25-Hydroxycholecalciferol Serum Level Shows an Inverse Relationship with High-Grade Uterine Cervical Dysplasia in HIV-Uninfected Black Women in South Africa
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Study Population
2.2. Biomarker Summary Statistics of 25(OH)D and Covariate Serum Analyte Parameters Affecting 25(OH)D Levels
2.3. Clinical Classification of Vitamin D Status
2.4. Evaluating the Relationship Between Serum 25(OH)D and Cervical Dysplasia Case and Control Groups in Women with and Without HIV Infection
2.4.1. Evaluation of Clinical and Biochemical Parameters Associated with the Main Effects of Cervical Dysplasia and HIV Status
2.4.2. Adjustment for 25(OH)D by Clinical and Biochemical Parameters
2.4.3. Final Model and Analysis of 25(OH)D as a Function of Cervical Cytology, HIV Status, Interaction Term, and Adjustment for PTH
3. Discussion
4. Materials and Methods
4.1. Study Setting
4.2. Study Population
4.2.1. Size of Study Population
4.2.2. Enrolment of Study Participants
4.3. Biochemical Analysis
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cohen, P.A.; Jhingran, A.; Oaknin, A.; Denny, L. Cervical Cancer. Lancet 2019, 393, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Woodman, C.B.; Collins, S.I.; Young, L.S. The Natural History of Cervical Hpv Infection: Unresolved Issues. Nat. Rev. Cancer 2007, 7, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Crosbie, E.; Einstein, M.; Franceschi, S.C.; Kitchener, H. Human Papillomavirus and Cervical Cancer. Lancet 2013, 382, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Walboomers, J.M.; Jacobs, M.V.; Manos, M.M.; Bosch, F.X.; Kummer, J.A.; Shah, K.V.; Snijders, P.J.; Peto, J.; Meijer, C.J.; Muñoz, N. Human Papillomavirus Is a Necessary Cause of Invasive Cervical Cancer Worldwide. J. Pathol. 1999, 189, 12–19. [Google Scholar] [CrossRef]
- Nayar, R.; Wilbur, D.C. The Bethesda System for Reporting Cervical Cytology: Definitions, Criteria, and Explanatory Notes; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- McCredie, M.R.; Sharples, K.J.; Paul, C.; Baranyai, J.; Medley, G.; Jones, R.W.; Skegg, D.C. Natural history of cervical neoplasia and risk of invasive cancer in women with cervical intraepithelial neoplasia 3: A retrospective cohort study. Lancet Oncol. 2008, 9, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.D.; Goff, B.; Chakrabarti, A. Cervical Intraepithelial Neoplasia: Terminology, Incidence, Pathogenesis and Prevention: UpToDate [Updated 5 Februaryl 2025]. Available online: https://www.uptodate.com/contents/cervical-intraepithelial-neoplasia-terminology-incidence-pathogenesis-and-prevention (accessed on 14 May 2025).
