Minimally Invasive Surgery for Perihilar Cholangiocarcinoma—A Review of the Current Literature
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Open vs. Minimally Invasive Surgery
3.2. Laparoscopic Resection of Perihilar Cholangiocarcinoma
3.3. Robotic Resection of Perihilar Cholangiocarcinoma
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Global Burden of Disease Cancer Collaboration; Fitzmaurice, C.; Dicker, D.; Pain, A.; Hamavid, H.; Moradi-Lakeh, M.; MacIntyre, M.F.; Allen, C.; Hansen, G.; Woodbrook, R.; et al. The Global Burden of Cancer 2013. JAMA Oncol. 2015, 1, 505–527. [Google Scholar] [CrossRef] [PubMed]
- Nakeeb, A.; Pitt, H.A.; Sohn, T.A.; Coleman, J.; Abrams, R.A.; Piantadosi, S.; Hruban, R.H.; Lillemoe, K.D.; Yeo, C.J.; Cameron, J.L. Cholangiocarcinoma. A spectrum of intrahepatic, perihilar, and distal tumors. Ann. Surg. 1996, 224, 463–473; discussion 463–475. [Google Scholar] [CrossRef] [PubMed]
- Banales, J.M.; Cardinale, V.; Carpino, G.; Marzioni, M.; Andersen, J.B.; Invernizzi, P.; Lind, G.E.; Folseraas, T.; Forbes, S.J.; Fouassier, L.; et al. Cholangiocarcinoma: Current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 261–280. [Google Scholar] [CrossRef]
- Nagino, M.; Ebata, T.; Yokoyama, Y.; Igami, T.; Sugawara, G.; Takahashi, Y.; Nimura, Y. Evolution of surgical treatment for perihilar cholangiocarcinoma: A single-center 34-year review of 574 consecutive resections. Ann. Surg. 2013, 258, 129–140. [Google Scholar] [CrossRef]
- Klatskin, G. Adenocarcinoma of the Hepatic Duct at Its Bifurcation within the Porta Hepatis. An Unusual Tumor with Distinctive Clinical and Pathological Features. Am. J. Med. 1965, 38, 241–256. [Google Scholar] [CrossRef]
- Wang, M.L.; Ke, Z.Y.; Yin, S.; Liu, C.H.; Huang, Q. The effect of adjuvant chemotherapy in resectable cholangiocarcinoma: A meta-analysis and systematic review. Hepatobiliary Pancreat. Dis. Int. 2019, 18, 110–116. [Google Scholar] [CrossRef]
- Nooijen, L.E.; Banales, J.M.; de Boer, M.T.; Braconi, C.; Folseraas, T.; Forner, A.; Holowko, W.; Hoogwater, F.J.H.; Klumpen, H.J.; Groot Koerkamp, B.; et al. Impact of Positive Lymph Nodes and Resection Margin Status on the Overall Survival of Patients with Resected Perihilar Cholangiocarcinoma: The ENSCCA Registry. Cancers 2022, 14, 2389. [Google Scholar] [CrossRef]
- DeOliveira, M.L.; Cunningham, S.C.; Cameron, J.L.; Kamangar, F.; Winter, J.M.; Lillemoe, K.D.; Choti, M.A.; Yeo, C.J.; Schulick, R.D. Cholangiocarcinoma: Thirty-one-year experience with 564 patients at a single institution. Ann. Surg. 2007, 245, 755–762. [Google Scholar] [CrossRef]
- Cillo, U.; Fondevila, C.; Donadon, M.; Gringeri, E.; Mocchegiani, F.; Schlitt, H.J.; Ijzermans, J.N.M.; Vivarelli, M.; Zieniewicz, K.; Olde Damink, S.W.M.; et al. Surgery for cholangiocarcinoma. Liver Int. 2019, 39 (Suppl. S1), 143–155. [Google Scholar] [CrossRef]
- Hu, H.J.; Wu, Z.R.; Jin, Y.W.; Ma, W.J.; Yang, Q.; Wang, J.K.; Liu, F.; Li, F.Y. Minimally invasive surgery for hilar cholangiocarcinoma: State of art and future perspectives. ANZ J. Surg. 2019, 89, 476–480. [Google Scholar] [CrossRef]
