Managing Hypertension in Chronic Kidney Disease: The Role of Diet and Guideline Recommendations
Abstract
:1. Introduction
2. International Medical Societies Recommendations on Salt and Potassium Intake
Society | Recommendations | CoR | LoE |
---|---|---|---|
ESH (2023) | Preferred dietary products include vegetables, fruits, beans, nuts, seeds, vegetable oils, and fish and poultry among meat products. Fatty meats, full-fat dairy, sugar, sweetened beverages, and sweets should be limited. Overall, a healthy dietary pattern including more plant-based and less animal-based food is recommended. | I | B |
In adults with hypertension consuming a high-sodium diet (most Europeans), salt substitutes replacing part of the NaCl with KCl is recommended to reduce BP and the risk for CVD. | I | A | |
Dietary salt (NaCl) restriction is recommended for adults with elevated BP to reduce BP. Salt (NaCl) restriction to <5 g (~2 g sodium) per day is recommended. | I | B | |
Increased potassium consumption, preferably via dietary modification, is recommended for adults with elevated BP, except for patients with advanced CKD. | I | B | |
ESC (2024) | Adopting a healthy and balanced diet, such as the Mediterranean or DASH diets, is recommended to help reduce BP and CVD risk. | I | B |
Restriction of sodium to approximately 2 g per day is recommended where possible in all adults with elevated BP and hypertension (this is equivalent to about 5 g of salt ([14] per day or about a teaspoon or less). | I | A | |
In patients with hypertension without moderate to advanced CKD and with high daily sodium intake, an increase of potassium intake by 0.5–1.0 g/day—for example through sodium substitution with potassium-enriched salt (comprising 75% NaCl and 25% KCl) or through diets rich in fruits and vegetables—should be considered. | IIa | A | |
In patients with CKD or taking potassium-sparing medication, such as some diuretics, ACE inhibitors, ARBs, or spironolactone, monitoring serum levels of potassium should be considered if dietary potassium is being increased. | IIa | C | |
ACC/AHA/ AAPA/ ABC/ACPM/ AGS/APhA/ ASH/ASPC/ NMA/PCNA (2017) | A heart-healthy diet, such as the DASH diet, that facilitates achieving a desirable weight is recommended for adults with elevated BP or hypertension. | I | A |
Sodium reduction is recommended for adults with elevated BP or hypertension. | I | A | |
Potassium supplementation, preferably in dietary modification, is recommended for adults with elevated BP or hypertension, unless contraindicated by the presence of CKD or use of drugs that reduce potassium excretion. | I | A | |
KDIGO (2021) | Targeting a sodium intake <2 g of sodium per day (or <90 mmol of sodium per day, or <5 g NaCl per day) in patients with high BP and CKD. | II | C |
KDIGO (2024) | Targeting a sodium intake <2 g of sodium per day (or <90 mmol of sodium per day, or <5 g NaCl per day) in patients with high BP and CKD. | II | C |
A protein intake of 0.8 g/Kg body weight/day in adults with CKD G3–G5 is suggested. | II | C | |
APSN (2020) | Sodium restriction (<2 g of sodium per day or <90 mmol of sodium per day, or <5 of NaCl per day) in individuals with high BP and CKD with or without diabetes. | II | C |
3. Sodium Reduction
4. Potassium Intake
5. Other Dietary Interventions Related to Hypertension
6. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CKD | Chronic Kidney Disease |
BP | Blood Pressure |
CV | Cardio Vascular |
DASH | Dietary Approaches to Stop Hypertension |
ESH | European Society of Hypertension |
ESC | European Society of Cardiology |
KDIGO | Kidney Disease Improving Global Outcomes |
RAAS | Renin-Angiotensin-Aldosterone System |
KDOQI | Kidney Disease Outcomes Quality Initiative |
eGFR | Estimated Glomerular Filtration Rate |
WHO | World Health Organization |
RCT | Randomized Control Trial |
References
- Akbari, S.; Ten Eyck, P.; Wendt, L.; Yamada, M.; Boucher, R.; Beddhu, S.; Jalal, D.I. Trends of Blood Pressure Control in Chronic Kidney Disease Among US Adults: Findings from NHANES 2011 to 2020. J. Am. Heart Assoc. 2024, 13, e034568. [Google Scholar] [CrossRef]
- Burnier, M.; Damianaki, A. Hypertension as Cardiovascular Risk Factor in Chronic Kidney Disease. Circ. Res. 2023, 132, 1050–1063. [Google Scholar] [CrossRef]
- Mancia, G.; Kreutz, R.; Brunstrom, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; Agabiti-Rosei, E.; Algharably, E.A.E.; et al. 2023 ESH Guidelines for the management of arterial hypertension the Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J. Hypertens. 2023, 41, 1874–2071. [Google Scholar] [CrossRef]
- Cheung, A.K.; Chang, T.I.; Cushman, W.C.; Furth, S.L.; Hou, F.F.; Ix, J.H.; Knoll, G.A.; Muntner, P.; Pecoits-Filho, R.; Sarnak, M.J.; et al. KDIGO 2021 Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int. 2021, 99, S1–S87. [Google Scholar] [CrossRef]
