Post-Stroke Rehabilitation: Neurophysiology Processes of Bilateral Movement Training and Interlimb Coupling—A Systematic Review
Abstract
:1. Introduction
2. Method
2.1. Search Strategy and Selection Criteria
2.2. Standardized Data Extraction
2.3. Quality Assessment
3. Results and Discussion
3.1. Bilateral Movement Training
3.1.1. Bilateral Arm Training
3.1.2. Bilateral Arm Training Plus Sensory Enhancement
3.1.3. Bilateral Arm Training and Robotics
3.1.4. Bilateral Arm Training and Virtual Reality/Computer Guidance
3.2. Bilateral Leg Training
Bilateral Leg Training and Sensory Enhancement
3.3. Bilateral Arm and Leg Training
3.4. Bilateral Movement Priming
4. The Underpinning Neurophysiological Mechanisms of Bilateral Movement Training and Interlimb Coupling
5. Limitations
6. Conclusions
7. Recommendations and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stoykov, M.E.; Madhavan, S. Motor priming in neurorehabilitation. J. Neurol. Phys. Ther. 2015, 39, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Stewart, K.C.; Cauraugh, J.H.; Summers, J.J. Bilateral movement training and stroke rehabilitation: A systematic review and meta-analysis. J. Neurol. Sci. 2006, 244, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Stinear, C.M.; Byblow, W.D.; Ward, S.H. An update on predicting motor recovery after stroke. Ann. Phys. Rehabil. Med. 2014, 57, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Kwakkel, G.; Veerbeek, J.M.; Van Wegen, E.E.H.; Wolf, S.L. Constraint-induced movement therapy after stroke. Lancet Neurol. 2015, 14, 224–234. [Google Scholar] [CrossRef]
- Farthing, J.P.; Zehr, E.P. Restoring symmetry: Clinical applications of cross-education. Exerc. Sport Sci. Rev. 2014, 42, 70–75. [Google Scholar] [CrossRef]
- Lee, M.; Carroll, T.J. Cross education: Possible mechanisms for the contralateral effects of unilateral resistance training. Sports Med. 2007, 37, 1–14. [Google Scholar] [CrossRef]
- Harjpal, P.; Qureshi, M.d.I.; Kovela, R.K.; Jain, M. Bilateral lower limb training for post-stroke survivors: A bibliometric analysis. Cureus 2022, 14, e29615. [Google Scholar] [CrossRef]
- Cauraugh, J.H.; Lodha, N.; Naik, S.K.; Summers, J.J. Bilateral movement training and stroke motor recovery progress: A structured review and meta-analysis. Hum. Mov. Sci. 2010, 29, 853–870. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, Y.; Wang, L.; Yu, P.; Wang, C.; Zeng, L.; Yuan, J.; Zhao, L. Optimal acupuncture methods for lower limb motor dysfunction after stroke: A systematic review and network meta-analysis. Front. Neurol. 2024, 15, 1415792. [Google Scholar] [CrossRef]
- Timmermans, A.A.; Seelen, H.A.; Willmann, R.D.; Kingma, H. Technology-assisted training of arm-hand skills in stroke: Concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. J. Neuroeng. Rehabil. 2009, 6, 1. [Google Scholar] [CrossRef]
- Vasudevan, E.V.; Kirk, E.M. Improving interlimb coordination following stroke: How can we change how people walk (and why should we)? In Replace, Repair, Restore, Relieve—Bridging Clinical and Engineering Solutions in Neurorehabilitation; Jensen, W., Andersen, O.K., Akay, M., Eds.; Springer International Publishing: Cham, Switzerland, 2014; Volume 7, pp. 195–202. [Google Scholar]
- Zehr, E.P.; Barss, T.S.; Kaupp, C.; Klarner, T.; Mezzarane, R.A.; Nakajima, T.; Sun, Y.; Komiyama, T. Neuromechanical interlimb interactions and rehabilitation of walking after stroke. In Replace, Repair, Restore, Relieve—Bridging Clinical and Engineering Solutions in Neurorehabilitation; Jensen, W., Andersen, O.K., Akay, M., Eds.; Springer International Publishing: Cham, Switzerland, 2014; Volume 7, pp. 219–225. [Google Scholar]
- Li, K.-P.; Wu, J.-J.; Zhou, Z.-L.; Xu, D.-S.; Zheng, M.-X.; Hua, X.-Y.; Xu, J.-G. Noninvasive brain stimulation for neurorehabilitation in post-stroke patients. Brain Sci. 2023, 13, 451. [Google Scholar] [CrossRef] [PubMed]
- Maceira-Elvira, P.; Popa, T.; Schmid, A.-C.; Hummel, F.C. Wearable technology in stroke rehabilitation: Towards improved diagnosis and treatment of upper-limb motor impairment. J. Neuroeng. Rehabil. 2019, 16, 142. [Google Scholar] [CrossRef]
- Arya, K.N.; Pandian, S.; Sharma, A.; Kumar, V.; Kashyap, V.K. Interlimb coupling in poststroke rehabilitation: A pilot randomized controlled trial. Top. Stroke Rehabil. 2020, 27, 272–289. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Malik, A.; Yaseen, A.; Mahmood, T.; Nazir, M.; Khan, S. Mobility related confidence level in chronic stroke patients through task oriented walking intervention. Super. J. Phys. Ther. Rehabil. 2023, 3, 13–16. [Google Scholar] [CrossRef]
- Keeling, A.B.; Piitz, M.; Semrau, J.A.; Hill, M.D.; Scott, S.H.; Dukelow, S.P. Robot enhanced stroke therapy optimizes rehabilitation (restore): A pilot study. J. Neuroeng. Rehabil. 2021, 18, 10. [Google Scholar] [CrossRef]
- Hesse, S.; Mehrholz, J.; Werner, C. Robot-assisted upper and lower limb rehabilitation after stroke: Walking and arm/hand function. Dtsch. Arztebl. Int. 2008, 105, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Cauraugh, J.H.; Kang, N. Bimanual movements and chronic stroke rehabilitation: Looking back and looking forward. Appl. Sci. 2021, 11, 10858. [Google Scholar] [CrossRef]
- Hatem, S.M.; Saussez, G.; Della Faille, M.; Prist, V.; Zhang, X.; Dispa, D.; Bleyenheuft, Y. Rehabilitation of motor function after stroke: A multiple systematic review focused on techniques to stimulate upper extremity recovery. Front. Hum. Neurosci. 2016, 10, 442. [Google Scholar] [CrossRef]
- French, B.; Thomas, L.H.; Coupe, J.; McMahon, N.E.; Connell, L.; Harrison, J.; Sutton, C.J.; Tishkovskaya, S.; Watkins, C.L. Repetitive task training for improving functional ability after stroke. Cochrane Database Syst. Rev. 2016, 2016, CD006073. [Google Scholar] [CrossRef]
- Yoon, J.A.; Koo, B.I.; Shin, M.J.; Shin, Y.B.; Ko, H.-Y.; Shin, Y.-I. Effect of constraint-induced movement therapy and mirror therapy for patients with subacute stroke. Ann. Rehabil. Med. 2014, 38, 458. [Google Scholar] [CrossRef]
- Dietz, V. Spinal cord pattern generators for locomotion. Clin. Neurophysiol. 2003, 114, 1379–1389. [Google Scholar] [CrossRef] [PubMed]
- Kaupp, C.; Pearcey, G.E.P.; Klarner, T.; Sun, Y.; Cullen, H.; Barss, T.S.; Zehr, E.P. Rhythmic arm cycling training improves walking and neurophysiological integrity in chronic stroke: The arms can give legs a helping hand in rehabilitation. J. Neurophysiol. 2018, 119, 1095–1112. [Google Scholar] [CrossRef] [PubMed]
- Klarner, T.; Barss, T.; Sun, Y.; Kaupp, C.; Loadman, P.; Zehr, E. Long-term plasticity in reflex excitability induced by five weeks of arm and leg cycling training after stroke. Brain Sci. 2016, 6, 54. [Google Scholar] [CrossRef] [PubMed]
- Whitall, J.; Waller, S.M.; Silver, K.H.C.; Macko, R.F. Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke 2000, 31, 2390–2395. [Google Scholar] [CrossRef]
- Cauraugh, J.H.; Summers, J.J. Neural plasticity and bilateral movements: A rehabilitation approach for chronic stroke. Prog. Neurobiol. 2005, 75, 309–320. [Google Scholar] [CrossRef]
- Summers, J.J.; Kagerer, F.A.; Garry, M.I.; Hiraga, C.Y.; Loftus, A.; Cauraugh, J.H. Bilateral and unilateral movement training on upper limb function in chronic stroke patients: A tms study. J. Neurol. Sci. 2007, 252, 76–82. [Google Scholar] [CrossRef]
- Han, K.J.; Kim, J.Y. The effects of bilateral movement training on upper limb function in chronic stroke patients. J. Phys. Ther. Sci. 2016, 28, 2299–2302. [Google Scholar] [CrossRef]
