstract
1. Introduction
Adverse Reaction | Risk |
---|---|
Febrile Reaction | 1:161 |
Allergic Reaction | 1:345 |
Transfusion-associated Circulatory Overload (TACO) | 1:125 |
Transfusion-associated Acute Lung Injury (TRALI) | 1:1250 |
Anaphylactic Reactions | 1:5000 |
Infections: | |
Hepatitis B Virus | 1:1,100,000 |
Hepatitis C Virus | 1:1,200,000 |
Human Immunodeficiency Virus | 1:1,600,000 |
2. Preoperative Anemia Screening
3. Preoperative Risk Stratification
4. Perioperative Risk Mitigation
5. Coagulopathy Management
5.1. Evaluation of Preoperative Coagulopathy
5.2. Anti-Fibrinolytic Drugs
6. Viscoelastic Testing
7. Rapid Transfusion
8. Complications of Transfusion
9. Outcomes and Post-Transfusion Care
Strategy | Transfusion Thresholds | Outcomes |
---|---|---|
Restrictive | Hgb < 7.0 g/dL Hgb < 8.0 g/dL (cardiac surgery) |
|
Liberal | Hgb < 9.0 g/dL Hgb < 8.0 g/dL |
|
10. Discussion
11. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AABB | American Association of Blood Banks |
AKI | Acute kidney injury |
ANH | Acute normovolemic hemodilution |
ASA | American Society of Anesthesiologists |
EACA | Epsilon aminocaproic acid |
EPO | Erythropoietin |
Hb | Hemoglobin |
INR | International normalized ratio |
MTP | Massive Transfusion Protocol |
PAD | Perioperative autologous blood donation |
PBM | Patient blood management |
PRBC | Packed red blood cells |
PT | prothrombin time |
PTT | activated partial thromboplastin time |
RBC | Red blood cell |
ROTEM | Rotational thromboelastometry |
TACO | Transfusion-associated circulatory overload |
TRALI | Transfusion-related acute lung injury |
TEG | Thrombelastography |
TXA | Tranexamic acid |
VAE | Venous air embolism |
VALARD | Vascular access line air removal device |
WHO | World Health Organization |
vWF | von Willebrand factor |
References
- Kalra, S.K.; Auron, M. Anemia and Transfusion Medicine. Med. Clin. N. Am. 2024, 108, 1065–1085. [Google Scholar] [CrossRef]
- Clevenger, B.; Richards, T. Pre-operative anaemia. Anaesthesia 2015, 70 (Suppl. S1), 20–28. [Google Scholar] [CrossRef]
- Muñoz, M.; Acheson, A.G.; Auerbach, M.; Besser, M.; Habler, O.; Kehlet, H.; Liumbruno, G.M.; Lasocki, S.; Meybohm, P.; Rao Baikady, R.; et al. International consensus statement on the peri-operative management of anaemia and iron deficiency. Anaesthesia 2017, 72, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.M.; Sapiano, M.R.P.; Mowla, S.; Bota, D.; Berger, J.J.; Basavaraju, S.V. Has the trend of declining blood transfusions in the United States ended? Findings of the 2019 National Blood Collection and Utilization Survey. Transfusion 2021, 61 (Suppl. S2), S1–S10. [Google Scholar] [CrossRef]
- World Health Organization. Blood Transfusion. 2022. Available online: https://www.who.int/news-room/facts-in-pictures/detail/blood-transfusion (accessed on 1 April 2024).