- Trigueros-Flores, X.B.; Luna-Hernandez, G.; Santos-Lopez, M.F.; Perez-Galvan, L.; Flores-Camacho, K.J.; Diaz-Canchola, L.M.; Cueto-Manzano, A.M.; Chavez-Chavez, H.E.; Cerrillos-Gutierrez, J.I.; Rojas-Campos, E.; et al. Barriers and Facilitators to Adherence to a Healthy Diet Across the Spectrum of Chronic Kidney Disease. Patient Prefer. Adherence 2025, 19, 123–137. [Google Scholar] [CrossRef]
- Cardol, C.K.; Boslooper-Meulenbelt, K.; van Middendorp, H.; Meuleman, Y.; Evers, A.W.M.; van Dijk, S. Psychosocial barriers and facilitators for adherence to a healthy lifestyle among patients with chronic kidney disease: A focus group study. BMC Nephrol. 2022, 23, 205. [Google Scholar] [CrossRef]
- Meuleman, Y.; Ten Brinke, L.; Kwakernaak, A.J.; Vogt, L.; Rotmans, J.I.; Bos, W.J.; van der Boog, P.J.; Navis, G.; van Montfrans, G.A.; Hoekstra, T.; et al. Perceived Barriers and Support Strategies for Reducing Sodium Intake in Patients with Chronic Kidney Disease: A Qualitative Study. Int. J. Behav. Med. 2015, 22, 530–539. [Google Scholar] [CrossRef]
- Tyson, C.C.; Svetkey, L.P.; Lin, P.H.; Granados, I.; Kennedy, D.; Dunbar, K.T.; Redd, C.; Bennett, G.; Boulware, L.E.; Fish, L.J. Self-Perceived Barriers and Facilitators to Dietary Approaches to Stop Hypertension Diet Adherence Among Black Americans with Chronic Kidney Disease: A Qualitative Study. J. Ren. Nutr. 2023, 33, 59–68. [Google Scholar] [CrossRef]
- Filippou, C.D.; Tsioufis, C.P.; Thomopoulos, C.G.; Mihas, C.C.; Dimitriadis, K.S.; Sotiropoulou, L.I.; Chrysochoou, C.A.; Nihoyannopoulos, P.I.; Tousoulis, D.M. Dietary approaches to stop hypertension (DASH) diet and blood pressure reduction in adults with and without hypertension: A systematic review and meta-analysis of randomized controlled trials. Adv. Nutr. 2020, 11, 1150–1160. [Google Scholar] [CrossRef]
- Filippou, C.D.; Thomopoulos, C.G.; Kouremeti, M.M.; Sotiropoulou, L.I.; Nihoyannopoulos, P.I.; Tousoulis, D.M.; Tsioufis, C.P. Mediterranean diet and blood pressure reduction in adults with and without hypertension: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. 2021, 40, 3191–3200. [Google Scholar] [CrossRef]
- Fu, J.; Liu, Y.; Zhang, L.; Zhou, L.; Li, D.; Quan, H.; Zhu, L.; Hu, F.; Li, X.; Meng, S. Nonpharmacologic interventions for reducing blood pressure in adults with prehypertension to established hypertension. J. Am. Heart Assoc. 2020, 9, e016804. [Google Scholar] [CrossRef] [PubMed]
- He, F.J.; Li, J.; Macgregor, G.A. Effect of longer-term modest salt reduction on blood pressure. Cochrane Database Syst. Rev. 2013, 2013, Cd004937. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, J.W.; McCarthy, C.P.; Bruno, R.M.; Brouwers, S.; Canavan, M.D.; Ceconi, C.; Christodorescu, R.M.; Daskalopoulou, S.S.; Ferro, C.J.; Gerdts, E.; et al. 2024 ESC Guidelines for the management of elevated blood pressure and hypertension. Eur. Heart J. 2024, 45, 3912–4018. [Google Scholar] [CrossRef]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E., Jr.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018, 71, 1269–1324. [Google Scholar] [CrossRef]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef]
- Whelton, P.K.; He, J.; Cutler, J.A.; Brancati, F.L.; Appel, L.J.; Follmann, D.; Klag, M.J. Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA 1997, 277, 1624–1632. [Google Scholar] [CrossRef]
- Aburto, N.J.; Hanson, S.; Gutierrez, H.; Hooper, L.; Elliott, P.; Cappuccio, F.P. Effect of increased potassium intake on cardiovascular risk factors and disease: Systematic review and meta-analyses. BMJ 2013, 346, f1378. [Google Scholar] [CrossRef] [PubMed]
- Graudal, N.A.; Hubeck-Graudal, T.; Jurgens, G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst. Rev. 2011, 11, Cd004022. [Google Scholar] [CrossRef]
- Kim, K.I.; Ihm, S.H.; Kim, G.H.; Kim, H.C.; Kim, J.H.; Lee, H.Y.; Lee, J.H.; Park, J.M.; Park, S.; Pyun, W.B.; et al. 2018 Korean society of hypertension guidelines for the management of hypertension: Part III-hypertension in special situations. Clin. Hypertens. 2019, 25, 19. [Google Scholar] [CrossRef]
- Kim, H.L.; Lee, E.M.; Ahn, S.Y.; Kim, K.I.; Kim, H.C.; Kim, J.H.; Lee, H.Y.; Lee, J.H.; Park, J.M.; Cho, E.J.; et al. The 2022 focused update of the 2018 Korean Hypertension Society Guidelines for the management of hypertension. Clin. Hypertens. 2023, 29, 11. [Google Scholar] [CrossRef]
- Camafort, M.; Kasiakogias, A.; Agabiti-Rosei, E.; Masi, S.; Iliakis, P.; Benetos, A.; Jeong, J.O.; Lee, H.Y.; Muiesan, M.L.; Sudano, I.; et al. Hypertensive heart disease in older patients: Considerations for clinical practice. Eur. J. Intern. Med. 2025, 134, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Stevens, P.E.; Ahmed, S.B.; Carrero, J.J.; Foster, B.; Francis, A.; Hall, R.K.; Herrington, W.G.; Hill, G.; Inker, L.A.; Kazancıoğlu, R. KDIGO 2024 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar]
- Navaneethan, S.D.; Bansal, N.; Cavanaugh, K.L.; Chang, A.; Crowley, S.; Delgado, C.; Estrella, M.M.; Ghossein, C.; Ikizler, T.A.; Koncicki, H.; et al. KDOQI US Commentary on the KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of CKD. Am. J. Kidney Dis. 2025, 85, 135–176. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.-J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef]