- Harjpal, P.; Qureshi, M.d.I.; Kovela, R.K.; Jain, M. Efficacy of bilateral lower limb training over unilateral to re-educate balance and walking in post-stroke survivors: A protocol for randomized clinical trial. J. Pharm. Res. Int. 2021, 33, 281–287. [Google Scholar] [CrossRef]
- Schaefer, S.Y.; Lang, C.E. Using dual tasks to test immediate transfer of training between naturalistic movements: A proof-of-principle study. J. Mot. Behav. 2012, 44, 313–327. [Google Scholar] [CrossRef]
- Cauraugh, J.H.; Kim, S. Two coupled motor recovery protocols are better than one: Electromyogram-triggered neuromuscular stimulation and bilateral movements. Stroke 2002, 33, 1589–1594. [Google Scholar] [CrossRef]
- Lewis, G.N.; Perreault, E.J. Side of lesion influences bilateral activation in chronic, post-stroke hemiparesis. Clin. Neurophysiol. 2007, 118, 2050–2062. [Google Scholar] [CrossRef] [PubMed]
- Schick, T.; Kolm, D.; Leitner, A.; Schober, S.; Steinmetz, M.; Fheodoroff, K. Efficacy of four-channel functional electrical stimulation on moderate arm paresis in subacute stroke patients—Results from a randomized controlled trial. Healthcare 2022, 10, 704. [Google Scholar] [CrossRef]
- Bolton, D.A.E.; Cauraugh, J.H.; Hausenblas, H.A. Electromyogram-triggered neuromuscular stimulation and stroke motor recovery of arm/hand functions: A meta-analysis. J. Neurol. Sci. 2004, 223, 121–127. [Google Scholar] [CrossRef]
- Dietz, V.; Holliger, N.S.; Christen, A.; Geissmann, M.; Filli, L. Neural coordination of bilateral hand movements: Evidence for an involvement of brainstem motor centres. J. Physiol. 2024, 602, 397–412. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.L.; Ting, L.H.; Kesar, T.M. Gait rehabilitation using functional electrical stimulation induces changes in ankle muscle coordination in stroke survivors: A preliminary study. Front. Neurol. 2018, 9, 1127. [Google Scholar] [CrossRef]
- Lee, D.H.; Park, S.H.; Han, J.W. Effect of bilateral upper extremity exercise on trunk performance in patients with stroke. J. Phys. Ther. Sci. 2017, 29, 625–628. [Google Scholar] [CrossRef]
- Richardson, M.C.; Tears, C.; Morris, A.; Alexanders, J. The effects of unilateral versus bilateral motor training on upper limb function in adults with chronic stroke: A systematic review. J. Stroke Cerebrovasc. Dis. 2021, 30, 105617. [Google Scholar] [CrossRef]
- Chen, Y.-W.; Lin, K.-c.; Li, Y.-c.; Lin, C.-J. Predicting patient-reported outcome of activities of daily living in stroke rehabilitation: A machine learning study. J. Neuroeng. Rehabil. 2023, 20, 25. [Google Scholar] [CrossRef] [PubMed]
- Renner, C.I.E.; Brendel, C.; Hummelsheim, H. Bilateral arm training vs unilateral arm training for severely affected patients with stroke: Exploratory single-blinded randomized controlled trial. Arch. Phys. Med. Rehabil. 2020, 101, 1120–1130. [Google Scholar] [CrossRef]
- Chen, S.; Qiu, Y.; Bassile, C.C.; Lee, A.; Chen, R.; Xu, D. Effectiveness and success factors of bilateral arm training after stroke: A systematic review and meta-analysis. Front. Aging Neurosci. 2022, 14, 875794. [Google Scholar] [CrossRef]
- Dembele, J.; Triccas, L.T.; Amanzonwé, L.E.R.; Kossi, O.; Spooren, A. Bilateral versus unilateral upper limb training in (sub)acute stroke: A systematic and meta-analysis. S. Afr. J. Physiother. 2024, 80, 12. [Google Scholar] [CrossRef] [PubMed]
- Sethy, D.; Bajpai, P.; Kujur, E.S.; Mohakud, K.; Sahoo, S. Effectiveness of modified constraint induced movement therapy and bilateral arm training on upper extremity function after chronic stroke: A comparative study. Open J. Ther. Rehabil. 2016, 4, 1–9. [Google Scholar] [CrossRef]
- Crosby, L.D.; Marrocco, S.; Brown, J.; Patterson, K.K. A novel bilateral lower extremity mirror therapy intervention for individuals with stroke. Heliyon 2016, 2, e00208. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.H.; Kim, Y.-H. Robot-assisted therapy in stroke rehabilitation. J. Stroke 2013, 15, 174. [Google Scholar] [CrossRef]
- Shiner, C.T.; Byblow, W.D.; McNulty, P.A. Bilateral priming before wii-based movement therapy enhances upper limb rehabilitation and its retention after stroke: A case-controlled study. Neurorehabil. Neural Repair 2014, 28, 828–838. [Google Scholar] [CrossRef]
- Chen, P.-m.; Kwong, P.W.H.; Lai, C.K.Y.; Ng, S.S.M. Comparison of bilateral and unilateral upper limb training in people with stroke: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0216357. [Google Scholar] [CrossRef]
- Stinear, C.M.; Petoe, M.A.; Anwar, S.; Barber, P.A.; Byblow, W.D. Bilateral priming accelerates recovery of upper limb function after stroke: A randomized controlled trial. Stroke 2014, 45, 205–210. [Google Scholar] [CrossRef]
- Waller, M.S.; Whitall, J.; Jenkins, T.; Magder, L.S.; Hanley, D.F.; Goldberg, A.; Luft, A.R. Sequencing bilateral and unilateral task-oriented training versus task oriented training alone to improve arm function in individuals with chronic stroke. BMC Neurol. 2014, 14, 236. [Google Scholar] [CrossRef]
- Van Delden, A.L.E.Q.; Peper, C.L.E.; Kwakkel, G.; Beek, P.J. A systematic review of bilateral upper limb training devices for poststroke rehabilitation. Stroke Res. Treat. 2012, 2012, 972069. [Google Scholar] [CrossRef]
- Syed, N.; Biswas, A.; Hanifa, N.; Rv, P.; Sundaram, P. Bilateral versus unilateral upper extremity training on upper limb motor activity in hemiplegia. Int. J. Neurorehabilit. 2015, 2, 1–6. [Google Scholar] [CrossRef]
- Shih, P.-C.; Steele, C.J.; Hoepfel, D.; Muffel, T.; Villringer, A.; Sehm, B. The impact of lesion side on bilateral upper limb coordination after stroke. J. Neuroeng. Rehabil. 2023, 20, 166. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lei, Y.; Xiong, K.; Marek, K. Substantial generalization of sensorimotor learning from bilateral to unilateral movement conditions. PLoS ONE 2013, 8, e58495. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-y.; Chuang, L.-l.; Lin, K.-c.; Chen, H.-c.; Tsay, P.-k. Randomized trial of distributed constraint-induced therapy versus bilateral arm training for the rehabilitation of upper-limb motor control and function after stroke. Neurorehabil. Neural Repair 2011, 25, 130–139. [Google Scholar] [CrossRef]
- Langan, J.; Doyle, S.T.; Hurvitz, E.A.; Brown, S.H. Influence of task on interlimb coordination in adults with cerebral palsy. Arch. Phys. Med. Rehabil. 2010, 91, 1571–1576. [Google Scholar] [CrossRef]
- Bruyneel, A.-V.; Higgins, J.; Akremi, H.; Aissaoui, R.; Nadeau, S. Postural organization and inter-limb coordination are altered after stroke when an isometric maximum bilateral pushing effort of the upper limbs is performed. Clin. Biomech. 2021, 86, 105388. [Google Scholar] [CrossRef] [PubMed]
- Dhakate, D.; Bhattad, R. Study the effectiveness of bilateral arm training on upper extremity motor function and activity level in patients with sub-acute stroke. Int. J. Curr. Res. Rev. 2020, 12, 31–37. [Google Scholar] [CrossRef]
- Duff, S.V.; Miller, A.; Quinn, L.; Youdan, G.; Bishop, L.; Ruthrauff, H.; Wade, E. Quantifying intra- and interlimb use during unimanual and bimanual tasks in persons with hemiparesis post-stroke. J. Neuroeng. Rehabil. 2022, 19, 44. [Google Scholar] [CrossRef]
- Itkonen, M.; Costa, Á.; Yamasaki, H.; Okajima, S.; Alnajjar, F.; Kumada, T.; Shimoda, S. Influence of bimanual exercise on muscle activation in post-stroke patients. ROBOMECH J. 2019, 6, 14. [Google Scholar] [CrossRef]
- Kim, N.; Jo, S.; Bae, K.; Song, C. Comparison of upper extremity muscle activity between stroke patients and healthy participants while performing bimanual tasks. Phys. Ther. Rehabil. Sci. 2022, 11, 526–534. [Google Scholar] [CrossRef]