- Ozawa-Morriello, J.; Ozawa, S.; Shander, A. Patient Blood Management: Commentary: Patient Blood Management—What is it as a concept? Blood Transfus. 2025, 23, 5–8. [Google Scholar] [CrossRef]
- World Health Organization. Guidance on Implementing Patient Blood Management to Improve Global Blood Health Status; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Leahy, M.F.; Hofmann, A.; Towler, S.; Trentino, K.M.; Burrows, S.A.; Swain, S.G.; Hamdorf, J.; Gallagher, T.; Koay, A.; Geelhoed, G.C.; et al. Improved outcomes and reduced costs associated with a health-system-wide patient blood management program: A retrospective observational study in four major adult tertiary-care hospitals. Transfusion 2017, 57, 1347–1358. [Google Scholar] [CrossRef] [PubMed]
- Ming, Y.; Liu, J.; Zhang, F.; Chen, C.; Zhou, L.; Du, L.; Yan, M. Transfusion of Red Blood Cells, Fresh Frozen Plasma, or Platelets Is Associated With Mortality and Infection After Cardiac Surgery in a Dose-Dependent Manner. Anesth. Analg. 2020, 130, e32. [Google Scholar] [CrossRef]
- Edwards, J.; Morrison, C.; Mohiuddin, M.; Tchatalbachev, V.; Patel, C.; Schwickerath, V.L.; Menitove, J.E.; Singh, G. Patient blood transfusion management: Discharge hemoglobin level as a surrogate marker for red blood cell utilization appropriateness. Transfusion 2012, 52, 2445–2451. [Google Scholar] [CrossRef]
- Carson, J.L.; Grossman, B.J.; Kleinman, S.; Tinmouth, A.T.; Marques, M.B.; Fung, M.K.; Holcomb, J.B.; Illoh, O.; Kaplan, L.J.; Katz, L.M.; et al. Red blood cell transfusion: A clinical practice guideline from the AABB*. Ann. Intern. Med. 2012, 157, 49–58. [Google Scholar] [CrossRef]
- White, M.J.; Hazard, S.W., 3rd; Frank, S.M.; Boyd, J.S.; Wick, E.C.; Ness, P.M.; Tobian, A.A. The evolution of perioperative transfusion testing and blood ordering. Anesth. Analg. 2015, 120, 1196–1203. [Google Scholar] [CrossRef]
- DeBot, M.; Eitel, A.P.; Moore, E.E.; Sauaia, A.; Lutz, P.; Schaid, T.R., Jr.; Hadley, J.B.; Kissau, D.J.; Cohen, M.J.; Kelher, M.R.; et al. Blood Type O Is a Risk Factor for Hyperfibrinolysis and Massive Transfusion After Severe Injury. Shock 2022, 58, 492–497. [Google Scholar] [CrossRef]
- Ferraris, V.A.; Davenport, D.L.; Saha, S.P.; Austin, P.C.; Zwischenberger, J.B. Surgical Outcomes and Transfusion of Minimal Amounts of Blood in the Operating Room. Arch. Surg. 2012, 147, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Kilic, A.; Whitman, G.J. Blood transfusions in cardiac surgery: Indications, risks, and conservation strategies. Ann. Thorac. Surg. 2014, 97, 726–734. [Google Scholar] [CrossRef] [PubMed]
- American Society of Anesthesiologists Task Force on Perioperative Blood Management. Practice guidelines for perioperative blood management: An updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Management. Anesthesiology 2015, 122, 241–275. [Google Scholar] [CrossRef] [PubMed]
- Carson, J.L.; Stanworth, S.J.; Guyatt, G.; Valentine, S.; Dennis, J.; Bakhtary, S.; Cohn, C.S.; Dubon, A.; Grossman, B.J.; Gupta, G.K.; et al. Red Blood Cell Transfusion: 2023 AABB International Guidelines. JAMA 2023, 330, 1892–1902. [Google Scholar] [CrossRef]
- Carson, J.L.; Stanworth, S.J.; Dennis, J.A.; Trivella, M.; Roubinian, N.; Fergusson, D.A.; Triulzi, D.; Dorée, C.; Hébert, P.C. Transfusion thresholds for guiding red blood cell transfusion. Cochrane Database Syst. Rev. 2021, 12, Cd002042. [Google Scholar] [CrossRef]