- Pollock, C.; Moon, J.-y.; Ngoc Ha, L.P.; Gojaseni, P.; Ching, C.H.; Gomez, L.; Chan, T.M.; Wu, M.-J.; Yeo, S.C.; Nugroho, P.; et al. Framework of Guidelines for Management of CKD in Asia. Kidney Int. Rep. 2024, 9, 752–790. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 11. Chronic Kidney Disease and Risk Management: Standards of Care in Diabetes—2025. Diabetes Care 2024, 48, S239–S251. [Google Scholar] [CrossRef]
- Mente, A.; O’Donnell, M.; Rangarajan, S.; Dagenais, G.; Lear, S.; McQueen, M.; Diaz, R.; Avezum, A.; Lopez-Jaramillo, P.; Lanas, F.; et al. Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: A pooled analysis of data from four studies. Lancet 2016, 388, 465–475. [Google Scholar] [CrossRef]
- Huang, L.; Trieu, K.; Yoshimura, S.; Neal, B.; Woodward, M.; Campbell, N.R.C.; Li, Q.; Lackland, D.T.; Leung, A.A.; Anderson, C.A.M.; et al. Effect of dose and duration of reduction in dietary sodium on blood pressure levels: Systematic review and meta-analysis of randomised trials. BMJ 2020, 368, m315. [Google Scholar] [CrossRef]
- O’Donnell, M.; Mente, A.; Rangarajan, S.; McQueen, M.J.; Wang, X.; Liu, L.; Yan, H.; Lee, S.F.; Mony, P.; Devanath, A.; et al. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N. Engl. J. Med. 2014, 371, 612–623. [Google Scholar] [CrossRef]
- Muntner, P.; Anderson, A.; Charleston, J.; Chen, Z.; Ford, V.; Makos, G.; O’Connor, A.; Perumal, K.; Rahman, M.; Steigerwalt, S.; et al. Hypertension awareness, treatment, and control in adults with CKD: Results from the Chronic Renal Insufficiency Cohort (CRIC) Study. Am. J. Kidney Dis. 2010, 55, 441–451. [Google Scholar] [CrossRef]
- Tanner, R.M.; Calhoun, D.A.; Bell, E.K.; Bowling, C.B.; Gutierrez, O.M.; Irvin, M.R.; Lackland, D.T.; Oparil, S.; Warnock, D.; Muntner, P. Prevalence of apparent treatment-resistant hypertension among individuals with CKD. Clin. J. Am. Soc. Nephrol. 2013, 8, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guideline: Sodium Intake for Adults and Children; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 2020, 75, 1334–1357. [Google Scholar] [CrossRef]
- Burnier, M.; Coltamai, L.; Maillard, M.; Bochud, M. Renal sodium handling and nighttime blood pressure. Semin. Nephrol. 2007, 27, 565–571. [Google Scholar] [CrossRef]
- Rust, P.; Ekmekcioglu, C. Impact of Salt Intake on the Pathogenesis and Treatment of Hypertension. In Hypertension: From Basic Research to Clinical Practice; Islam, M.S., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 61–84. [Google Scholar] [CrossRef]
- Cianciaruso, B.; Bellizzi, V.; Minutolo, R.; Colucci, G.; Bisesti, V.; Russo, D.; Conte, G.; De Nicola, L. Renal adaptation to dietary sodium restriction in moderate renal failure resulting from chronic glomerular disease. J. Am. Soc. Nephrol. 1996, 7, 306–313. [Google Scholar] [CrossRef]
- Guyton, A.C. Kidneys and fluids in pressure regulation. Small volume but large pressure changes. Hypertension 1992, 19, I2–I8. [Google Scholar] [CrossRef]
- Borrelli, S.; Provenzano, M.; Gagliardi, I.; Michael, A.; Liberti, M.E.; De Nicola, L.; Conte, G.; Garofalo, C.; Andreucci, M. Sodium Intake and Chronic Kidney Disease. Int. J. Mol. Sci. 2020, 21, 4744. [Google Scholar] [CrossRef] [PubMed]
- McMahon, E.J.; Campbell, K.L.; Bauer, J.D.; Mudge, D.W.; Kelly, J.T. Altered dietary salt intake for people with chronic kidney disease. Cochrane Database Syst. Rev. 2021, 2021, CD010070. [Google Scholar] [CrossRef] [PubMed]
- Burnier, M. Sodium Intake and Progression of Chronic Kidney Disease-Has the Time Finally Come to Do the Impossible: A Prospective Randomized Controlled Trial? Oxford University Press: Oxford, UK, 2021; Volume 36, pp. 381–384. [Google Scholar]
- Thomas, M.C.; Moran, J.; Forsblom, C.; Harjutsalo, V.; Thorn, L.; Ahola, A.; Waden, J.; Tolonen, N.; Saraheimo, M.; Gordin, D.; et al. The association between dietary sodium intake, ESRD, and all-cause mortality in patients with type 1 diabetes. Diabetes Care 2011, 34, 861–866. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Turck, D.; Bresson, J.-L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.; et al. Dietary reference values for potassium. EFSA J. 2016, 14, e04592. [Google Scholar] [CrossRef]
- Food Safety and Standards Authority of India. Nutritional Standards and Regulations; Food Safety and Standards Authority of India: New Delhi, India, 2011.
- Food Standards Australia New Zealand (FSANZ). Nutrient Reference Values for Australia and New Zealand—Potassium; Food Standards Australia New Zealand (FSANZ): Kingston, Australia, 2022.
- U.S. Food and Drug Administration. Daily Value on the Nutrition and Supplement Facts Labels; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2024.
- Government of Canada Health Canada. Dietary Reference Intakes: Potassium; Government of Canada Health Canada: Ottawa, ON, Canada, 2023.
- National Health Service. Vitamins and Minerals: Potassium; National Health Service: England, UK, 2020.