- Kumagai, M.; Uehara, S.; Kurayama, T.; Kitamura, S.; Sakata, S.; Kondo, K.; Shimizu, E.; Yoshinaga, N.; Otaka, Y. Effects of alternating bilateral training between non-paretic and paretic upper limbs in patients with hemiparetic stroke: A pilot randomized controlled trial. J. Rehabil. Med. 2022, 54, jrm00336. [Google Scholar] [CrossRef]
- Meng, G.; Meng, X.; Tan, Y.; Yu, J.; Jin, A.; Zhao, Y.; Liu, X. Short-term efficacy of hand-arm bimanual intensive training on upper arm function in acute stroke patients: A randomized controlled trial. Front. Neurol. 2018, 8, 726. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Chou, L.-W.; Luo, H.-J.; Tsai, P.-Y.; Lieu, F.-K.; Chiang, S.-L.; Sung, W.-H. Effects of computer-aided interlimb force coupling training on paretic hand and arm motor control following chronic stroke: A randomized controlled trial. PLoS ONE 2015, 10, e0131048. [Google Scholar] [CrossRef]
- Rodrigues, L.C.; Farias, N.C.; Gomes, R.P.; Michaelsen, S.M. Feasibility and effectiveness of adding object-related bilateral symmetrical training to mirror therapy in chronic stroke: A randomized controlled pilot study. Physiother. Theory Pract. 2016, 32, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Song, G.B. The effects of task-oriented versus repetitive bilateral arm training on upper limb function and activities of daily living in stroke patients. J. Phys. Ther. Sci. 2015, 27, 1353–1355. [Google Scholar] [CrossRef]
- Van Delden, A.L.E.Q.; Beek, P.J.; Roerdink, M.; Kwakkel, G.; Peper, C.L.E. Unilateral and bilateral upper-limb training interventions after stroke have similar effects on bimanual coupling strength. Neurorehabil. Neural Repair 2015, 29, 255–267. [Google Scholar] [CrossRef]
- Abdollahi, F.; Corrigan, M.; Lazzaro, E.D.C.; Kenyon, R.V.; Patton, J.L. Error-augmented bimanual therapy for stroke survivors. NeuroRehabilitation 2018, 43, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-J.; Pei, Y.-C.; Chen, Y.-Y.; Tseng, S.-S.; Hung, J.-W. Bilateral sensorimotor cortical communication modulated by multiple hand training in stroke participants: A single training session pilot study. Bioengineering 2022, 9, 727. [Google Scholar] [CrossRef]
- Jayasinghe, S.A.L.; Maenza, C.; Good, D.C.; Sainburg, R.L. Deficits in performance on a mechanically coupled asymmetrical bilateral task in chronic stroke survivors with mild unilateral paresis. Symmetry 2021, 13, 1366. [Google Scholar] [CrossRef]
- Ardestani, M.M.; Henderson, C.E.; Mahtani, G.; Connolly, M.; Hornby, T.G. Locomotor kinematics and kinetics following high-intensity stepping training in variable contexts poststroke. Neurorehabil. Neural Repair 2020, 34, 652–660. [Google Scholar] [CrossRef]
- Jo, P.Y. Intralimb Coordination and Intermuscular Coherence in Walking After Stroke. Ph.D. Thesis, George Mason University, Fairfax, VA, USA, 2019. [Google Scholar]
- Kwong, P.W.H.; Ng, G.Y.F.; Chung, R.C.K.; Ng, S.S.M. Bilateral transcutaneous electrical nerve stimulation improves lower-limb motor function in subjects with chronic stroke: A randomized controlled trial. J. Am. Heart Assoc. 2018, 7, e007341. [Google Scholar] [CrossRef]
- Stoykov, M.E.; King, E.; David, F.J.; Vatinno, A.; Fogg, L.; Corcos, D.M. Bilateral motor priming for post stroke upper extremity hemiparesis: A randomized pilot study. Restor. Neurol. Neurosci. 2020, 38, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Kiper, P.; Godart, N.; Cavalier, M.; Berard, C.; Cieślik, B.; Federico, S.; Kiper, A.; Pellicciari, L.; Meroni, R. Effects of immersive virtual reality on upper-extremity stroke rehabilitation: A systematic review with meta-analysis. J. Clin. Med. 2023, 13, 146. [Google Scholar] [CrossRef] [PubMed]
- Cazac, G.I. Virtual reality based-therapy: Targeting balance impairments to improve gait in stroke. Știința și Arta Mișcării 2022, 15, 4. [Google Scholar] [CrossRef]
- Sun, Y.; Zehr, E.P. Sensory enhancement amplifies interlimb cutaneous reflexes in wrist extensor muscles. J. Neurophysiol. 2019, 122, 2085–2094. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Kim, Y.-M.; Lee, B.-H. Effects of virtual reality-based bilateral upper-extremity training on brain activity in post-stroke patients. J. Phys. Ther. Sci. 2015, 27, 2285–2287. [Google Scholar] [CrossRef]
- Song, Y.-H.; Lee, H.-M. Effect of immersive virtual reality-based bilateral arm training in patients with chronic stroke. Brain Sci. 2021, 11, 1032. [Google Scholar] [CrossRef]
- Frigon, A.; Collins, D.F.; Zehr, E.P. Effect of rhythmic arm movement on reflexes in the legs: Modulation of soleus h-reflexes and somatosensory conditioning. J. Neurophysiol. 2004, 91, 1516–1523. [Google Scholar] [CrossRef]
- Zehr, E.P.; Balter, J.E.; Ferris, D.P.; Hundza, S.R.; Loadman, P.M.; Stoloff, R.H. Neural regulation of rhythmic arm and leg movement is conserved across human locomotor tasks. J. Physiol. 2007, 582, 209–227. [Google Scholar] [CrossRef]
- Dragert, K.; Zehr, E.P. Rhythmic arm cycling modulates hoffmann reflex excitability differentially in the ankle flexor and extensor muscles. Neurosci. Lett. 2009, 450, 235–238. [Google Scholar] [CrossRef]
- Zhou, R.; Alvarado, L.; Kim, S.; Chong, S.L.; Mushahwar, V.K. Modulation of corticospinal input to the legs by arm and leg cycling in people with incomplete spinal cord injury. J. Neurophysiol. 2017, 118, 2507–2519. [Google Scholar] [CrossRef]
- Jordan, H.T.; Stinear, C.M. Effects of bilateral priming on motor cortex function in healthy adults. J. Neurophysiol. 2018, 120, 2858–2867. [Google Scholar] [CrossRef] [PubMed]
- Madhavan, S.; Stinear, J.W.; Kanekar, N. Effects of a single session of high intensity interval treadmill training on corticomotor excitability following stroke: Implications for therapy. Neural Plast. 2016, 2016, 1686414. [Google Scholar] [CrossRef]
- Ghai, S.; Ghai, I. Effects of rhythmic auditory cueing in gait rehabilitation for multiple sclerosis: A mini systematic review and meta-analysis. Front. Neurol. 2018, 9, 386. [Google Scholar] [CrossRef]
- Stoykov, M.E.; Corcos, D.M. A review of bilateral training for upper extremity hemiparesis. Occup. Ther. Int. 2009, 16, 190–203. [Google Scholar] [CrossRef]
- Stoykov, M.E.; Lewis, G.N.; Corcos, D.M. Comparison of bilateral and unilateral training for upper extremity hemiparesis in stroke. Neurorehabil. Neural Repair 2009, 23, 945–953. [Google Scholar] [CrossRef]
- Lee, M.-J.; Lee, J.-H.; Koo, H.-M.; Lee, S.-M. Effectiveness of bilateral arm training for improving extremity function and activities of daily living performance in hemiplegic patients. J. Stroke Cerebrovasc. Dis. 2017, 26, 1020–1025. [Google Scholar] [CrossRef] [PubMed]
- Moran, J.; Ramirez-Campillo, R.; Liew, B.; Chaabene, H.; Behm, D.G.; García-Hermoso, A.; Izquierdo, M.; Granacher, U. Effects of bilateral and unilateral resistance training on horizontally orientated movement performance: A systematic review and meta-analysis. Sports Med. 2021, 51, 225–242. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; He, J.; Shu, B.; Jia, J. Multi-sensory feedback therapy combined with task-oriented training on the hemiparetic upper limb in chronic stroke: Study protocol for a pilot randomized controlled trial. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Bayona, N.A.; Bitensky, J.; Salter, K.; Teasell, R. The role of task-specific training in rehabilitation therapies. Top. Stroke Rehabil. 2005, 12, 58–65. [Google Scholar] [CrossRef]
- Carlsson, H.; Rosén, B.; Björkman, A.; Pessah-Rasmussen, H.; Brogårdh, C. Sensory re-learning of the upper limb (sensupp) after stroke: Development and description of a novel intervention using the tidier checklist. Trials 2021, 22, 430. [Google Scholar] [CrossRef]