- Erdoes, G.; Faraoni, D.; Koster, A.; Steiner, M.E.; Ghadimi, K.; Levy, J.H. Perioperative Considerations in Management of the Severely Bleeding Coagulopathic Patient. Anesthesiology 2023, 138, 535–560. [Google Scholar] [CrossRef]
- Shakur, H.; Roberts, I.; Bautista, R.; Caballero, J.; Coats, T.; Dewan, Y.; El-Sayed, H.; Gogichaishvili, T.; Gupta, S.; Herrera, J.; et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): A randomised, placebo-controlled trial. Lancet 2010, 376, 23–32. [Google Scholar] [CrossRef]
- Henry, D.A.; Carless, P.A.; Moxey, A.J.; O’Connell, D.; Stokes, B.J.; Fergusson, D.A.; Ker, K. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst. Rev. 2011, Cd001886. [Google Scholar] [CrossRef]
- Bugaev, N.; Como, J.J.; Golani, G.; Freeman, J.J.; Sawhney, J.S.; Vatsaas, C.J.; Yorkgitis, B.K.; Kreiner, L.A.; Garcia, N.M.; Aziz, H.A.; et al. Thromboelastography and rotational thromboelastometry in bleeding patients with coagulopathy: Practice management guideline from the Eastern Association for the Surgery of Trauma. J. Trauma Acute Care Surg. 2020, 89, 999–1017. [Google Scholar] [CrossRef]
- Panch, S.R.; Montemayor-Garcia, C.; Klein, H.G. Hemolytic Transfusion Reactions. N. Engl. J. Med. 2019, 381, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Tung, J.P.; Chiaretti, S.; Dean, M.M.; Sultana, A.J.; Reade, M.C.; Fung, Y.L. Transfusion-related acute lung injury (TRALI): Potential pathways of development, strategies for prevention and treatment, and future research directions. Blood Rev. 2022, 53, 100926. [Google Scholar] [CrossRef] [PubMed]
- Semple, J.W.; Rebetz, J.; Kapur, R. Transfusion-associated circulatory overload and transfusion-related acute lung injury. Blood 2019, 133, 1840–1853. [Google Scholar] [CrossRef]
- Bulle, E.B.; Klanderman, R.B.; Pendergrast, J.; Cserti-Gazdewich, C.; Callum, J.; Vlaar, A.P.J. The recipe for TACO: A narrative review on the pathophysiology and potential mitigation strategies of transfusion-associated circulatory overload. Blood Rev. 2022, 52, 100891. [Google Scholar] [CrossRef]
- Desai, N.; Schofield, N.; Richards, T. Perioperative Patient Blood Management to Improve Outcomes. Anesth. Analg. 2018, 127, 1211–1220. [Google Scholar] [CrossRef]
- Hendrickson, J.E.; Roubinian, N.H.; Chowdhury, D.; Brambilla, D.; Murphy, E.L.; Wu, Y.; Ness, P.M.; Gehrie, E.A.; Snyder, E.L.; George Hauser, R.; et al. Incidence of transfusion reactions: A multicenter study utilizing systematic active surveillance and expert adjudication. Transfusion 2016, 56, 2587–2596. [Google Scholar] [CrossRef]
- Steele, W.R.; Dodd, R.Y.; Notari, E.P.; Xu, M.; Nelson, D.; Kessler, D.A.; Reik, R.; Williams, A.E.; Custer, B.; Stramer, S.L. Prevalence of human immunodeficiency virus, hepatitis B virus, and hepatitis C virus in United States blood donations, 2015 to 2019: The Transfusion-Transmissible Infections Monitoring System (TTIMS). Transfusion 2020, 60, 2327–2339. [Google Scholar] [CrossRef]
- Gómez-Ramirez, S.; Jericó, C.; Muñoz, M. Perioperative anemia: Prevalence, consequences and pathophysiology. Transfus. Apher. Sci. 2019, 58, 369–374. [Google Scholar] [CrossRef]
- Lin, Y. Preoperative anemia-screening clinics. Hematol. Am. Soc. Hematol. Educ. Program 2019, 2019, 570–576. [Google Scholar] [CrossRef]
- Meyer, J.; Cirocchi, R.; Di Saverio, S.; Ris, F.; Wheeler, J.; Davies, R.J. Pre-operative iron increases haemoglobin concentration before abdominal surgery: A systematic review and meta-analysis of randomized controlled trials. Sci. Rep. 2022, 12, 2158. [Google Scholar] [CrossRef]