- McMahon, E.J.; Bauer, J.D.; Hawley, C.M.; Isbel, N.M.; Stowasser, M.; Johnson, D.W.; Campbell, K.L. A randomized trial of dietary sodium restriction in CKD. J. Am. Soc. Nephrol. 2013, 24, 2096–2103. [Google Scholar] [CrossRef]
- de Brito-Ashurst, I.; Perry, L.; Sanders, T.A.; Thomas, J.E.; Dobbie, H.; Varagunam, M.; Yaqoob, M.M. The role of salt intake and salt sensitivity in the management of hypertension in South Asian people with chronic kidney disease: A randomised controlled trial. Heart 2013, 99, 1256–1260. [Google Scholar] [CrossRef] [PubMed]
- de Vries, L.V.; Dobrowolski, L.C.; van den Bosch, J.J.; Riphagen, I.J.; Krediet, C.T.; Bemelman, F.J.; Bakker, S.J.; Navis, G. Effects of Dietary Sodium Restriction in Kidney Transplant Recipients Treated with Renin-Angiotensin-Aldosterone System Blockade: A Randomized Clinical Trial. Am. J. Kidney Dis. 2016, 67, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Meuleman, Y.; Hoekstra, T.; Dekker, F.W.; Navis, G.; Vogt, L.; van der Boog, P.J.M.; Bos, W.J.W.; van Montfrans, G.A.; van Dijk, S.; ESMO Study Group. Sodium Restriction in Patients with CKD: A Randomized Controlled Trial of Self-management Support. Am. J. Kidney Dis. 2017, 69, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Saran, R.; Padilla, R.L.; Gillespie, B.W.; Heung, M.; Hummel, S.L.; Derebail, V.K.; Pitt, B.; Levin, N.W.; Zhu, F.; Abbas, S.R.; et al. A Randomized Crossover Trial of Dietary Sodium Restriction in Stage 3-4 CKD. Clin. J. Am. Soc. Nephrol. 2017, 12, 399–407. [Google Scholar] [CrossRef]
- O’Callaghan, C.A.; Camidge, C.; Thomas, R.; Reschen, M.E.; Maycock, A.J.; Lasserson, D.S.; Fox, R.A.; Thomas, N.P.B.; Shine, B.; James, T. Evaluation of a Simple Low-cost Intervention to Empower People with CKD to Reduce Their Dietary Salt Intake: OxCKD1, a Multicenter Randomized Controlled Trial. Kidney360 2023, 4, 890–898. [Google Scholar] [CrossRef]
- Bernabe-Ortiz, A.; Sal, Y.R.V.G.; Ponce-Lucero, V.; Cardenas, M.K.; Carrillo-Larco, R.M.; Diez-Canseco, F.; Pesantes, M.A.; Sacksteder, K.A.; Gilman, R.H.; Miranda, J.J. Effect of salt substitution on community-wide blood pressure and hypertension incidence. Nat. Med. 2020, 26, 374–378. [Google Scholar] [CrossRef]
- Hernandez, A.V.; Emonds, E.E.; Chen, B.A.; Zavala-Loayza, A.J.; Thota, P.; Pasupuleti, V.; Roman, Y.M.; Bernabe-Ortiz, A.; Miranda, J.J. Effect of low-sodium salt substitutes on blood pressure, detected hypertension, stroke and mortality. Heart 2019, 105, 953–960. [Google Scholar] [CrossRef]
- Neal, B.; Wu, Y.; Feng, X.; Zhang, R.; Zhang, Y.; Shi, J.; Zhang, J.; Tian, M.; Huang, L.; Li, Z.; et al. Effect of Salt Substitution on Cardiovascular Events and Death. N. Engl. J. Med. 2021, 385, 1067–1077. [Google Scholar] [CrossRef]
- Meneely, G.R.; Tucker, R.G.; Darby, W.J.; Auerbach, S.H. Chronic sodium chloride toxicity: Hypertension, renal and vascular lesions. Ann. Intern. Med. 1953, 39, 991–998. [Google Scholar] [CrossRef]
- Tobian, L.; Lange, J.; Ulm, K.; Wold, L.; Iwai, J. Potassium reduces cerebral hemorrhage and death rate in hypertensive rats, even when blood pressure is not lowered. Hypertension 1985, 7, I110–I114. [Google Scholar] [CrossRef]
- Tobian, L. Dietary sodium chloride and potassium have effects on the pathophysiology of hypertension in humans and animals. Am. J. Clin. Nutr. 1997, 65, 606S–611S. [Google Scholar] [CrossRef] [PubMed]
- Khaw, K.T.; Thom, S. Randomised double-blind cross-over trial of potassium on blood-pressure in normal subjects. Lancet 1982, 320, 1127–1129. [Google Scholar] [CrossRef] [PubMed]
- Macgregor, G.; Markandu, N.; Smith, S.; Banks, R.; Sagnella, G. Moderate potassium supplementation in essential hypertension. Lancet 1982, 320, 567–570. [Google Scholar] [CrossRef]
- Binia, A.; Jaeger, J.; Hu, Y.; Singh, A.; Zimmermann, D. Daily potassium intake and sodium-to-potassium ratio in the reduction of blood pressure: A meta-analysis of randomized controlled trials. J. Hypertens. 2015, 33, 1509–1520. [Google Scholar] [CrossRef]
- Filippini, T.; Naska, A.; Kasdagli, M.I.; Torres, D.; Lopes, C.; Carvalho, C.; Moreira, P.; Malavolti, M.; Orsini, N.; Whelton, P.K. Potassium intake and blood pressure: A dose-response meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 2020, 9, e015719. [Google Scholar] [CrossRef] [PubMed]
- Poorolajal, J.; Zeraati, F.; Soltanian, A.R.; Sheikh, V.; Hooshmand, E.; Maleki, A. Oral potassium supplementation for management of essential hypertension: A meta-analysis of randomized controlled trials. PLoS ONE 2017, 12, e0174967. [Google Scholar] [CrossRef]