- Amki, M.; Baumgartner, P.; Bracko, O.; Luft, A.R.; Wegener, S. Task-specific motor rehabilitation therapy after stroke improves performance in a different motor task: Translational evidence. Transl. Stroke Res. 2017, 8, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Birkenmeier, R.L.; Prager, E.M.; Lang, C.E. Translating animal doses of task-specific training to people with chronic stroke in 1-hour therapy sessions: A proof-of-concept study. Neurorehabil. Neural Repair 2010, 24, 620–635. [Google Scholar] [CrossRef] [PubMed]
- Dolbow, D.R.; Gorgey, A.S.; Recio, A.C.; Stiens, S.A.; Curry, A.C.; Sadowsky, C.L.; Gater, D.R.; Martin, R.; McDonald, J.W. Activity-based restorative therapies after spinal cord injury: Inter-institutional conceptions and perceptions. Aging Dis. 2015, 6, 254. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, P.; Turton, A.J.; Van Wijck, F.; Van Vliet, P. Task-specific reach-to-grasp training after stroke: Development and description of a home-based intervention. Clin. Rehabil. 2016, 30, 731–740. [Google Scholar] [CrossRef]
- Khallaf, M.E. Effect of task-specific training on trunk control and balance in patients with subacute stroke. Neurol. Res. Int. 2020, 2020, 5090193. [Google Scholar] [CrossRef]
- Grefkes, C.; Fink, G.R. Recovery from stroke: Current concepts and future perspectives. Neurol. Res. Pract. 2020, 2, 17. [Google Scholar] [CrossRef]
- Demers, M.; Varghese, R.; Winstein, C.J. Retrospective exploratory analysis of task-specific effects on brain activity after stroke. medRxiv 2021. [Google Scholar] [CrossRef]
- Iqbal, S.; Saeed, A.; Batool, S.; Waqqar, S.; Khattak, H.G.; Jabeen, H. Effects of task-oriented balance training with sensory integration in post stroke patients. Rehabil. J. 2023, 07, 18–23. [Google Scholar] [CrossRef]
- Chiaramonte, R.; Bonfiglio, M.; Leonforte, P.; Coltraro, G.; Guerrera, C.; Vecchio, M. Proprioceptive and dual-task training: The key of stroke rehabilitation, a systematic review. J. Funct. Morphol. Kinesiol. 2022, 7, 53. [Google Scholar] [CrossRef]
- Hermann, D.M.; Bassetti, C.L. Role of sleep-disordered breathing and sleep-wake disturbances for stroke and stroke recovery. Neurology 2016, 87, 1407–1416. [Google Scholar] [CrossRef]
- Chuang, L.-L.; Chen, Y.-L.; Chen, C.-C.; Li, Y.-C.; Wong, A.M.-K.; Hsu, A.-L.; Chang, Y.-J. Effect of emg-triggered neuromuscular electrical stimulation with bilateral arm training on hemiplegic shoulder pain and arm function after stroke: A randomized controlled trial. J. Neuroeng. Rehabil. 2017, 14, 122. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, N.D.; Jahanshahi, H.; Yao, Q.; Mou, J.; Bekiros, S. Identification and control of rehabilitation robots with unknown dynamics: A new probabilistic algorithm based on a finite-time estimator. Mathematics 2023, 11, 3699. [Google Scholar] [CrossRef]
- Shin, S.S.; Pelled, G. Novel neuromodulation techniques to assess interhemispheric communication in neural injury and neurodegenerative diseases. Front. Neural Circuits 2017, 11, 15. [Google Scholar] [CrossRef]
- Du, Q.; Luo, J.; Cheng, Q.; Wang, Y.; Guo, S. Vibrotactile enhancement in hand rehabilitation has a reinforcing effect on sensorimotor brain activities. Front. Neurosci. 2022, 16, 935827. [Google Scholar] [CrossRef]
- Jia, J. Exploration on neurobiological mechanisms of the central–peripheral–central closed-loop rehabilitation. Front. Cell. Neurosci. 2022, 16, 982881. [Google Scholar] [CrossRef]
- Chen, X.; Liu, F.; Yan, Z.; Cheng, S.; Liu, X.; Li, H.; Li, Z. Therapeutic effects of sensory input training on motor function rehabilitation after stroke. Medicine 2018, 97, e13387. [Google Scholar] [CrossRef]
- Bolognini, N.; Russo, C.; Edwards, D.J. The sensory side of post-stroke motor rehabilitation. Restor. Neurol. Neurosci. 2016, 34, 571–586. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Gao, X.; Pan, L.; Chen, S.; Wang, Q.; Zhu, B.; Li, J. Anxiety detection and training task adaptation in robot-assisted active stroke rehabilitation. Int. J. Adv. Robot. Syst. 2018, 15, 1729881418806433. [Google Scholar] [CrossRef]
- Liu, G.; Cai, H.; Leelayuwat, N. Intervention effect of rehabilitation robotic bed under machine learning combined with intensive motor training on stroke patients with hemiplegia. Front. Neurorobot. 2022, 16, 865403. [Google Scholar] [CrossRef]
- Fiore, S.; Battaglino, A.; Sinatti, P.; Sánchez-Romero, E.A.; Ruiz-Rodriguez, I.; Manca, M.; Gargano, S.; Villafañe, J.H. The effectiveness of robotic rehabilitation for the functional recovery of the upper limb in post-stroke patients: A systematic review. Retos 2023, 50, 91–101. [Google Scholar] [CrossRef]
- Khor, K.X.; Chin, P.J.H.; Hisyam, A.R.; Yeong, C.F.; Narayanan, A.L.T.; Su, E.L.M. Development of cr2-haptic: A compact and portable rehabilitation robot for wrist and forearm training. In Proceedings of the 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES), Miri Sarawak, Malaysia, 8–10 December 2014; pp. 424–429. [Google Scholar]
- Su, D.; Hu, Z.; Wu, J.; Shang, P.; Luo, Z. Review of adaptive control for stroke lower limb exoskeleton rehabilitation robot based on motion intention recognition. Front. Neurorobot. 2023, 17, 1186175. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Park, G.; Kim, H.Y.; Lee, J.-Y.; Ham, Y.; Hwang, D.; Kwon, S.; Shin, J.-H. A comparison of the effects and usability of two exoskeletal robots with and without robotic actuation for upper extremity rehabilitation among patients with stroke: A single-blinded randomised controlled pilot study. J. Neuroeng. Rehabil. 2020, 17, 137. [Google Scholar] [CrossRef]
- Park, J.H.; Chung, Y. The effects of providing visual feedback and auditory stimulation using a robotic device on balance and gait abilities in persons with stroke: A pilot study. Phys. Ther. Rehabil. Sci. 2016, 5, 125–131. [Google Scholar] [CrossRef]
- Ren, Y.; Wu, Y.-N.; Yang, C.-Y.; Xu, T.; Harvey, R.L.; Zhang, L.-Q. Developing a wearable ankle rehabilitation robotic device for in-bed acute stroke rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-c.; Lin, K.-c.; Chen, C.-l.; Yao, G.; Chang, Y.-j.; Lee, Y.-y.; Liu, C.-t.; Chen, W.-S. Three ways to improve arm function in the chronic phase after stroke by robotic priming combined with mirror therapy, arm training, and movement-oriented therapy. Arch. Phys. Med. Rehabil. 2023, 104, 1195–1202. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-c.; Li, Y.-c.; Lin, K.-c.; Yao, G.; Chang, Y.-j.; Lee, Y.-y.; Liu, C.-t.; Hsu, W.-l.; Wu, Y.-h.; Chu, H.-t.; et al. Effects of robotic priming of bilateral arm training, mirror therapy, and impairment-oriented training on sensorimotor and daily functions in patients with chronic stroke: Study protocol of a single-blind, randomized controlled trial. Trials 2022, 23, 566. [Google Scholar] [CrossRef]
- Li, Y.; Fan, T.; Qi, Q.; Wang, J.; Qiu, H.; Zhang, L.; Wu, X.; Ye, J.; Chen, G.; Long, J.; et al. Efficacy of a novel exoskeletal robot for locomotor rehabilitation in stroke patients: A multi-center, non-inferiority, randomized controlled trial. Front. Aging Neurosci. 2021, 13, 706569. [Google Scholar] [CrossRef]
- Ji, E.-K.; Lee, S.-H. Effects of virtual reality training with modified constraint-induced movement therapy on upper extremity function in acute stage stroke: A preliminary study. J. Phys. Ther. Sci. 2016, 28, 3168–3172. [Google Scholar] [CrossRef]
- Yang, D. Construction of sports music integration training and performance practice system based on virtual reality technology. J. Electr. Syst. 2024, 20, 493–500. [Google Scholar] [CrossRef]
- Cho, G.H.; Hwangbo, G.; Shin, H.S. The effects of virtual reality-based balance training on balance of the elderly. J. Phys. Ther. Sci. 2014, 26, 615–617. [Google Scholar] [CrossRef]