- Sun, X.W.; Kuhn, L.; Ellerbrock, T.V.; Chiasson, M.A.; Bush, T.J.; Wright, T.C., Jr. Human Papillomavirus Infection in Women Infected with the Human Immunodeficiency Virus. N. Engl. J. Med. 1997, 337, 1343–1349. [Google Scholar] [CrossRef]
- Wang, C.; Wright, T.C.; Denny, L.; Kuhn, L. Rapid Rise in Detection of Human Papillomavirus (HPV) Infection Soon after Incident HIV Infection among South African Women. J. Infect. Dis. 2011, 203, 479–486. [Google Scholar] [CrossRef]
- Wright, T.C., Jr.; Ellerbrock, T.V.; Chiasson, M.A.; Van Devanter, N.; Sun, X.W. Cervical Intraepithelial Neoplasia in Women Infected with Human Immunodeficiency Virus: Prevalence, Risk Factors, and Validity of Papanicolaou Smears. New York Cervical Disease Study. Obstet. Gynecol. 1994, 84, 591–597. [Google Scholar]
- Peedicayil, A.; Thiyagarajan, K.; Gnanamony, M.; Pulimood, S.A.; Jeyaseelan, V.; Kannangai, R.; Lionel, J.; Abraham, O.C.; Abraham, P. Prevalence and Risk Factors for Human Papillomavirus and Cervical Intraepithelial Neoplasia among HIV-Positive Women at a Tertiary Level Hospital in India. J. Low. Genit. Tract Dis. 2009, 13, 159–164. [Google Scholar] [CrossRef]
- Rositch, A.F.; Levinson, K.; Suneja, G.; Monterosso, A.; Schymura, M.J.; McNeel, T.S.; Horner, M.-J.; Engels, E.; Shiels, M.S. Epidemiology of Cervical Adenocarcinoma and Squamous Cell Carcinoma among Women Living with Human Immunodeficiency Virus Compared with the General Population in the United States. Clin. Infect. Dis. 2022, 74, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Stelzle, D.; Tanaka, L.F.; Lee, K.K.; Ibrahim Khalil, A.; Baussano, I.; Shah, A.S.V.; McAllister, D.A.; Gottlieb, S.L.; Klug, S.J.; Winkler, A.S.; et al. Estimates of the Global Burden of Cervical Cancer Associated with HIV. Lancet. Glob. Health 2021, 9, e161–e169. [Google Scholar] [CrossRef]
- Pérez-González, A.; Cachay, E.; Ocampo, A.; Poveda, E. Update on the Epidemiological Features and Clinical Implications of Human Papillomavirus Infection (HPV) and Human Immunodeficiency Virus (HIV) Coinfection. Microorganisms 2022, 10, 1047. [Google Scholar] [CrossRef] [PubMed]
- Ahdieh, L.; Klein, R.S.; Burk, R.; Cu-Uvin, S.; Schuman, P.; Duerr, A.; Safaeian, M.; Astemborski, J.; Daniel, R.; Shah, K. Prevalence, Incidence, and Type-Specific Persistence of Human Papillomavirus in Human Immunodeficiency Virus (HIV)- Positive and HIV-Negative Women. J. Infect. Dis. 2001, 184, 682–690. [Google Scholar] [CrossRef]
- Jay, N.; Moscicki, A.B. Human Papillomavirus Infections in Women with HIV Disease: Prevalence, Risk, and Management. AIDS Read. 2000, 10, 659–668. [Google Scholar] [PubMed]
- Yarchoan, R.; Uldrick, T.S. HIV-Associated Cancers and Related Diseases. N. Engl. J. Med. 2018, 378, 1029–1041. [Google Scholar] [CrossRef]
- Kelly, H.; Weiss, H.A.; Benavente, Y.; de Sanjose, S.; Mayaud, P. Association of Antiretroviral Therapy with High-Risk Human Papillomavirus, Cervical Intraepithelial Neoplasia, and Invasive Cervical Cancer in Women Living with HIV: A Systematic Review and Meta-Analysis. Lancet HIV 2018, 5, e45–e58. [Google Scholar] [CrossRef]