- Yin, X.; Rodgers, A.; Perkovic, A.; Huang, L.; Li, K.-C.; Yu, J.; Wu, Y.; Wu, J.; Marklund, M.; Huffman, M.D. Effects of salt substitutes on clinical outcomes: A systematic review and meta-analysis. Heart 2022, 108, 1608–1615. [Google Scholar] [CrossRef]
- Vinceti, M.; Filippini, T.; Crippa, A.; de Sesmaisons, A.; Wise, L.A.; Orsini, N. Meta-analysis of potassium intake and the risk of stroke. J. Am. Heart Assoc. 2016, 5, e004210. [Google Scholar] [CrossRef]
- Reddin, C.; Ferguson, J.; Murphy, R.; Clarke, A.; Judge, C.; Griffith, V.; Alvarez, A.; Smyth, A.; Mente, A.; Yusuf, S. Global mean potassium intake: A systematic review and Bayesian meta-analysis. Eur. J. Nutr. 2023, 62, 2027–2037. [Google Scholar] [CrossRef]
- Sebastian, A.; Cordain, L.; Frassetto, L.; Banerjee, T.; Morris, R.C. Postulating the major environmental condition resulting in the expression of essential hypertension and its associated cardiovascular diseases: Dietary imprudence in daily selection of foods in respect of their potassium and sodium content resulting in oxidative stress-induced dysfunction of the vascular endothelium, vascular smooth muscle, and perivascular tissues. Med. Hypotheses 2018, 119, 110–119. [Google Scholar]
- Tyson, C.C.; Nwankwo, C.; Lin, P.-H.; Svetkey, L.P. The Dietary Approaches to Stop Hypertension (DASH) eating pattern in special populations. Curr. Hypertens. Rep. 2012, 14, 388–396. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Fouque, D. Nutritional management of chronic kidney disease. N. Engl. J. Med. 2017, 377, 1765–1776. [Google Scholar] [CrossRef]
- Picard, K.; Silva, M.I.B.; Mager, D.; Richard, C. Dietary potassium intake and risk of chronic kidney disease progression in predialysis patients with chronic kidney disease: A systematic review. Adv. Nutr. 2020, 11, 1002–1015. [Google Scholar] [CrossRef]
- Hannah, J.; Wells, L.; Jones, C. The feasibility of using the Dietary Approaches to Stop Hypertension (DASH) diet in people with chronic kidney disease and hypertension. J. Clin. Nephrol. Kidney Dis. 2018, 3, 1.10–11. [Google Scholar]
- Morimoto, N.; Shioji, S.; Akagi, Y.; Fujiki, T.; Mandai, S.; Ando, F.; Mori, T.; Susa, K.; Naito, S.; Sohara, E. Associations between dietary potassium intake from different food sources and hyperkalemia in patients with chronic kidney disease. J. Ren. Nutr. 2024, 34, 519–529. [Google Scholar] [CrossRef]
- Ogata, S.; Akashi, Y.; Kato, S.; Oka, Y.; Suda, A.; Yoshizaki, S.; Maeda, Y.; Nishimura, K.; Maeda, K.; Nakai, S. Association between dietary potassium intake estimated from multiple 24-hour urine collections and serum potassium in patients with CKD. Kidney Int. Rep. 2023, 8, 584–595. [Google Scholar] [CrossRef]
- Bernier-Jean, A.; Wong, G.; Saglimbene, V.; Ruospo, M.; Palmer, S.C.; Natale, P.; Garcia-Larsen, V.; Johnson, D.W.; Tonelli, M.; Hegbrant, J. Dietary potassium intake and all-cause mortality in adults treated with hemodialysis. Clin. J. Am. Soc. Nephrol. 2021, 16, 1851–1861. [Google Scholar] [CrossRef]
- De Nicola, L.; Garofalo, C.; Borrelli, S.; Minutolo, R. Recommendations on nutritional intake of potassium in CKD: It’s now time to be more flexible! Kidney Int. 2022, 102, 700–703. [Google Scholar] [CrossRef]
- Avesani, C.M.; Heimbürger, O.; Rubin, C.; Sallstrom, T.; Fáxen-Irving, G.; Lindholm, B.; Stenvinkel, P. Plant-based diet in hyperkalemic chronic kidney disease patients receiving sodium zirconium cyclosilicate: A feasibility clinical trial. Am. J. Clin. Nutr. 2024, 120, 719–726. [Google Scholar] [CrossRef]
- Turban, S.; Juraschek, S.P.; Miller III, E.R.; Anderson, C.A.; White, K.; Charleston, J.; Appel, L.J. Randomized trial on the effects of dietary potassium on blood pressure and serum potassium levels in adults with chronic kidney disease. Nutrients 2021, 13, 2678. [Google Scholar] [CrossRef]
- Gritter, M.; Wouda, R.D.; Yeung, S.M.; Wieërs, M.L.; Geurts, F.; De Ridder, M.A.; Ramakers, C.R.; Vogt, L.; De Borst, M.H.; Rotmans, J.I. Effects of short-term potassium chloride supplementation in patients with CKD. J. Am. Soc. Nephrol. 2022, 33, 1779–1789. [Google Scholar] [CrossRef]
- Van Buren, L.; Dötsch-Klerk, M.; Seewi, G.; Newson, R.S. Dietary impact of adding potassium chloride to foods as a sodium reduction technique. Nutrients 2016, 8, 235. [Google Scholar] [CrossRef]