- Hassan, M. Impact of instant visual guidance via video technology on the correction of some offensive skills performance errors in basketball. Asian J. Sports Med. 2023, 14, e135841. [Google Scholar] [CrossRef]
- Langhorne, P.; Coupar, F.; Pollock, A. Motor recovery after stroke: A systematic review. Lancet Neurol. 2009, 8, 741–754. [Google Scholar] [CrossRef] [PubMed]
- Mehrholz, J.; Pohl, M.; Platz, T.; Kugler, J.; Elsner, B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst. Rev. 2018, 2018, CD006876. [Google Scholar] [CrossRef]
- Wonsetler, E.C.; Bowden, M.G. A systematic review of mechanisms of gait speed change post-stroke. Part 2: Exercise capacity, muscle activation, kinetics, and kinematics. Top. Stroke Rehabil. 2017, 24, 394–403. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Miyoshi, S.; Chen, C.-H.; Lee, K.-C.; Chang, L.-C.; Chung, J.-H.; Shi, H.-Y. Walking ability and functional status after post-acute care for stroke rehabilitation in different age groups: A prospective study based on propensity score matching. Aging 2020, 12, 10704–10714. [Google Scholar] [CrossRef]
- French, M.A.; Moore, M.F.; Pohlig, R.; Reisman, D. Self-efficacy mediates the relationship between balance/walking performance, activity, and participation after stroke. Top. Stroke Rehabil. 2015, 23, 77–83. [Google Scholar] [CrossRef]
- Jeon, H.J.; Hwang, B.Y. Effect of bilateral lower limb strengthening exercise on balance and walking in hemiparetic patients after stroke: A randomized controlled trial. J. Phys. Ther. Sci. 2018, 30, 277–281. [Google Scholar] [CrossRef]
- Kalyana, S.; Lohar, D.; Khan, J.; Rao, L.S. Effectiveness of supplemented backward walking training along with conventional therapy on balance and functional outcome in patients with stroke. Int. J. Curr. Pharm. Res. 2023, 15, 108–110. [Google Scholar] [CrossRef]
- Cho, K.H.; Song, W.-K. Robot-assisted reach training for improving upper extremity function of chronic stroke. Tohoku J. Exp. Med. 2015, 237, 149–155. [Google Scholar] [CrossRef]
- Louie, D.R.; Mortenson, W.B.; Durocher, M.; Schneeberg, A.; Teasell, R.; Yao, J.; Eng, J.J. Efficacy of an exoskeleton-based physical therapy program for non-ambulatory patients during subacute stroke rehabilitation: A randomized controlled trial. J. Neuroeng. Rehabil. 2021, 18, 149. [Google Scholar] [CrossRef]
- Kim, C.; Kim, H.-J. Effect of robot-assisted wearable exoskeleton on gait speed of post-stroke patients: A systematic review and meta-analysis of a randomized controlled trials. Phys. Ther. Rehabil. Sci. 2022, 11, 471–477. [Google Scholar] [CrossRef]
- Nolan, K.J.; Karunakaran, K.K.; Roberts, P.; Tefertiller, C.; Walter, A.M.; Zhang, J.; Leslie, D.; Jayaraman, A.; Francisco, G.E. Utilization of robotic exoskeleton for overground walking in acute and chronic stroke. Front. Neurorobot. 2021, 15, 689363. [Google Scholar] [CrossRef]
- Buesing, C.; Fisch, G.; O’Donnell, M.; Shahidi, I.; Thomas, L.; Mummidisetty, C.K.; Williams, K.J.; Takahashi, H.; Rymer, W.Z.; Jayaraman, A. Effects of a wearable exoskeleton stride management assist system (sma®) on spatiotemporal gait characteristics in individuals after stroke: A randomized controlled trial. J. Neuroeng. Rehabil. 2015, 12, 69. [Google Scholar] [CrossRef]
- Jacksteit, R.; Stöckel, T.; Behrens, M.; Feldhege, F.; Bergschmidt, P.; Bader, R.; Mittelmeier, W.; Skripitz, R.; Mau-Moeller, A. Low-load unilateral and bilateral resistance training to restore lower limb function in the early rehabilitation after total knee arthroplasty: A randomized active-controlled clinical trial. Front. Med. 2021, 8, 628021. [Google Scholar] [CrossRef]
- Paterno, M.V.; Rauh, M.J.; Schmitt, L.C.; Ford, K.R.; Hewett, T.E. Incidence of contralateral and ipsilateral anterior cruciate ligament (acl) injury after primary acl reconstruction and return to sport. Clin. J. Sport Med. 2012, 22, 116–121. [Google Scholar] [CrossRef]
- Green, L.A.; Gabriel, D.A. The effect of unilateral training on contralateral limb strength in young, older, and patient populations: A meta-analysis of cross education. Phys. Ther. Rev. 2018, 23, 238–249. [Google Scholar] [CrossRef]
- Lim, H.; Madhavan, S. Non-paretic leg movements can facilitate cortical drive to the paretic leg in individuals post stroke with severe motor impairment: Implications for motor priming. Eur. J. Neurosci. 2023, 58, 2853–2867. [Google Scholar] [CrossRef]
- Peng, W.W.; Tang, Z.Y.; Zhang, F.R.; Li, H.; Kong, Y.Z.; Iannetti, G.D.; Hu, L. Neurobiological mechanisms of tens-induced analgesia. Neuroimage 2019, 195, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Vahdat, S.; Darainy, M.; Thiel, A.; Ostry, D.J. A single session of robot-controlled proprioceptive training modulates functional connectivity of sensory motor networks and improves reaching accuracy in chronic stroke. Neurorehabil. Neural Repair 2019, 33, 70–81. [Google Scholar] [CrossRef]
- Ambreen, H.; Tariq, H.; Amjad, I. Effects of bilateral arm training on upper extremity function in right and left hemispheric stroke. J. Pak. Med. Assoc. 2020, 71, 302–305. [Google Scholar] [CrossRef]
- Stinear, C.M.; Byblow, W.D.; Steyvers, M.; Levin, O.; Swinnen, S.P. Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Exp. Brain Res. 2006, 168, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Jarrassé, N.; Proietti, T.; Crocher, V.; Robertson, J.; Sahbani, A.; Morel, G.; Roby-Brami, A. Robotic exoskeletons: A perspective for the rehabilitation of arm coordination in stroke patients. Front. Hum. Neurosci. 2014, 8, 947. [Google Scholar] [CrossRef] [PubMed]
- Stoykov, M.E.; Corcos, D.M.; Madhavan, S. Movement-based priming: Clinical applications and neural mechanisms. J. Mot. Behav. 2017, 49, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Lakens, D.; Stel, M. If they move in sync, they must feel in sync: Movement synchrony leads to attributions of rapport and entitativity. Soc. Cogn. 2011, 29, 1–14. [Google Scholar] [CrossRef]
- Aschersleben, G. Temporal control of movements in sensorimotor synchronization. Brain Cogn. 2002, 48, 66–79. [Google Scholar] [CrossRef]
- Bonassi, G.; Pellegrino, L.; Guggisberg, A.G.; Coscia, M. Multimodal EEG and kinematic assessment of upper limb motor recovery early after stroke. Clin. EEG Neurosci. 2023, 55, 465–476. [Google Scholar] [CrossRef]
- Sebastián-Romagosa, M.; Udina, E.; Ortner, R.; Dinarès-Ferran, J.; Cho, W.; Murovec, N.; Matencio-Peralba, C.; Sieghartsleitner, S.; Allison, B.Z.; Guger, C. EEG biomarkers related with the functional state of stroke patients. Front. Neurosci. 2020, 14, 582. [Google Scholar] [CrossRef]
- Chen, C.-C.; Lee, S.-H.; Wang, W.-J.; Lin, Y.-C.; Su, M.-C. EEG-based motor network biomarkers for identifying target patients with stroke for upper limb rehabilitation and its construct validity. PLoS ONE 2017, 12, e0178822. [Google Scholar] [CrossRef]
- Noble, J.W.; Eng, J.J.; Boyd, L.A. Bilateral motor tasks involve more brain regions and higher neural activation than unilateral tasks: An fmri study. Exp. Brain Res. 2014, 232, 2785–2795. [Google Scholar] [CrossRef]
- Repp, B.H.; Su, Y.-H. Sensorimotor synchronization: A review of recent research (2006–2012). Psychon. Bull. Rev. 2013, 20, 403–452. [Google Scholar] [CrossRef]
- Mu, Y.; Huang, Y.; Ji, C.; Gu, L.; Wu, X. Auditory over visual advantage of sensorimotor synchronization in 6- to 7-year-old children but not in 12- to 15-year-old children and adults. JExPH 2018, 44, 818–826. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, R.G.; Kelly, S.P. Neurophysiology of human perceptual decision-making. Annu. Rev. Neurosci. 2021, 44, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Wilken, S.; Böttcher, A.; Adelhöfer, N.; Raab, M.; Beste, C.; Hoffmann, S. Neural oscillations guiding action during effects imagery. Behav. Brain Res. 2024, 469, 115063. [Google Scholar] [CrossRef] [PubMed]