- Rinehart, J.B.; Lee, T.C.; Kaneshiro, K.; Tran, M.H.; Sun, C.; Kain, Z.N. Perioperative blood ordering optimization process using information from an anesthesia information management system. Transfusion 2016, 56, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Friedman, B.A. An analysis of surgical blood use in United States hospitals with application to the maximum surgical blood order schedule. Transfusion 1979, 19, 268–278. [Google Scholar] [CrossRef]
- Reich, D.L.; Pessin, M.S. Rational preoperative blood type and screen testing criteria. Anesthesiology 2012, 116, 749–750. [Google Scholar] [CrossRef]
- Pei, Z.; Szallasi, A. Prevention of surgical delays by pre-admission type and screen in patients with scheduled surgical procedures: Improved efficiency. Blood Transfus. 2015, 13, 310–312. [Google Scholar] [CrossRef]
- Assaf, W.; Wattad, A.; Ali-Saleh, M.; Shalabna, E.; Lavie, O.; Abramov, Y. Evaluation of blood type as a potential risk factor for hemorrhage during vaginal hysterectomy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2024, 293, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Crispell, E.H.; Trinh, J.; Warner, M.A. Postoperative anaemia: Hiding in plain sight. Best. Pract. Res. Clin. Anaesthesiol. 2023, 37, 486–494. [Google Scholar] [CrossRef]
- Howard, J. Sickle cell disease: When and how to transfuse. Hematol. Am. Soc. Hematol. Educ. Program 2016, 2016, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Azbell, R.C.G.; Lanzkron, S.M.; Desai, P.C. Current Evidence and Rationale to Guide Perioperative Management, Including Transfusion Decisions, in Patients With Sickle Cell Disease. Anesth. Analg. 2023, 136, 1107–1114. [Google Scholar] [CrossRef]
- Mowla, S.J.; Sapiano, M.R.P.; Jones, J.M.; Berger, J.J.; Basavaraju, S.V. Supplemental findings of the 2019 National Blood Collection and Utilization Survey. Transfusion 2021, 61 (Suppl. S2), S11–S35. [Google Scholar] [CrossRef]
- Vassallo, R.; Goldman, M.; Germain, M.; Lozano, M. Preoperative Autologous Blood Donation: Waning Indications in an Era of Improved Blood Safety. Transfus. Med. Rev. 2015, 29, 268–275. [Google Scholar] [CrossRef]
- Murray, D. Acute normovolemic hemodilution. Eur. Spine J. 2004, 13 (Suppl. S1), S72–S75. [Google Scholar] [CrossRef] [PubMed]
- Lisander, B. Preoperative haemodilution. Acta Anaesthesiol. Scand. 1988, 32, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, Y.; Zhu, Y. Effect of acute normovolemic hemodilution on coronary artery bypass grafting: A systematic review and meta-analysis of 22 randomized trials. Int. J. Surg. 2020, 83, 131–139. [Google Scholar] [CrossRef]
- Bansal, N.; Kaur, G.; Garg, S.; Gombar, S. Acute normovolemic hemodilution in major orthopedic surgery. J. Clin. Orthop. Trauma 2020, 11 (Suppl. S5), S844–S848. [Google Scholar] [CrossRef] [PubMed]
- Barile, L.; Fominskiy, E.; Di Tomasso, N.; Alpìzar Castro, L.E.; Landoni, G.; De Luca, M.; Bignami, E.; Sala, A.; Zangrillo, A.; Monaco, F. Acute Normovolemic Hemodilution Reduces Allogeneic Red Blood Cell Transfusion in Cardiac Surgery: A Systematic Review and Meta-analysis of Randomized Trials. Anesth. Analg. 2017, 124, 743–752. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, C.; Wang, Y.; Yu, L.; Yan, M. Preoperative Acute Normovolemic Hemodilution for Minimizing Allogeneic Blood Transfusion: A Meta-Analysis. Anesth. Analg. 2015, 121, 1443–1455. [Google Scholar] [CrossRef]