- Bhoora, S.; Pather, Y.; Marais, S.; Punchoo, R. Cholecalciferol Inhibits Cell Growth and Induces Apoptosis in the Caski Cell Line. Med. Sci. 2020, 8, 12. [Google Scholar] [CrossRef]
- Bhoora, S.; Pillay, T.S.; Punchoo, R. Cholecalciferol Induces Apoptosis Via Autocrine Metabolism in Epidermoid Cervical Cancer Cells. Biochem. Cell Biol. 2022, 100, 387–402. [Google Scholar] [CrossRef]
- Punchoo, R.; Dreyer, G.; Pillay, T.S. 25-Hydroxycholecalciferol Inhibits Cell Growth and Induces Apoptosis in Siha Cervical Cells Via Autocrine Vitamin D Metabolism. Biomedicines 2023, 11, 871. [Google Scholar] [CrossRef]
- Zhou, E.; Bhoora, S.; Pillay, T.S.; Punchoo, R. Induction of Cell Death and Regulation of Autocrine Vitamin D Metabolism in Cervical Cancer by Physiological and GI20 Doses of 25-Hydroxycholecalciferol. Int. J. Mol. Sci. 2025, 26, 4008. [Google Scholar] [CrossRef]
- Friedrich, M.; Rafi, L.; Mitschele, T.; Tilgen, W.; Schmidt, W.; Reichrath, J. Analysis of the Vitamin D System in Cervical Carcinomas, Breast Cancer and Ovarian Cancer. In Recent Results in Cancer Research (Fortschritte der Krebsforschung Progres dans les Recherches sur le Cancer); Springer: Berlin/Heidelberg, Germany, 2003; Volume 164, pp. 239–246. [Google Scholar]
- Bhoora, S.; Punchoo, R. Policing Cancer: Vitamin D Arrests the Cell Cycle. Int. J. Mol. Sci. 2020, 21, 9296. [Google Scholar] [CrossRef]
- Punchoo, R.; Zhou, E.; Bhoora, S. Flow Cytometric Analysis of Apoptotic Biomarkers in Actinomycin D-Treated SiHa Cervical Cancer Cells. J. Vis. Exp. 2021, 174, e62663. [Google Scholar] [CrossRef]
- Feldman, D.; Krishnan, A.V.; Swami, S.; Giovannucci, E.; Feldman, B.J. The role of vitamin D in reducing cancer risk and progression. Nat. Rev. Cancer 2014, 14, 342–357. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed]
- Troja, C.; Hoofnagle, A.N.; Szpiro, A.; Stern, J.E.; Lin, J.; Winer, R.L. Understanding the Role of Emerging Vitamin D Biomarkers on Short-Term Persistence of High-Risk Human Papillomavirus Infection among Mid-Adult Women. J. Infect. Dis. 2021, 224, 123–132. [Google Scholar] [CrossRef]
- Troja, C.; Hoofnagle, A.N.; Szpiro, A.; Stern, J.E.; Lin, J.; Winer, R.L. Serum Concentrations of Emerging Vitamin D Biomarkers and Detection of Prevalent High-Risk HPV Infection in Mid-Adult Women. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2020, 29, 1468–1474. [Google Scholar] [CrossRef]
- Mansueto, P.; Seidita, A.; Vitale, G.; Gangemi, S.; Iaria, C.; Cascio, A. Vitamin D Deficiency in Hiv Infection: Not Only a Bone Disorder. Biomed. Res. Int. 2015, 2015, 735615. [Google Scholar] [CrossRef]
- Nesby-O’Dell, S.; Scanlon, K.S.; Cogswell, M.E.; Gillespie, C.; Hollis, B.W.; Looker, A.C.; Allen, C.; Doughertly, C.; Gunter, E.W.; Bowman, B.A. Hypovitaminosis D Prevalence and Determinants among African American and White Women of Reproductive Age: Third National Health and Nutrition Examination Survey, 1988–1994. Am. J. Clin. Nutr. 2002, 76, 187–192. [Google Scholar] [CrossRef]
- Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Berisha, A.T.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D Deficiency 2.0: An Update on the Current Status Worldwide. Eur. J. Clin. Nutr. 2020, 74, 1498–1513. [Google Scholar] [CrossRef]
- Mondul, A.M.; Weinstein, S.J.; Layne, T.M.; Albanes, D. Vitamin D and Cancer Risk and Mortality: State of the Science, Gaps, and Challenges. Epidemiol. Rev. 2017, 39, 28–48. [Google Scholar] [CrossRef] [PubMed]
- Roth, D.E.; Abrams, S.A.; Aloia, J.; Bergeron, G.; Bourassa, M.W.; Brown, K.H.; Calvo, M.S.; Cashman, K.D.; Combs, G.; De-Regil, L.M.; et al. Global Prevalence and Disease Burden of Vitamin D Deficiency: A Roadmap for Action in Low- and Middle-Income Countries. Ann. N. Y. Acad. Sci. 2018, 1430, 44–79. [Google Scholar] [CrossRef] [PubMed]
- National Academy of Sciences (US). Institute of Medicine Committee to Review Dietary Reference Intakes for Vitamin D, Calcium. The National Academies Collection: Reports Funded by National Institutes of Health. In Dietary Reference Intakes for Calcium and Vitamin D; Ross, A.C., Taylor, C.L., Yaktine, A.L., Del Valle, H.B., Eds.; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- García-Closas, R.; Castellsagué, X.; Bosch, X.; González, C.A. The Role of Diet and Nutrition in Cervical Carcinogenesis: A Review of Recent Evidence. Int. J. Cancer 2005, 117, 629–637. [Google Scholar] [CrossRef]
- Ginde, A.A.; Liu, M.C.; Camargo, C.A. Demographic Differences and Trends of Vitamin D Insufficiency in the Us Population, 1988–2004. Arch. Intern. Med. 2009, 169, 626–632. [Google Scholar] [CrossRef]
- Holick, M.F. Chapter 4 —Photobiology of Vitamin D. In Vitamin D, 4th ed.; Feldman, D., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 45–55. [Google Scholar]
- Lake, J.E.; Adams, J.S. Vitamin D in HIV-Infected Patients. Curr. HIV/AIDS Rep. 2011, 8, 133–141. [Google Scholar] [CrossRef]
- Aloia, J.F. African Americans, 25-Hydroxyvitamin D, and Osteoporosis: A Paradox. Am. J. Clin. Nutr. 2008, 88, 545s–550s. [Google Scholar] [CrossRef] [PubMed]
- Cundy, T.; Grey, A.; Reid, I.R. Chapter 6—Calcium, Phosphate And magnesium. In Clinical Biochemistry: Metabolic and Clinical Aspects, 3rd ed.; Marshall, W.J., Lapsley, M., Day, A.P., Ayling, R.M., Eds.; Churchill Livingstone: London, UK, 2014; pp. 93–123. [Google Scholar]
- Aloia, J.F.; Chen, D.G.; Chen, H. The 25(Oh)D/PTH Threshold in Black Women. J. Clin. Endocrinol. Metab. 2010, 95, 5069–5073. [Google Scholar] [CrossRef]
- Cosman, F.; Morgan, D.C.; Nieves, J.W.; Shen, V.; Luckey, M.M.; Dempster, D.W.; Lindsay, R.; Parisien, M. Resistance to Bone Resorbing Effects of PTH in Black Women. J. Bone Min. Res. 1997, 12, 958–966. [Google Scholar] [CrossRef]
- Weinberg, M.; Schambelan, M. Bone and Calcium Disorders in HIV. UptoDate [Internet]. Waltham, MA, USA. 2023. Available online: https://www.uptodate.com/contents/bone-and-calcium-disorders-in-patients-with-hiv (accessed on 25 April 2023).