- Guertin, P.A. Central pattern generator for locomotion: Anatomical, physiological, and pathophysiological considerations. Front. Neurol. 2013, 3, 183. [Google Scholar] [CrossRef]
- Shachykov, A.; Henaff, P.; Shachykov, A.; Popov, A.; Shulyak, A. Neuro-musculoskeletal simulator of human rhythmic movements. In Proceedings of the 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), Kyiv, Ukraine, 29 May–2 June 2017; pp. 278–283. [Google Scholar]
- Waller, S.M.; Whitall, J. Bilateral arm training: Why and who benefits? NeuroRehabilitation 2008, 23, 29–41. [Google Scholar] [CrossRef]
- Van Delden, A.; Peper, C.; Beek, P.; Kwakkel, G. Unilateral versus bilateral upper limb exercise therapy after stroke: A systematic review. J. Rehabil. Med. 2012, 44, 106–117. [Google Scholar] [CrossRef]
- Nakada, K.; Asai, T.; Amemiya, Y. An analog cmos central pattern generator for interlimb coordination in quadruped locomotion. IEEE Trans. Neural Netw. 2003, 14, 1356–1365. [Google Scholar] [CrossRef]
- Grillner, S. Biological pattern generation: The cellular and computational logic of networks in motion. Neuron 2006, 52, 751–766. [Google Scholar] [CrossRef]
- MacKay-Lyons, M. Central pattern generation of locomotion: A review of the evidence. Phys. Ther. 2002, 82, 69–83. [Google Scholar] [CrossRef]
- Morquette, P.; Verdier, D.; Kadala, A.; Féthière, J.; Philippe, A.G.; Robitaille, R.; Kolta, A. An astrocyte-dependent mechanism for neuronal rhythmogenesis. Nat. Neurosci. 2015, 18, 844–854. [Google Scholar] [CrossRef]
- Williams, C.A.; DeWeerth, S.P. A comparison of resonance tuning with positive versus negative sensory feedback. Biol. Cybern. 2007, 96, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Sasada, S.; Tazoe, T.; Nakajima, T.; Futatsubashi, G.; Ohtsuka, H.; Suzuki, S.; Zehr, E.P.; Komiyama, T. A common neural element receiving rhythmic arm and leg activity as assessed by reflex modulation in arm muscles. J. Neurophysiol. 2016, 115, 2065–2075. [Google Scholar] [CrossRef]
- Balter, J.E.; Zehr, E.P. Neural coupling between the arms and legs during rhythmic locomotor-like cycling movement. J. Neurophysiol. 2007, 97, 1809–1818. [Google Scholar] [CrossRef] [PubMed]
- Hosp, J.A.; Luft, A.R. Cortical plasticity during motor learning and recovery after ischemic stroke. Neural Plast. 2011, 2011, 871296. [Google Scholar] [CrossRef]
- McDonnell, M.N.; Koblar, S.; Ward, N.S.; Rothwell, J.C.; Hordacre, B.; Ridding, M.C. An investigation of cortical neuroplasticity following stroke in adults: Is there evidence for a critical window for rehabilitation? BMC Neurol. 2015, 15, 109. [Google Scholar] [CrossRef]
- Sleimen-Malkoun, R.; Temprado, J.-J.; Thefenne, L.; Berton, E. Bimanual training in stroke: How do coupling and symmetry-breaking matter? BMC Neurol. 2011, 11, 11. [Google Scholar] [CrossRef]
- Sawaki, L.; Boroojerdi, B.; Kaelin-Lang, A.; Burstein, A.H.; Bütefisch, C.M.; Kopylev, L.; Davis, B.; Cohen, L.G. Cholinergic influences on use-dependent plasticity. J. Neurophysiol. 2002, 87, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Sawaki, L.; Wu, C.W.-H.; Kaelin-Lang, A.; Cohen, L.G. Effects of somatosensory stimulation on use-dependent plasticity in chronic stroke. Stroke 2006, 37, 246–247. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, H.; Sun, H.; Ren, L.; Jiang, H.; Chen, M.; Dong, C. Influencing factors of psychological resilience in stroke patients: A systematic review and meta-analysis. Arch. Clin. Neuropsychol. 2024, 39, 644–654. [Google Scholar] [CrossRef]
- Tan, Z.; Dong, F.; Wu, L.; Feng, Y.; Zhang, M.; Zhang, F. Transcutaneous electrical nerve stimulation (tens) alleviates brain ischemic injury by regulating neuronal oxidative stress, pyroptosis, and mitophagy. Mediat. Inflamm. 2023, 2023, 5677865. [Google Scholar] [CrossRef]
- Mustin, M.; Hensel, L.; Fink, G.R.; Grefkes, C.; Tscherpel, C. Individual contralesional recruitment in the context of structural reserve in early motor reorganization after stroke. NeuroImage 2024, 300, 120828. [Google Scholar] [CrossRef] [PubMed]
- Grefkes, C.; Nowak, D.A.; Eickhoff, S.B.; Dafotakis, M.; Küst, J.; Karbe, H.; Fink, G.R. Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann. Neurol. 2008, 63, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.; Schranz, C.; Seo, N.J. Associating functional neural connectivity and specific aspects of sensorimotor control in chronic stroke. Sensors 2023, 23, 5398. [Google Scholar] [CrossRef] [PubMed]
- Bellaiche, S.; Ibarolla, D.; Redouté, J.; Comte, J.-C.; Medée, B.; Arsenault, L.; Mayel, A.; Revol, P.; Delporte, L.; Cotton, F.; et al. Upper limb rehabilitation after stroke: Constraint versus intensive training. A longitudinal case-control study correlating motor performance with fmri data. bioRxiv 2022. [Google Scholar] [CrossRef]
- Kim, H.; Park, G.; Shin, J.-H.; You, J.H. Neuroplastic effects of end-effector robotic gait training for hemiparetic stroke: A randomised controlled trial. Sci. Rep. 2020, 10, 12461. [Google Scholar] [CrossRef]
- Caligiore, D.; Pezzulo, G.; Baldassarre, G.; Bostan, A.C.; Strick, P.L.; Doya, K.; Herreros, I. Consensus Paper: Towards a Systems-Level View of Cerebellar Function: The Interplay Between Cerebellum, Basal Ganglia, and Cortex. Cerebellum 2017, 16, 203–229. [Google Scholar] [CrossRef]
- Ferrari, P.F.; Gerbella, M.; Coudé, G.; Rozzi, S. Two Different Mirror Neuron Networks: The Sensorimotor (Hand) and Limbic (Face) Pathways. Neuroscience 2018, 358, 300–315. [Google Scholar] [CrossRef]
- Oldrati, V.; Schutter, D.J. Targeting the human cerebellum with transcranial direct current stimulation to modulate behavior: A meta-analysis. Cerebellum 2018, 17, 228–236. [Google Scholar] [CrossRef]
- Suppa, A.; Quartarone, A.; Siebner, H.; Chen, R.; Di Lazzaro, V.; Del Giudice, P.; Ziemann, U. The associative brain at work: Evidence from paired associative stimulation studies in humans. Clin. Neurophysiol. 2017, 128, 2140–2164. [Google Scholar] [CrossRef]
- Castel-Lacanal, E.; Tarri, M.; Loubinoux, I.; Gasq, D.; de Boissezon, X.; Marque, P.; Simonetta-Moreau, M. Transcranial magnetic stimulation in brain injury. Ann. Phys. Rehabil. Med. 2019, 62, 104–121. [Google Scholar] [CrossRef]
- Tilp, M.; Ringler, S.; Mariacher, H.; Rafolt, D. Unilateral strength training after total knee arthroplasty leads to similar or better effects on strength and flexibility than bilateral strength training—A randomized controlled pilot study. J. Rehabil. Med. 2023, 55, jrm00381. [Google Scholar] [CrossRef] [PubMed]
- Song, J.S.; Yamada, Y.; Kataoka, R.; Hammert, W.B.; Kang, A.; Spitz, R.W.; Wong, V.; Seffrin, A.; Kassiano, W.; Loenneke, J.P. Does unilateral high-load resistance training influence strength change in the contralateral arm also undergoing high-load training? Scand. J. Med. Sci. Sports 2024, 34, e14772. [Google Scholar] [CrossRef] [PubMed]
- Coratella, G.; Galas, A.; Campa, F.; Pedrinolla, A.; Schena, F.; Venturelli, M. The eccentric phase in unilateral resistance training enhances and preserves the contralateral knee extensors strength gains after detraining in women: A randomized controlled trial. Front. Physiol. 2022, 13, 788473. [Google Scholar] [CrossRef] [PubMed]
- Di Brino, E.; Ciavarro, M.; Iosa, M.; Sasso, E.; Prosperini, L.; Crispino, V.; Russo, S.; Morone, G.; Stampacchia, G.; Paolucci, S.; et al. Preserved practice-dependent online motor learning and interlimb transfer in chronic stroke survivors: A novel quick and safe clinical assessment tool. Neurol. Sci. 2024, 46, 1245–1255. [Google Scholar] [CrossRef]