- Shander, A.; Brown, J.; Licker, M.; Mazer, D.C.; Meier, J.; Ozawa, S.; Tibi, P.R.; Van der Linden, P.; Perelman, S. Standards and Best Practice for Acute Normovolemic Hemodilution: Evidence-based Consensus Recommendations. J. Cardiothorac. Vasc. Anesth. 2020, 34, 1755–1760. [Google Scholar] [CrossRef]
- Shin, H.J.; Ko, E.; Jun, I.; Kim, H.J.; Lim, C.H. Effects of perioperative erythropoietin administration on acute kidney injury and red blood cell transfusion in patients undergoing cardiac surgery: A systematic review and meta-analysis. Medicine 2022, 101, e28920. [Google Scholar] [CrossRef]
- Banasiewicz, T.; Machala, W.; Borejsza Wysocki, M.; Lesiak, M.; Krych, S.; Lange, M.; Hogendorf, P.; Durczynski, A.; Cwalinski, J.; Bartkowiak, T.; et al. Principles of minimize bleeding and the transfusion of blood and its components in operated patients—Surgical aspects. Pol. Przegl. Chir. 2023, 95, 14–39. [Google Scholar] [CrossRef]
- Hughes, D.B.; Ullery, B.W.; Barie, P.S. The contemporary approach to the care of Jehovah’s witnesses. J. Trauma 2008, 65, 237–247. [Google Scholar] [CrossRef]
- Lloyd, T.D.; Geneen, L.J.; Bernhardt, K.; McClune, W.; Fernquest, S.J.; Brown, T.; Dorée, C.; Brunskill, S.J.; Murphy, M.F.; Palmer, A.J. Cell salvage for minimising perioperative allogeneic blood transfusion in adults undergoing elective surgery. Cochrane Database Syst. Rev. 2023, 9, Cd001888. [Google Scholar] [CrossRef] [PubMed]
- Carless, P.A.; Henry, D.A.; Moxey, A.J.; O’Connell, D.; Brown, T.; Fergusson, D.A. Cell salvage for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst. Rev. 2010, 2010, Cd001888. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Bainbridge, D.; Martin, J.; Cheng, D. The efficacy of an intraoperative cell saver during cardiac surgery: A meta-analysis of randomized trials. Anesth. Analg. 2009, 109, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Esper, S.A.; Waters, J.H. Intra-operative cell salvage: A fresh look at the indications and contraindications. Blood Transfus. 2011, 9, 139–147. [Google Scholar] [CrossRef]
- Waters, J.H. Intraoperative Blood Recovery. ASAIO J. 2013, 59, 11–17. [Google Scholar] [CrossRef]
- Klein, A.A.; Bailey, C.R.; Charlton, A.J.; Evans, E.; Guckian-Fisher, M.; McCrossan, R.; Nimmo, A.F.; Payne, S.; Shreeve, K.; Smith, J.; et al. Association of Anaesthetists guidelines: Cell salvage for peri-operative blood conservation 2018. Anaesthesia 2018, 73, 1141–1150. [Google Scholar] [CrossRef]
- Moore, H.B.; Gando, S.; Iba, T.; Kim, P.Y.; Yeh, C.H.; Brohi, K.; Hunt, B.J.; Levy, J.H.; Draxler, D.F.; Stanworth, S.; et al. Defining trauma-induced coagulopathy with respect to future implications for patient management: Communication from the SSC of the ISTH. J. Thromb. Haemost. 2020, 18, 740–747. [Google Scholar] [CrossRef]
- Tanaka, K.A.; Bader, S.O.; Görlinger, K. Novel approaches in management of perioperative coagulopathy. Curr. Opin. Anaesthesiol. 2014, 27, 72–80. [Google Scholar] [CrossRef]
- Michiels, J.J.; van Vliet, H.H.; Berneman, Z.; Gadisseur, A.; van der Planken, M.; Schroyens, W.; van der Velden, A.; Budde, U. Intravenous DDAVP and factor VIII-von Willebrand factor concentrate for the treatment and prophylaxis of bleedings in patients With von Willebrand disease type 1, 2 and 3. Clin. Appl. Thromb. Hemost. 2007, 13, 14–34. [Google Scholar] [CrossRef]
- Coppola, A.; Windyga, J.; Tufano, A.; Yeung, C.; Di Minno, M.N. Treatment for preventing bleeding in people with haemophilia or other congenital bleeding disorders undergoing surgery. Cochrane Database Syst. Rev. 2015, 2015, Cd009961. [Google Scholar] [CrossRef]