- Cappuccio, F.P.; Buchanan, L.A.; Ji, C.; Siani, A.; Miller, M.A. Systematic review and meta-analysis of randomised controlled trials on the effects of potassium supplements on serum potassium and creatinine. BMJ Open 2016, 6, e011716. [Google Scholar] [CrossRef]
- Marklund, M.; Singh, G.; Greer, R.; Cudhea, F.; Matsushita, K.; Micha, R.; Brady, T.; Zhao, D.; Huang, L.; Tian, M. Estimated population wide benefits and risks in China of lowering sodium through potassium enriched salt substitution: Modelling study. BMJ 2020, 369, m824. [Google Scholar] [CrossRef]
- Kovesdy, C.P.; Matsushita, K.; Sang, Y.; Brunskill, N.J.; Carrero, J.J.; Chodick, G.; Hasegawa, T.; Heerspink, H.L.; Hirayama, A.; Landman, G.W.D.; et al. Serum potassium and adverse outcomes across the range of kidney function: A CKD Prognosis Consortium meta-analysis. Eur. Heart J. 2018, 39, 1535–1542. [Google Scholar] [CrossRef]
- Gasparini, A.; Evans, M.; Barany, P.; Xu, H.; Jernberg, T.; Arnlov, J.; Lund, L.H.; Carrero, J.J. Plasma potassium ranges associated with mortality across stages of chronic kidney disease: The Stockholm CREAtinine Measurements (SCREAM) project. Nephrol. Dial. Transplant. 2019, 34, 1534–1541. [Google Scholar] [CrossRef]
- Smyth, A.; Dunkler, D.; Gao, P.; Teo, K.K.; Yusuf, S.; O’Donnell, M.J.; Mann, J.F.; Clase, C.M.; Ontarget and Transcend Investigators. The relationship between estimated sodium and potassium excretion and subsequent renal outcomes. Kidney Int. 2014, 86, 1205–1212. [Google Scholar] [CrossRef]
- Araki, S.; Haneda, M.; Koya, D.; Kondo, K.; Tanaka, S.; Arima, H.; Kume, S.; Nakazawa, J.; Chin-Kanasaki, M.; Ugi, S.; et al. Urinary Potassium Excretion and Renal and Cardiovascular Complications in Patients with Type 2 Diabetes and Normal Renal Function. Clin. J. Am. Soc. Nephrol. 2015, 10, 2152–2158. [Google Scholar] [CrossRef]
- de Rooij, E.N.; de Fijter, J.W.; Le Cessie, S.; Hoorn, E.J.; Jager, K.J.; Chesnaye, N.C.; Evans, M.; Windahl, K.; Caskey, F.J.; Torino, C. Serum potassium and risk of death or kidney replacement therapy in older people with CKD stages 4–5: Eight-year follow-up. Am. J. Kidney Dis. 2023, 82, 257–266.e251. [Google Scholar] [CrossRef]
- He, J.; Mills, K.T.; Appel, L.J.; Yang, W.; Chen, J.; Lee, B.T.; Rosas, S.E.; Porter, A.; Makos, G.; Weir, M.R.; et al. Urinary Sodium and Potassium Excretion and CKD Progression. J. Am. Soc. Nephrol. 2016, 27, 1202–1212. [Google Scholar] [CrossRef]
- Iwahori, T.; Miura, K.; Ueshima, H. Time to Consider Use of the Sodium-to-Potassium Ratio for Practical Sodium Reduction and Potassium Increase. Nutrients 2017, 9, 700. [Google Scholar] [CrossRef]
- Koo, H.; Hwang, S.; Kim, T.H.; Kang, S.W.; Oh, K.-H.; Ahn, C.; Kim, Y.H. The ratio of urinary sodium and potassium and chronic kidney disease progression: Results from the KoreaN Cohort Study for Outcomes in Patients with Chronic Kidney Disease (KNOW-CKD). Medicine 2018, 97, e12820. [Google Scholar] [CrossRef]
- Clase, C.M.; Carrero, J.-J.; Ellison, D.H.; Grams, M.E.; Hemmelgarn, B.R.; Jardine, M.J.; Kovesdy, C.P.; Kline, G.A.; Lindner, G.; Obrador, G.T. Potassium homeostasis and management of dyskalemia in kidney diseases: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2020, 97, 42–61. [Google Scholar] [CrossRef]
- Hsia, J.; Heiss, G.; Ren, H.; Allison, M.; Dolan, N.C.; Greenland, P.; Heckbert, S.R.; Johnson, K.C.; Manson, J.E.; Sidney, S.; et al. Calcium/vitamin D supplementation and cardiovascular events. Circulation 2007, 115, 846–854. [Google Scholar] [CrossRef]
- Cormick, G.; Ciapponi, A.; Cafferata, M.L.; Belizán, J.M. Calcium supplementation for prevention of primary hypertension. Cochrane Database Syst. Rev. 2015, 2015, Cd010037. [Google Scholar] [CrossRef]
- Behers, B.J.; Melchor, J.; Behers, B.M.; Meng, Z.; Swanson, P.J.; Paterson, H.I.; Mendez Araque, S.J.; Davis, J.L.; Gerhold, C.J.; Shah, R.S.; et al. Vitamins and Minerals for Blood Pressure Reduction in the General, Normotensive Population: A Systematic Review and Meta-Analysis of Six Supplements. Nutrients 2023, 15, 4223. [Google Scholar] [CrossRef]
- Alharran, A.M.; Alzayed, M.M.; Jamilian, P.; Prabahar, K.; Kamal, A.H.; Alotaibi, M.N.; Elshaer, O.E.; Alhatm, M.; Masmoum, M.D.; Hernández-Wolters, B.; et al. Impact of Magnesium Supplementation on Blood Pressure: An Umbrella Meta-Analysis of Randomized Controlled Trials. Curr. Ther. Res. Clin. Exp. 2024, 101, 100755. [Google Scholar] [CrossRef]