- Merrick, C.M.; Doyle, O.N.; Gallegos, N.E.; Irwin, Z.T.; Olson, J.W.; Gonzalez, C.L.; Knight, R.T.; Ivry, R.B.; Walker, H.C. Differential contribution of sensorimotor cortex and subthalamic nucleus to unimanual and bimanual hand movements. Cereb. Cortex 2024, 34, bhad492. [Google Scholar] [CrossRef]
Definition | Relevance | Authors/Source | |
---|---|---|---|
Bilateral Movement Training (BMT) | Bilateral movement training in post-stroke rehabilitation involves the simultaneous use of both limbs to perform tasks, promoting coordination and functional recovery. | This method leverages the concept of neural plasticity, facilitating the reorganization of the brain’s neural networks and motor control organization. | Cauraugh, J. H., & Summers, J. J. Neural plasticity and bilateral movements: A rehabilitation approach for chronic stroke. Progress in Neurobiology, 75(5), 309–320. [27] |
Interlimb Coupling | Interlimb coupling in stroke rehabilitation refers to the coordination between the movements of both limbs, which can influence motor recovery and functional performance. | Interlimb coupling exercises aim to exploit neural mechanisms that link the movements of the limbs, thereby facilitating the recovery of motor function in the affected limb through synchronized bilateral activities. | Schaefer, S. Y., & Lang, C. E. Using dual tasks to test immediate transfer of training between naturalistic movements: a proof-of-principle study. Journal of Motor Behavior, 44(5), 313–318. [31] |
Interlimb Transfer | Interlimb transfer in stroke rehabilitation refers to the phenomenon where training or practicing a motor skill with one limb improves the performance of the same skill with the untrained contralateral limb. | This allows therapists to leverage the unaffected limb to enhance motor recovery in the affected limb(s). | Cauraugh, J. H., Kim, S. Two coupled motor recovery protocols are better than one: Electromyogram-triggered neuromuscular stimulation and bilateral movements. Stroke, 33(6). [32] |
Cross Education | Cross-education in post-stroke rehabilitation refers to the phenomenon where strength training of one limb can lead to strength gains in the contralateral, untrained limb. | This effect is particularly beneficial in stroke rehabilitation, as exercising the unaffected limb can help improve strength and function in the affected limb, aiding overall recovery. | Farthing, J. P., & Zehr, E. P. Restoring symmetry: Clinical applications of cross-education. Exercise and Sport Sciences Reviews, 42(2), 70–75. [5] |
Bilateral Synergy | Bilateral synergy in post-stroke rehabilitation refers to the coordinated and simultaneous use of both limbs to enhance motor recovery and functional performance. | This concept leverages the interconnectedness of the hemispheres in the brain, encouraging the non-affected limb to assist in rehabilitating the affected limb, thereby improving overall motor function and reducing asymmetry in movement patterns. | Lewis, G. N., & Perreault, E. J. The side of stroke affects interlimb coordination during passive movement. Neurorehabilitation and Neural Repair, 21(4), 280–285. [33] |
Interlimb Connections | Interlimb connections in post-stroke rehabilitation refer to the neural pathways and mechanisms that facilitate communication and coordination between the limbs. | Interlimb connections are crucial for motor recovery. They enable the unaffected limb to support the rehabilitation of the affected limb by promoting symmetrical movement patterns and improving overall motor function and recovery. | Cauraugh, J. H., & Summers, J. J. Neural plasticity and bilateral movements: A rehabilitation approach for chronic stroke. Progress in Neurobiology, 75(5), 309–320. [27] |
Central Pattern Generators (CPG) | Central pattern generators (CPGs) in stroke rehabilitation refer to neural networks in the spinal cord that can produce rhythmic patterned outputs, such as walking or other repetitive movements, without sensory feedback. | These neural circuits facilitate motor recovery by enabling rhythmic and coordinated movement patterns. Therapeutic interventions can harness and retrain these patterns to improve functional mobility in stroke patients. | Dietz, V. Spinal cord pattern generators for locomotion. Clinical Neurophysiology, 114(8), 1379–1389. [23] |
Intervention Type and Authors | Participants (Sex/Number/Age) | Measurement(s) | Effect on Stroke Condition | Neurophysiological, Interlimb Coupling, and Transfer Effects * | No. of Potential Facilitating Neurophysiological Mech. |
---|---|---|---|---|---|
I. BILATERAL ARM TRAINING | |||||
Bruyneel, et al. [57] | n/a-15 poststroke 17 healthy volunteers-n/a | CMSA/Levin Scale/Ashworth/Semmes–Weinstein/Box and Blocks | Bilateral pushing with gradual efforts induces impaired postural strategies and coordination between limbs in individuals after a stroke. | 1, 2, 3, 4, 5, 7, and 8 | 7 |
Dhakate, D., & Bhattad, R. [58] | n/a-40 post-stroke subjects-45–65 | FIM (Functional Independence Measure) and FMA UE (Fugl-Meyer et al.) | Bilateral arm training proved more effective than the Conventional Training program in improving affected upper extremity motor function. | 1, 2, 3, 4, 5, 6, and 8 | 7 |
Duff, et al. [59] | M/F, 20 post-stroke/20 healthy controls | Adult Assisting Hand Assessment (Ad-AHA Stroke) and UE Fugl-Meyer (UEFM) | Algorithm and sensor data analyses distinguished task types within and between groups and predicted clinical scores. | 1, 2, 3, 4, 5, 6, 7, and 8 | 8 |
Han, K. J., & Kim, J. Y. [29] | n/a, 30 post-stroke subjects, n/a | FMA UE/ Box and Blocks/ MBI (Modified Barthel Index | In both the experimental and control groups, the FMA, BBT, and MBI scores were significantly higher after the intervention than before the intervention (p < 0.05). The changes in the FMA, BBT, and MBI scores were more significant in the experimental group than in the control group (p < 0.05). | 1, 2, 3, 4, 5, 6, and 8 | 7 |
Itkonen, M., et al. [60] | M/F, 11 post-stroke subjects, 52–90 | Surface EMG measurements | The paretic arms of the patients were more strongly affected by the task conditions compared with the non-paretic arms. These results suggest that in-phase motion may activate neural circuits that trigger recovery. | 1, 2, 3, 4, 5, 7, and 8 | 7 |
Kim, N., et al. [61] | n/a, 13 hemiparetic stroke patients and 12 healthy participants, n/a | EMG data | The upper extremity muscle activities of stroke patients during bimanual tasks varied between the paretic and non-paretic sides. Interestingly, the non-paretic side muscle activities also differed from regular participants. | 1, 2, 3, 4, 5, 6, and 8 | 7 |
Kumagai, M., et al. [62] | M/F, 24 subjects, n/a | NHPT, Purdue Pegboard task, Box and Blocks test, FMA UE | Alternating bilateral training may augment training effects and improve upper limb motor function in patients with left hemiparesis. | 1, 2, 3, 4, 5, 6, and 8 | 7 |
Lee, M. J., et al. [38] | M/F, 15 post-stroke, 15 healthy, n/a | FMA UE, Box and Blocks test, MBI | Bilateral arm training and general occupational therapy might be more effective together than alone for improving upper limb function and ADL performance. | 1, 2, 3, 4, 5, 6, and 8 | 7 |
Meng, G., et al. [63] | M/F, 128 subjects | FMA UE and Action research Reach Test Secondary: Neurophysiological improvement TMS | Hand–arm intensive bilateral training significantly improved motor functional and neurophysiological outcomes in patients with acute stroke. | 1, 2, 3, 4, 5, 6, and 8 | 7 |