- Shim, J.; Pérez, A.; Symanski, E.; Nyitray, A.G. Association between Serum 25-Hydroxyvitamin D Level and Human Papillomavirus Cervicovaginal Infection in Women in the United States. J. Infect. Dis. 2016, 213, 1886–1892. [Google Scholar] [CrossRef]
- Gupta, A.; Villa, A.; Feldman, S.; Citow, B.; Sroussi, H. Site and Sex-Specific Differences in the Effect of Vitamin D on Human Papillomavirus Infections: Analyses of NHANES 2009–2014. Sex. Transm. Infect. 2021, 97, 75–76. [Google Scholar] [CrossRef]
- Özgö, E.; Yilmaz, N.; Başer, E.; Göngör, T.; Erkaya, S.; Ibrahim Yakut, H. Could 25-Oh Vitamin D Deficiency Be a Reason for HPV Infection Persistence in Cervical Premalignant Lesions? J. Exp. Ther. Oncol. 2016, 11, 177–180. [Google Scholar]
- El-Zein, M.; Khosrow-Khavar, F.; Burchell, A.N.; Tellier, P.-P.; Eintracht, S.; McNamara, E.; Coutlée, F.; Franco, E.L.; for the HITCH study group; Rodrigues, A.; et al. Association of Serum 25-Hydroxyvitamin D with Prevalence, Incidence, and Clearance of Vaginal HPV Infection in Young Women. J. Infect. Dis. 2021, 224, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Çakir, A.T.; Özten, M.A. Serum Vitamin D Levels in High-Risk Hpv Infected Patients, Is There Any Relation? J. Clin. Med. Kaz. 2022, 19, 35–39. [Google Scholar] [CrossRef]
- Vahedpoor, Z.; Jamilian, M.; Bahmani, F.; Aghadavod, E.; Karamali, M.; Kashanian, M.; Asemi, Z. Effects of Long-Term Vitamin D Supplementation on Regression and Metabolic Status of Cervical Intraepithelial Neoplasia: A Randomized, Double-Blind, Placebo-Controlled Trial. Horm. Cancer 2017, 8, 58–67. [Google Scholar] [CrossRef]
- Hosono, S.; Matsuo, K.; Kajiyama, H.; Hirose, K.; Suzuki, T.; Kawase, T.; Kidokoro, K.; Nakanishi, T.; Hamajima, N.; Kikkawa, F.; et al. Association between Dietary Calcium and Vitamin D Intake and Cervical Carcinogenesis among Japanese Women. Eur. J. Clin. Nutr. 2010, 64, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Sasagawa, T.; Takagi, H.; Makinoda, S. Immune Responses against Human Papillomavirus (HPV) Infection and Evasion of Host Defense in Cervical Cancer. J. Infect. Chemother. 2012, 18, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Marconi, V.C.; Grandits, G.; Okulicz, J.F.; Wortmann, G.; Ganesan, A.; Crum-Cianflone, N.; Polis, M.; Landrum, M.; Dolan, M.J.; Ahuja, S.K.; et al. Cumulative Viral Load and Virologic Decay Patterns after Antiretroviral Therapy in HIV-Infected Subjects Influence CD4 Recovery and Aids. PLoS ONE 2011, 6, e17956. [Google Scholar] [CrossRef]
- Liu, G.; Sharma, M.; Tan, N.; Barnabas, R.V. HIV-Positive Women Have Higher Risk of Human Papilloma Virus Infection, Precancerous Lesions, and Cervical Cancer. Aids 2018, 32, 795–808. [Google Scholar] [CrossRef]
- Thorsteinsson, K.; Ladelund, S.; Storgaard, M.; Katzenstein, T.L.; Johansen, I.S.; Pedersen, G.; Rönsholt, F.F.; Nielsen, L.N.; Nilas, L.; Franzmann, M.; et al. Persistence of Cervical High-Risk Human Papillomavirus in Women Living with HIV in Denmark—The Shade. BMC Infect. Dis. 2019, 19, 740. [Google Scholar] [CrossRef]