- McClure, S.T.; Rebholz, C.M.; Medabalimi, S.; Hu, E.A.; Xu, Z.; Selvin, E.; Appel, L.J. Dietary phosphorus intake and blood pressure in adults: A systematic review of randomized trials and prospective observational studies. Am. J. Clin. Nutr. 2019, 109, 1264–1272. [Google Scholar] [CrossRef]
- McClure, S.T.; Rebholz, C.M.; Mitchell, D.C.; Selvin, E.; Appel, L.J. The association of dietary phosphorus with blood pressure: Results from a secondary analysis of the PREMIER trial. J. Hum. Hypertens. 2020, 34, 132–142. [Google Scholar] [CrossRef]
- Mohammad, J.; Scanni, R.; Bestmann, L.; Hulter, H.N.; Krapf, R. A Controlled Increase in Dietary Phosphate Elevates BP in Healthy Human Subjects. J. Am. Soc. Nephrol. 2018, 29, 2089–2098. [Google Scholar] [CrossRef]
- Latic, N.; Peitzsch, M.; Zupcic, A.; Pietzsch, J.; Erben, R.G. Long-Term Excessive Dietary Phosphate Intake Increases Arterial Blood Pressure, Activates the Renin-Angiotensin-Aldosterone System, and Stimulates Sympathetic Tone in Mice. Biomedicines 2022, 10, 2510. [Google Scholar] [CrossRef]
- Mizuno, M.; Mitchell, J.H.; Crawford, S.; Huang, C.-L.; Maalouf, N.; Hu, M.-C.; Moe, O.W.; Smith, S.A.; Vongpatanasin, W. High dietary phosphate intake induces hypertension and augments exercise pressor reflex function in rats. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 2016, 311, R39–R48. [Google Scholar] [CrossRef]
- Bozic, M.; Panizo, S.; Sevilla, M.A.; Riera, M.; Soler, M.J.; Pascual, J.; Lopez, I.; Freixenet, M.; Fernandez, E.; Valdivielso, J.M. High phosphate diet increases arterial blood pressure via a parathyroid hormone mediated increase of renin. J. Hypertens. 2014, 32, 1822–1832. [Google Scholar] [CrossRef]
- Campos, I.; Faul, C. Elevated phosphate levels in CKD—A direct threat for the heart. Nephrol. Dial. Transplant. 2025, gfaf001, Online ahead of print. [Google Scholar] [CrossRef]
- Neves, K.R.; Graciolli, F.G.; dos Reis, L.M.; Pasqualucci, C.A.; Moysés, R.M.; Jorgetti, V. Adverse effects of hyperphosphatemia on myocardial hypertrophy, renal function, and bone in rats with renal failure. Kidney Int. 2004, 66, 2237–2244. [Google Scholar] [CrossRef]
- Nasrallah, M.M.; El-Shehaby, A.R.; Salem, M.M.; Osman, N.A.; El Sheikh, E.; Sharaf El Din, U.A. Fibroblast growth factor-23 (FGF-23) is independently correlated to aortic calcification in haemodialysis patients. Nephrol. Dial. Transplant. 2010, 25, 2679–2685. [Google Scholar] [CrossRef]
- Chang, A.R.; Lazo, M.; Appel, L.J.; Gutierrez, O.M.; Grams, M.E. High dietary phosphorus intake is associated with all-cause mortality: Results from NHANES III. Am. J. Clin. Nutr. 2014, 99, 320–327. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Joshi, S.; Schlueter, R.; Cooke, J.; Brown-Tortorici, A.; Donnelly, M.; Schulman, S.; Lau, W.L.; Rhee, C.M.; Streja, E.; et al. Plant-Dominant Low-Protein Diet for Conservative Management of Chronic Kidney Disease. Nutrients 2020, 12, 1931. [Google Scholar] [CrossRef]
- Boeing, H.; Amini, A.M.; Haardt, J.; Schmidt, A.; Bischoff-Ferrari, H.A.; Buyken, A.E.; Egert, S.; Ellinger, S.; Kroke, A.; Lorkowski, S.; et al. Dietary protein and blood pressure: An umbrella review of systematic reviews and evaluation of the evidence. Eur. J. Nutr. 2024, 63, 1041–1058. [Google Scholar] [CrossRef]
- Carballo-Casla, A.; Avesani, C.M.; Beridze, G.; Ortolá, R.; García-Esquinas, E.; Lopez-Garcia, E.; Dai, L.; Dunk, M.M.; Stenvinkel, P.; Lindholm, B.; et al. Protein Intake and Mortality in Older Adults with Chronic Kidney Disease. JAMA Netw. Open 2024, 7, e2426577. [Google Scholar] [CrossRef]
- Palmer, S.C.; Maggo, J.K.; Campbell, K.L.; Craig, J.C.; Johnson, D.W.; Sutanto, B.; Ruospo, M.; Tong, A.; Strippoli, G.F. Dietary interventions for adults with chronic kidney disease. Cochrane Database Syst. Rev. 2017, 4, CD011998. [Google Scholar] [CrossRef]
- Banerjee, T.; Crews, D.C.; Tuot, D.S.; Pavkov, M.E.; Burrows, N.R.; Stack, A.G.; Saran, R.; Bragg-Gresham, J.; Powe, N.R.; Centers for Disease, C.; et al. Poor accordance to a DASH dietary pattern is associated with higher risk of ESRD among adults with moderate chronic kidney disease and hypertension. Kidney Int. 2019, 95, 1433–1442. [Google Scholar] [CrossRef]
- Apetrii, M.; Timofte, D.; Voroneanu, L.; Covic, A. Nutrition in Chronic Kidney Disease-The Role of Proteins and Specific Diets. Nutrients 2021, 13, 956. [Google Scholar] [CrossRef]
- Ume, A.C.; Wenegieme, T.Y.; Adams, D.N.; Adesina, S.E.; Williams, C.R. Zinc Deficiency: A Potential Hidden Driver of the Detrimental Cycle of Chronic Kidney Disease and Hypertension. Kidney360 2023, 4, 398–404. [Google Scholar] [CrossRef]