- Augustinus, S.; Mulders, M.A.M.; Gardenbroek, T.J.; Goslings, J.C. Tranexamic acid in hip hemiarthroplasty surgery: A systematic review and meta-analysis. Eur. J. Trauma Emerg. Surg. 2023, 49, 1247–1258. [Google Scholar] [CrossRef] [PubMed]
- Liechti, R.; van de Wall, B.J.M.; Hug, U.; Fritsche, E.; Franchi, A. Tranexamic Acid Use in Breast Surgery: A Systematic Review and Meta-Analysis. Plast. Reconstr. Surg. 2023, 151, 949–957. [Google Scholar] [CrossRef]
- Liu, Z.G.; Yang, F.; Zhu, Y.H.; Liu, G.C.; Zhu, Q.S.; Zhang, B.Y. Is Tranexamic Acid Beneficial in Open Spine Surgery? and its Effects Vary by Dosage, Age, Sites, and Locations: A Meta-Analysis of Randomized Controlled Trials. World Neurosurg. 2022, 166, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Tibi, P.; McClure, R.S.; Huang, J.; Baker, R.A.; Fitzgerald, D.; Mazer, C.D.; Stone, M.; Chu, D.; Stammers, A.H.; Dickinson, T.; et al. STS/SCA/AmSECT/SABM Update to the Clinical Practice Guidelines on Patient Blood Management. J. Extra Corpor. Technol. 2021, 53, 97–124. [Google Scholar] [CrossRef]
- Maxey-Jones, C.; Seelhammer, T.G.; Arabia, F.A.; Cho, B.; Cardonell, B.; Smith, D.; Leo, V.; Dias, J.; Shore-Lesserson, L.; Hartmann, J. TEG® 6s-Guided Algorithm for Optimizing Patient Blood Management in Cardiovascular Surgery: Systematic Literature Review and Expert Opinion. J. Cardiothorac. Vasc. Anesth. 2025, 39, 1162–1172. [Google Scholar] [CrossRef]
- Brill, J.B.; Brenner, M.; Duchesne, J.; Roberts, D.; Ferrada, P.; Horer, T.; Kauvar, D.; Khan, M.; Kirkpatrick, A.; Ordonez, C.; et al. The Role of TEG and ROTEM in Damage Control Resuscitation. Shock 2021, 56, 52–61. [Google Scholar] [CrossRef]
- Kvisselgaard, A.D.; Wolthers, S.A.; Wikkelsø, A.; Holst, L.B.; Drivenes, B.; Afshari, A. Thromboelastography or rotational thromboelastometry guided algorithms in bleeding patients: An updated systematic review with meta-analysis and trial sequential analysis. Acta Anaesthesiol. Scand. 2025, 69, e14558. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, E.; Moore, E.E.; Moore, H.B.; Chapman, M.P.; Chin, T.L.; Ghasabyan, A.; Wohlauer, M.V.; Barnett, C.C.; Bensard, D.D.; Biffl, W.L.; et al. Goal-directed Hemostatic Resuscitation of Trauma-induced Coagulopathy: A Pragmatic Randomized Clinical Trial Comparing a Viscoelastic Assay to Conventional Coagulation Assays. Ann. Surg. 2016, 263, 1051–1059. [Google Scholar] [CrossRef]
- Dias, J.D.; Sauaia, A.; Achneck, H.E.; Hartmann, J.; Moore, E.E. Thromboelastography-guided therapy improves patient blood management and certain clinical outcomes in elective cardiac and liver surgery and emergency resuscitation: A systematic review and analysis. J. Thromb. Haemost. 2019, 17, 984–994. [Google Scholar] [CrossRef]
- Amgalan, A.; Allen, T.; Othman, M.; Ahmadzia, H.K. Systematic review of viscoelastic testing (TEG/ROTEM) in obstetrics and recommendations from the women’s SSC of the ISTH. J. Thromb. Haemost. 2020, 18, 1813–1838. [Google Scholar] [CrossRef]
- Lin, V.S.; Sun, E.; Yau, S.; Abeyakoon, C.; Seamer, G.; Bhopal, S.; Tucker, H.; Doree, C.; Brunskill, S.J.; McQuilten, Z.K.; et al. Definitions of massive transfusion in adults with critical bleeding: A systematic review. Crit. Care 2023, 27, 265. [Google Scholar] [CrossRef] [PubMed]