- Balkwill, F.; Charles, K.A.; Mantovani, A. Smoldering and Polarized Inflammation in the Initiation and Promotion of Malignant Disease. Cancer Cell 2005, 7, 211–217. [Google Scholar] [CrossRef]
- Coussens, L.M.; Werb, Z. Inflammation and Cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Disis, M.L.; Lyerly, H.K. Global Role of the Immune System in Identifying Cancer Initiation and Limiting Disease Progression. J. Clin. Oncol. 2005, 23, 8923–8925. [Google Scholar] [CrossRef] [PubMed]
- Blair, G.E.; Cook, G.P. Cancer and the Immune System: An Overview. Oncogene 2008, 27, 5868. [Google Scholar] [CrossRef] [PubMed]
- Di Rosa, M.; Malaguarnera, M.; Nicoletti, F.; Malaguarnera, L. Vitamin D3: A Helpful Immuno-Modulator. Immunology 2011, 134, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Buthelezi, S.S.S. 2023 ART Clinical Guidelines for the Management of HIV in Adults, Pregnancy and Breastfeeding, Asolescents, Children, Infants and Neonates. SA Pharm. J. 2023, 90, 35–50. [Google Scholar]
- Bolland, M.J.; Chiu, W.W.; Davidson, J.S.; Grey, A.; Bacon, C.; Gamble, G.D.; Reid, I.R. The Effects of Seasonal Variation of 25-Hydroxyvitamin D on Diagnosis of Vitamin D Insufficiency. N. Z. Med. J. 2008, 121, 63–74. [Google Scholar]
- Gail, M.H.; Wu, J.; Wang, M.; Yaun, S.S.; Cook, N.R.; Eliassen, A.H.; McCullough, M.L.; Yu, K.; Zeleniuch-Jacquotte, A.; Smith-Warner, S.A.; et al. Calibration and seasonal adjustment for matched case-control studies of vitamin D and cancer. Stat Med. 2016, 35, 2133–2148. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Boer, I.H. 25 Hydroxyvitamin D Calculator for Seasonal Adjustment; Kidney Research Institute. 2022. Available online: https://kri.washington.edu/index.php/research/tools#vitamin-d-calculator (accessed on 25 January 2022).
- Sachs, M.C.; Shoben, A.; Levin, G.P.; Robinson-Cohen, C.; Hoofnagle, A.N.; Swords-Jenny, N.; Ix, J.H.; Budoff, M.; Lutsey, P.L.; Siscovick, D.S.; et al. Estimating Mean Annual 25-Hydroxyvitamin D Concentrations from Single Measurements: The Multi-Ethnic Study of Atherosclerosis. Am. J. Clin. Nutr. 2013, 97, 1243–1251. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
HIV-Uninfected (%, n) | HIV-Infected (%, n) | |||
---|---|---|---|---|
Cervical dysplasia | HSIL | <HSIL | HSIL | <HSIL |
Age (years) Mean age | 42.67 | 46.30 | 43.60 | 38.17 |
(95% CI) | (38.23–47.11) | (42.44–50.16) | (39.24–47.95) | (33.74–42.61) |
Comorbidities | ||||
Hypertension (n) | 4 | 11 | 4 | 2 |
Diabetes (n) | 0 | 2 | 0 | 0 |
Arthritis (n) | 0 | 1 | 0 | 0 |
Anaemia (n) | 1 | 0 | 1 | 0 |
Asthma (n) | 0 | 2 | 1 | 0 |
Hypercholesterolemia (n) | 0 | 1 | 1 | 0 |
Peptic ulcer disease (n) | 1 | 1 | 0 | 0 |
Cervical dysplasia | ||||
Total | 25 | 33 | 28 | 23 |
LSIL | 8 | 8 | ||
ASCUS | 12 | 6 | ||
ASC-H | 12 | 8 | ||
AGC | 1 | 1 | ||
HSIL | 25 | 28 | ||
Mass (kg) (mean ± SD) | 78.69 (±7.07) | 77.42 (±17.71) | 69.49 (±11.42) | 67.65 (±10.73) |