- Damianaki, K.; Lourenco, J.M.; Braconnier, P.; Ghobril, J.P.; Devuyst, O.; Burnier, M.; Lenglet, S.; Augsburger, M.; Thomas, A.; Pruijm, M. Renal handling of zinc in chronic kidney disease patients and the role of circulating zinc levels in renal function decline. Nephrol. Dial. Transplant. 2020, 35, 1163–1170. [Google Scholar] [CrossRef]
- Li, M.S.; Adesina, S.E.; Ellis, C.L.; Gooch, J.L.; Hoover, R.S.; Williams, C.R. NADPH oxidase-2 mediates zinc deficiency-induced oxidative stress and kidney damage. Am. J. Physiol. Cell Physiol. 2017, 312, C47–C55. [Google Scholar] [CrossRef]
- Lai, Y.J.; Chen, Y.Y.; Lin, Y.K.; Chen, C.C.; Yen, Y.F.; Deng, C.Y. Alcohol Consumption and Risk of Chronic Kidney Disease: A Nationwide Observational Cohort Study. Nutrients 2019, 11, 2121. [Google Scholar] [CrossRef]
- Reynolds, K.; Gu, D.; Chen, J.; Tang, X.; Yau, C.L.; Yu, L.; Chen, C.S.; Wu, X.; Hamm, L.L.; He, J. Alcohol consumption and the risk of end-stage renal disease among Chinese men. Kidney Int. 2008, 73, 870–876. [Google Scholar] [CrossRef]
- Joo, Y.S.; Koh, H.; Nam, K.H.; Lee, S.; Kim, J.; Lee, C.; Yun, H.R.; Park, J.T.; Kang, E.W.; Chang, T.I.; et al. Alcohol Consumption and Progression of Chronic Kidney Disease: Results from the Korean Cohort Study for Outcome in Patients with Chronic Kidney Disease. Mayo Clin. Proc. 2020, 95, 293–305. [Google Scholar] [CrossRef]
- Roerecke, M.; Kaczorowski, J.; Tobe, S.W.; Gmel, G.; Hasan, O.S.M.; Rehm, J. The effect of a reduction in alcohol consumption on blood pressure: A systematic review and meta-analysis. Lancet Public Health 2017, 2, e108–e120. [Google Scholar] [CrossRef]
- Adrogué, H.J.; Madias, N.E. Sodium and potassium in the pathogenesis of hypertension. N. Engl. J. Med. 2007, 356, 1966–1978. [Google Scholar] [CrossRef] [PubMed]
- Dasinger, J.H.; Fehrenbach, D.J.; Abais-Battad, J.M. Dietary Protein: Mechanisms Influencing Hypertension and Renal Disease. Curr. Hypertens. Rep. 2020, 22, 13. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Kramer, H.M.; Fouque, D. High-protein diet is bad for kidney health: Unleashing the taboo. Nephrol. Dial. Transplant. 2020, 35, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Ko, G.J.; Rhee, C.M.; Kalantar-Zadeh, K.; Joshi, S. The Effects of High-Protein Diets on Kidney Health and Longevity. J. Am. Soc. Nephrol. 2020, 31, 1667–1679. [Google Scholar] [CrossRef]
Food Authority | Sodium/Na (Salt/NaCl) | Potassium | Calcium | Magnesium | Protein | Zinc | Phosphorus |
---|---|---|---|---|---|---|---|
FAO/ WHO | <2000 mg Na (5 g) | 3510 mg | 1000 mg | M: 260 mg W: 220 mg | 0.75 g/kg | M: 14 mg W: 10 mg | 700 mg |
EFSA | <5 g salt | 3500 mg | 1000 mg | M: 375 mg W: 310 mg | 0.83 g/kg | M: 11 mg W: 8 mg | 700 mg |
FDA | 2300 mg Na | 4700 mg | 1300 mg | 420 mg | 50 g | 11 mg | 1250 mg |
NHS | 2400 mg Na (6 g) | 3500 mg | 700 mg | M: 300 mg W: 270 mg | - | M: 9.5 mg W: 7 mg | 550 mg |
FSSAI | 1900–2100 mg Na | M: 3750 mg W: 3225 mg | 600 mg | M: 340 mg W: 310 mg | M: 60g W: 55g | M: 12 mg W: 10 mg | 600 mg |
Health Canada | <2300 mg Na | M: 3400 mg W: 2800 mg | 1000 mg | M: 400 mg W: 320 mg | M: 56g W: 46g | M: 11 mg W: 8 mg | 700 mg |
Food Standards Australia and New Zealand | <2000 mg Na | M: 3800 mg W: 2800 mg | 1000 mg | M: 420 mg W: 320 mg | M: 0.84 g/kg (64 g) W: 0.75 g/kg (46 g) | M: 14 mg W:8 mg | 1000 mg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stambolliu, E.; Iliakis, P.; Tsioufis, K.; Damianaki, A. Managing Hypertension in Chronic Kidney Disease: The Role of Diet and Guideline Recommendations. J. Clin. Med. 2025, 14, 3755. https://doi.org/10.3390/jcm14113755
Stambolliu E, Iliakis P, Tsioufis K, Damianaki A. Managing Hypertension in Chronic Kidney Disease: The Role of Diet and Guideline Recommendations. Journal of Clinical Medicine. 2025; 14(11):3755. https://doi.org/10.3390/jcm14113755
Chicago/Turabian StyleStambolliu, Emelina, Panagiotis Iliakis, Konstantinos Tsioufis, and Aikaterini Damianaki. 2025. "Managing Hypertension in Chronic Kidney Disease: The Role of Diet and Guideline Recommendations" Journal of Clinical Medicine 14, no. 11: 3755. https://doi.org/10.3390/jcm14113755
APA StyleStambolliu, E., Iliakis, P., Tsioufis, K., & Damianaki, A. (2025). Managing Hypertension in Chronic Kidney Disease: The Role of Diet and Guideline Recommendations. Journal of Clinical Medicine, 14(11), 3755. https://doi.org/10.3390/jcm14113755