Kaupp, C., et al. [24] | M/F, 19 subjects, 57–87 y/o | MAS, Chedoke, Monofilaments sensory discrimination, Berg Balance Test | Results show significant changes in function and neurophysiological integrity. | 1, 2, 3, 4, 5, 8, 13, 14, and 15 | 9 |
II. BILATERAL ARM TRAINING AND SENSORY ENHANCEMENT | |||||
Lin, C.H, et al. [64] | M/F, 33 subjects, mean age = 55.1 ± 10.5, | BI, FMA UE, WMFT, MAS | Computer-aided interlimb force coupling training improves the motor recovery of a paretic hand. It facilitates motor control and enhances functional performance in the paretic upper extremity of people with chronic stroke. | 1, 2, 3, 4, 5, 6, 7, 8, 9, and 11 | 9 |
Rodrigues, L. C., et al. [65] | M/F, 26 subjects, n/a | The primary outcome measure was unilateral and bilateral UL activity according to the Test d’Évaluation des Membres Supérieurs de Personnes Âgées (TEMPA). | The total TEMPA score showed the main effect of time. Significant improvement was found for bilateral but not unilateral tasks. Both groups showed gains after training, with no differences between them. | 1, 2, 3, 4, 5, 7, and 8 | 7 |
Song, G. B. [66]. | M/F, 40 subjects, mean age 51.15 ± 14.81 years, | Box and Block test (BBT), Jebsen Taylor test (JBT), and Modified Barthel Index (MBI) | Upper limb function and the ability to perform activities of daily living improved significantly in both groups. Although there were significant differences between the groups, the task-oriented group showed more remarkable improvement in upper limb function and activities of daily living. | 1, 2, 3, 4, 5, 6, 7, 8, 9, and 17 | 10 |
Van Delden, A. L. E. Q, et al. [67] | M/F, 60 subjects, n/a | Potentiometer, smoothness, and harmony mean amplitude and bimanual coordination measurements. | The coupling between both hands was not significantly higher after bilateral than unilateral training and control treatment. BATRAC group showed greater movement harmonicity and larger amplitudes. | 1, 2, 3, 4, 5, 7, 8, 9, and 17 | 9 |
III. BILATERAL ARM TRAINING AND ROBOTICS | |||||
Abdollahi, F., et al. [68] | M/F, 26 subjects, 26–77 y/o | FMA/ Wolf Motor Functional Ability Scale (WMFAS)/Motor activity log | Subjects’ 2-week gains in Fugl-Meyer score averaged 2.92, and we also observed improvements in Wolf Motor Functional Ability Scale average of 0.21 and Motor Activity Log of 0.58 for quantity and 0.63 for quality of life scores. | 1, 2, 3, 4, 5, 8, 9, 10, 11, and 16 | 10 |
Huang, J. J., et al. [69] | n/a, 40 subjects, n/a | EEG measurements | The results showed that stroke duration might influence the effects of hand rehabilitation in bilateral cortical corticocortical communication with significant main effects under different alpha and beta band conditions. | 1, 2, 3, 4, 5, 6, 8, 9, and 10 | 9 |
Li, Y. C., et al. [13] | F/M, 72 subjects, 20 to 80 y/o | FMA UE/MAS/ABIL hand stroke impact scale/lateral pinch/accelerometer | Only between-group differences were detected for the primary outcome, FMA-UE. R-mirr enhanced upper limb motor improvement more effectively, and the effect could be maintained at 3 months of follow-up. | 1, 2, 3, 4, 5, 6, 8, 9, and 16 | 9 |
IV. BAT AND VIRTUAL REALITY/VIDEO GUIDANCE | |||||
Jayasinghe, S. A., et al. [70] | M/F, 15 stroke survivors and seven age-matched neurologically intact adults, 45–79 y/o | Fugl-Meyer, Jebsen Taylor | Chronic stroke survivors with mild hemiparesis show significant deficits in reaching aspects of bilateral coordination. However, there are no deficits in stabilizing against a movement-dependent spring load. | 1, 2, 3, 4, 5, 8 | 6 |
V. BILATERAL LEG TRAINING | |||||
Ardestani, et al. [71] | M/F, 50 subjects, 18–85 y/o | FMA UE, Changes in spatiotemporal, joint kinematics, and kinetics plus heart physiology variables were measured | High-intensity LT results in greater changes in kinematics and kinetics than lower-intensity interventions. The results may suggest greater paretic limb contributions. | 1, 2, 3, 4, 5, 6, 8, 12, 13, and 15 | 10 |
Jo, P. Y. [72] | M/F, 20 subjects, n/a | The primary clinical measure was a 10 m walk time. Additional measures were the Timed test and the Stroke Impact Scale 3.0 | Interlimb symmetry and knee–ankle variability post-stroke relate to walking performance. Interlimb angle–angle asymmetry does not relate to walking performance post-stroke. | 1, 2, 3, 4, 5, 6, 8, 12, 13, and 15 | 10 |
VI. BILATERAL LEG TRAINING PLUS SENSORY ENHANCEMENT | |||||
Kwong, P.W.H., et al. [73] | M/F, 72 subjects, 55–85 y/0 | The muscle strength of paretic ankle dorsiflexors (pDFs), plantarflexors (pPFs), paretic knee extensors (pKEs), flexors (pKFs) were selected as the primary outcome measures of this study. | The application of bilateral TENS over the common peroneal nerve combined with TOT was superior to that of unilateral TENS combined with TOT in improving paretic ankle dorsiflexion strength. | 1, 2, 3, 4, 5, 6, 7, 8, 9, and 12 | 10 |
VII. COMBINED BILATERAL ARM AND LEG TRAINING | |||||
Arya et al. [15] | M/F, 50 subjects, n/a | The outcome measures included the feasibility of activities, Fugl-Meyer assessment (FMA), Rivermead Visual Gait Assessment (RVGA), Functional Ambulation Category (FAC), and modified Rankin Scale (mRS). | Interlimb coupling training, a feasible program, may enhance stroke recovery in both the upper and lower limbs, as well as gait. | 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, and 16 | 13 |
VIII. BILATERAL RHYTHMIC LEG AND ARM TRAINING | |||||
Klarner, T., et al. [25] | M/F, 19 subjects, 45–86 y/o | Test for muscle tone (modified Ashworth), functional ambulation (FAC), physical impairment (Chedoke–McMaster scale), touch discrimination (monofilament test), and reflex function for stroke participants. | Arm and leg cycling training induces plasticity and modifies reflex excitability after stroke. | 1, 2, 3, 4, 5, 8, 12, 13, 14, and 15 | 10 |
IX. BILATERAL MOVEMENT PRIMING | |||||
Stoykov, M. E., et al. [74] | F/M, 76 subjects, | The primary outcome measure is the Fugl-Meyer Test of Upper Extremity Function. The secondary outcome is the Chedoke Arm and Hand Activity Index-Nine, an assessment of bimanual functional tasks. | The first large-scale clinical trial of bilateral priming plus task-specific training. The authors have previously conducted a feasibility study on bilateral motor priming plus task-specific training and have considerable experience using this protocol. Outcome follows. | 1, 2, 3, 4, 5, 8, 9, 13, 15, and 16 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuipers, J.A.; Hoffman, N.; Carrick, F.R.; Jemni, M. Post-Stroke Rehabilitation: Neurophysiology Processes of Bilateral Movement Training and Interlimb Coupling—A Systematic Review. J. Clin. Med. 2025, 14, 3757. https://doi.org/10.3390/jcm14113757
Kuipers JA, Hoffman N, Carrick FR, Jemni M. Post-Stroke Rehabilitation: Neurophysiology Processes of Bilateral Movement Training and Interlimb Coupling—A Systematic Review. Journal of Clinical Medicine. 2025; 14(11):3757. https://doi.org/10.3390/jcm14113757
Chicago/Turabian StyleKuipers, Jan A., Norman Hoffman, Frederick R. Carrick, and Monèm Jemni. 2025. "Post-Stroke Rehabilitation: Neurophysiology Processes of Bilateral Movement Training and Interlimb Coupling—A Systematic Review" Journal of Clinical Medicine 14, no. 11: 3757. https://doi.org/10.3390/jcm14113757
APA StyleKuipers, J. A., Hoffman, N., Carrick, F. R., & Jemni, M. (2025). Post-Stroke Rehabilitation: Neurophysiology Processes of Bilateral Movement Training and Interlimb Coupling—A Systematic Review. Journal of Clinical Medicine, 14(11), 3757. https://doi.org/10.3390/jcm14113757