Height (m) (mean ± SD) | 1.62 (±0.08) | 1.61 (±0.05) | 1.57 (±0.11) | 1.58 (±0.10) |
Body mass index (kg/m2), (mean ± SD) | 29.90 (±6.02) | 30.00 (±6.86) | 28.18 (±5.79) | 28.06 (±6.92) |
Analyte (Serum) | HIV-Infected | HIV-Uninfected | ||
---|---|---|---|---|
(Reference Interval) | HSIL | <HSIL | HSIL | <HSIL |
Calcium | 2.35 (±0.00) | 2.40 (±0.12) | 2.33 (±0.11) | 2.31 (±0.11) |
(2.15–2.50 mmol/L) | ||||
Calcium Corrected | 2.35 (±0.10) | 2.38 (±0.11) | 2.32 (±0.09) | 2.31 (±0.08) |
(2.15–2.50 mmol/L) | ||||
Albumin | 40.38 (±4.95) | 42.13 (±2.39) | 40.07 (±3.77) | 41.00 (3.71) |
(35–52 g/L) | ||||
Magnesium | 0.83 (±0.02) | 0.83 (±0.08) | 0.81 (±0.06) | 0.82 (±0.07) |
(0.66–1.07 mmol/L) | ||||
Phosphate | 1.03 (±0.13) | 1.08 (±0.16) | 0.99 (±0.22) | 1.05 (0.19) |
(0.78–1.42 mmol/L) | ||||
25(OH)D | 22.05 (±5.52) | 26.01 (±7.51) | 24.79 (±9.29) | 21.48 (±7.00) |
(Sufficiency: >30ng/ml) | ||||
25(OH)D (adjusted) | 23.28 (±4.24) | 26.06 (±7.70) | 26.79 (±9.16) | 22.17 (±6.59) |
(Sufficiency: >30 ng/ml) | ||||
PTH | 35.52 (±19.09) | 35.86 (±12.30) | 40.85 (±17.0) | 33.17 (±9.51) |
(15–65 pg/mL) | ||||
ALT | 17.85 (±0.71) | 18.63 (±12.38) | 21.29 (±7.12) | 24.26 (±12.5) |
(<50 U/L) | ||||
Creatinine (64–104 μmol/L) | 64.85 (±2.12) | 62.34 (±11.14) | 65.25 (±17.90) | 66.78 (±16.08) |
eGFR (>90 mL/min/1.73 m2) | 113.45 (±1.41) | 114.09 (12.51) | 110.32 (±16.85) | 106.96 (±23.16) |
HSIL (n) | <HSIL (n) | TOTAL (n, %) | |
---|---|---|---|
HIV-uninfected women | |||
Sufficient | 5 | 10 | 15 (26%) |
Insufficient | 12 | 16 | 28 (49%) |
Deficient | 7 | 7 | 14 (25%) |
Total | 24 * | 33 | 57 |
HIV-infected women | |||
Sufficient | 12 | 2 | 14 (28%) |
Insufficient | 9 | 10 | 19 (37%) |
Deficient | 7 | 11 | 18 (35%) |
Total | 28 | 23 | 51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Punchoo, R.; Dreyer, G.; Pillay, T.S. 25-Hydroxycholecalciferol Serum Level Shows an Inverse Relationship with High-Grade Uterine Cervical Dysplasia in HIV-Uninfected Black Women in South Africa. J. Clin. Med. 2025, 14, 3817. https://doi.org/10.3390/jcm14113817
Punchoo R, Dreyer G, Pillay TS. 25-Hydroxycholecalciferol Serum Level Shows an Inverse Relationship with High-Grade Uterine Cervical Dysplasia in HIV-Uninfected Black Women in South Africa. Journal of Clinical Medicine. 2025; 14(11):3817. https://doi.org/10.3390/jcm14113817
Chicago/Turabian StylePunchoo, Rivak, Greta Dreyer, and Tahir S. Pillay. 2025. "25-Hydroxycholecalciferol Serum Level Shows an Inverse Relationship with High-Grade Uterine Cervical Dysplasia in HIV-Uninfected Black Women in South Africa" Journal of Clinical Medicine 14, no. 11: 3817. https://doi.org/10.3390/jcm14113817
APA StylePunchoo, R., Dreyer, G., & Pillay, T. S. (2025). 25-Hydroxycholecalciferol Serum Level Shows an Inverse Relationship with High-Grade Uterine Cervical Dysplasia in HIV-Uninfected Black Women in South Africa. Journal of Clinical Medicine, 14(11), 3817. https://doi.org/10.3390/jcm14113817