- Sommer, N.; Schnüriger, B.; Candinas, D.; Haltmeier, T. Massive transfusion protocols in nontrauma patients: A systematic review and meta-analysis. J. Trauma Acute Care Surg. 2019, 86, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Meneses, E.; Boneva, D.; McKenney, M.; Elkbuli, A. Massive transfusion protocol in adult trauma population. Am. J. Emerg. Med. 2020, 38, 2661–2666. [Google Scholar] [CrossRef]
- Holcomb, J.B.; Tilley, B.C.; Baraniuk, S.; Fox, E.E.; Wade, C.E.; Podbielski, J.M.; del Junco, D.J.; Brasel, K.J.; Bulger, E.M.; Callcut, R.A.; et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: The PROPPR randomized clinical trial. JAMA 2015, 313, 471–482. [Google Scholar] [CrossRef]
- McQuilten, Z.K.; Crighton, G.; Brunskill, S.; Morison, J.K.; Richter, T.H.; Waters, N.; Murphy, M.F.; Wood, E.M. Optimal Dose, Timing and Ratio of Blood Products in Massive Transfusion: Results from a Systematic Review. Transfus. Med. Rev. 2018, 32, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Comunale, M.E. A laboratory evaluation of the level 1 rapid infuser (H1025) and the Belmont instrument fluid management system (FMS 2000) for rapid transfusion. Anesth. Analg. 2003, 97, 1064–1069. [Google Scholar] [CrossRef]
- Eaton, M.P.; Dhillon, A.K. Relative performance of the level 1 and ranger pressure infusion devices. Anesth. Analg. 2003, 97, 1074–1077. [Google Scholar] [CrossRef]
- Xu, Z.; Jin, L.; Smith, B.; Bai, Y.; Luo, H.; Strombergsson, L.A.; Fei, M.; Jiang, Y. A novel device for air removal from vascular access line: A bench study. J. Clin. Monit. Comput. 2018, 32, 1041–1047. [Google Scholar] [CrossRef]
- Kim, P.; Chin-Yee, I.; Eckert, K.; Malthaner, R.A.; Gray, D.K. Hemolysis with rapid transfusion systems in the trauma setting. Can. J. Surg. 2004, 47, 295–297. [Google Scholar]
- Metcalf, A.; Kitchens, D.; Reddic, J.; Liao, W.; Whitcomb, J.; Wallenborn, G.; Cull, J. Impact of Transfusing Packed Red Blood Cells Through a Rapid Infuser on Potassium Levels. J. Trauma Nurs. 2023, 30, 14–19. [Google Scholar] [CrossRef]
- Rudolph, R.; Boyd, C.R. Massive transfusion: Complications and their management. South. Med. J. 1990, 83, 1065–1070. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.M.; Farrow, S.J.; Ackerman, J.D.; Stubbs, J.R.; Sprung, J. Cardiac arrests associated with hyperkalemia during red blood cell transfusion: A case series. Anesth. Analg. 2008, 106, 1062–1069. [Google Scholar] [CrossRef]
- Hoyos Gomez, T.; El Haddi, S.J.; Grimstead-Arnold, S.L.; Schreiber, M.A. The effect of the Belmont rapid infuser on cold stored whole blood coagulability. Injury 2023, 54, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Simmons, D.P.; Savage, W.J. Hemolysis from ABO Incompatibility. Hematol. Oncol. Clin. N. Am. 2015, 29, 429–443. [Google Scholar] [CrossRef]
- Abdallah, R.; Rai, H.; Panch, S.R. Transfusion Reactions and Adverse Events. Clin. Lab. Med. 2021, 41, 669–696. [Google Scholar] [CrossRef] [PubMed]
- Tormey, C.A.; Hendrickson, J.E. Transfusion-related red blood cell alloantibodies: Induction and consequences. Blood 2019, 133, 1821–1830. [Google Scholar] [CrossRef]
- Prodger, C.F.; Rampotas, A.; Estcourt, L.J.; Stanworth, S.J.; Murphy, M.F. Platelet transfusion: Alloimmunization and refractoriness. Semin. Hematol. 2020, 57, 92–99. [Google Scholar] [CrossRef]
- Garraud, O.; Hamzeh-Cognasse, H.; Chalayer, E.; Duchez, A.C.; Tardy, B.; Oriol, P.; Haddad, A.; Guyotat, D.; Cognasse, F. Platelet transfusion in adults: An update. Transfus. Clin. Biol. 2023, 30, 147–165. [Google Scholar] [CrossRef]
- Roubinian, N. TACO and TRALI: Biology, risk factors, and prevention strategies. Hematol. Am. Soc. Hematol. Educ. Program 2018, 2018, 585–594. [Google Scholar] [CrossRef]
- Yu, Y.; Lian, Z. Update on transfusion-related acute lung injury: An overview of its pathogenesis and management. Front. Immunol. 2023, 14, 1175387. [Google Scholar] [CrossRef]
- Seicean, A.; Alan, N.; Seicean, S.; Neuhauser, D.; Weil, R.J. The effect of blood transfusion on short-term, perioperative outcomes in elective spine surgery. J. Clin. Neurosci. 2014, 21, 1579–1585. [Google Scholar] [CrossRef] [PubMed]
- Brunskill, S.J.; Wilkinson, K.L.; Doree, C.; Trivella, M.; Stanworth, S. Transfusion of fresher versus older red blood cells for all conditions. Cochrane Database Syst. Rev. 2015, Cd010801. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.J.; Gu, X.P.; Wu, X.D.; Chen, H.; Kwong, J.S.W.; Zhou, L.Y.; Chen, S.; Ma, Z.L. Restrictive Versus Liberal Strategy for Red Blood-Cell Transfusion: A Systematic Review and Meta-Analysis in Orthopaedic Patients. J. Bone Jt. Surg. Am. 2018, 100, 686–695. [Google Scholar] [CrossRef]
- Kashani, H.H.; Lodewyks, C.; Kavosh, M.S.; Jeyaraman, M.M.; Neilson, C.; Okoli, G.; Rabbani, R.; Abou-Setta, A.M.; Zarychanski, R.; Grocott, H.P. The effect of restrictive versus liberal transfusion strategies on longer-term outcomes after cardiac surgery: A systematic review and meta-analysis with trial sequential analysis. Can. J. Anaesth. 2020, 67, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Trentino, K.M.; Farmer, S.L.; Leahy, M.F.; Sanfilippo, F.M.; Isbister, J.P.; Mayberry, R.; Hofmann, A.; Shander, A.; French, C.; Murray, K. Systematic reviews and meta-analyses comparing mortality in restrictive and liberal haemoglobin thresholds for red cell transfusion: An overview of systematic reviews. BMC Med. 2020, 18, 154. [Google Scholar] [CrossRef]
- Carson, J.L.; Noveck, H.; Berlin, J.A.; Gould, S.A. Mortality and morbidity in patients with very low postoperative Hb levels who decline blood transfusion. Transfusion 2002, 42, 812–818. [Google Scholar] [CrossRef]
- Goodnough, L.T.; Maggio, P.; Hadhazy, E.; Shieh, L.; Hernandez-Boussard, T.; Khari, P.; Shah, N. Restrictive blood transfusion practices are associated with improved patient outcomes. Transfusion 2014, 54, 2753–2759. [Google Scholar] [CrossRef]
- Boral, L.I.; Bernard, A.; Hjorth, T.; Davenport, D.; Zhang, D.; MacIvor, D.C. How do I implement a more restrictive transfusion trigger of hemoglobin level of 7 g/dL at my hospital? Transfusion 2015, 55, 937–945. [Google Scholar] [CrossRef]
- Salpeter, S.R.; Buckley, J.S.; Chatterjee, S. Impact of more restrictive blood transfusion strategies on clinical outcomes: A meta-analysis and systematic review. Am. J. Med. 2014, 127, 124–131.e3. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parikh, S.; Bentz, T.; Crowley, S.; Greenspan, S.; Costa, A.; Bergese, S. Perioperative Blood Management. J. Clin. Med. 2025, 14, 3847. https://doi.org/10.3390/jcm14113847
Parikh S, Bentz T, Crowley S, Greenspan S, Costa A, Bergese S. Perioperative Blood Management. Journal of Clinical Medicine. 2025; 14(11):3847. https://doi.org/10.3390/jcm14113847
Chicago/Turabian StyleParikh, Shruti, Taylor Bentz, Samuel Crowley, Seth Greenspan, Ana Costa, and Sergio Bergese. 2025. "Perioperative Blood Management" Journal of Clinical Medicine 14, no. 11: 3847. https://doi.org/10.3390/jcm14113847
APA StyleParikh, S., Bentz, T., Crowley, S., Greenspan, S., Costa, A., & Bergese, S. (2025). Perioperative Blood Management. Journal of Clinical Medicine, 14(11), 3847. https://doi.org/10.3390/jcm14113847