- Giulianotti, P.C.; Sbrana, F.; Bianco, F.M.; Addeo, P. Robot-assisted laparoscopic extended right hepatectomy with biliary reconstruction. J. Laparoendosc. Adv. Surg. Tech. A 2010, 20, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.; Patel, P.B.; Lacasia-Purroy, C.; Byrne, C.; Sturgess, R.P.; Palmer, D.; Fenwick, S.; Poston, G.J.; Malik, H.Z. Impact of specialized multi-disciplinary approach and an integrated pathway on outcomes in hilar cholangiocarcinoma. Eur. J. Surg. Oncol. 2014, 40, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Nickel, F.; Haney, C.M.; Kowalewski, K.F.; Probst, P.; Limen, E.F.; Kalkum, E.; Diener, M.K.; Strobel, O.; Muller-Stich, B.P.; Hackert, T. Laparoscopic Versus Open Pancreaticoduodenectomy: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Ann. Surg. 2020, 271, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.; Chen, M.T.; Fei, Y.T.; Du, S.D.; Mao, Y.L. Safety and efficacy for laparoscopic versus open hepatectomy: A meta-analysis. Surg. Oncol. 2018, 27, A26–A34. [Google Scholar] [CrossRef]
- Wang, M.; Qin, T.; Zhang, H.; Li, J.; Deng, X.; Zhang, Y.; Zhao, W.; Fan, Y.; Li, D.; Chen, X.; et al. Laparoscopic versus open surgery for perihilar cholangiocarcinoma: A multicenter propensity score analysis of short- term outcomes. BMC Cancer 2023, 23, 394. [Google Scholar] [CrossRef]
- He, Y.G.; Huang, W.; Ren, Q.; Li, J.; Yang, F.X.; Deng, C.L.; Li, L.Q.; Peng, X.H.; Tang, Y.C.; Zheng, L.; et al. Comparison of Efficacy and Safety Between Laparoscopic and Open Radical Resection for Hilar Cholangiocarcinoma-A Propensity Score-Matching Analysis. Front Oncol. 2022, 12, 1004974. [Google Scholar] [CrossRef]
- Yin, Y.; Tao, J.; Xian, Y.; Hu, J.; Li, Y.; Li, Q.; Xiong, Y.; He, Y.; He, K.; Li, J. Survival analysis of laparoscopic surgery and open surgery for hilar cholangiocarcinoma: A retrospective cohort study. World J. Surg. Oncol. 2024, 22, 58. [Google Scholar] [CrossRef]
- Berardi, G.; Lucarini, A.; Colasanti, M.; Mariano, G.; Ferretti, S.; Meniconi, R.L.; Guglielmo, N.; Angrisani, M.; Usai, S.; Borcea, M.C.; et al. Minimally Invasive Surgery for Perihilar Cholangiocarcinoma: A Systematic Review of the Short- and Long-Term Results. Cancers 2023, 15, 3048. [Google Scholar] [CrossRef]
- Ratti, F.; Fiorentini, G.; Cipriani, F.; Catena, M.; Paganelli, M.; Aldrighetti, L. Perihilar cholangiocarcinoma: Are we ready to step towards minimally invasiveness? Updates Surg. 2020, 72, 423–433. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, H.; Ji, W.; Tang, M.; Li, H.; Leng, J.; Meng, X.; Dong, J. Robotic radical resection for hilar cholangiocarcinoma: Perioperative and long-term outcomes of an initial series. Surg. Endosc. 2016, 30, 3060–3070. [Google Scholar] [CrossRef]
- Cillo, U.; D’Amico, F.E.; Furlanetto, A.; Perin, L.; Gringeri, E. Robotic hepatectomy and biliary reconstruction for perihilar cholangiocarcinoma: A pioneer western case series. Updates Surg. 2021, 73, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Magistri, P.; Pang, N.Q.; Guidetti, C.; Caracciolo, D.; Odorizzi, R.; Catellani, B.; Guerrini, G.P.; Di Sandro, S.; Di Benedetto, F. Robotic approach for perihilar cholangiocarcinoma: From Bismuth 1 to vascular resection. Eur. J. Surg. Oncol. 2023, 49, 107002. [Google Scholar] [CrossRef] [PubMed]
- Sucandy, I.; Marques, H.P.; Lippert, T.; Magistri, P.; Coelho, J.S.; Ross, S.B.; Chumbinho, B.; Di Sandro, S.; DiBenedetto, F. Clinical Outcomes of Robotic Resection for Perihilar Cholangiocarcinoma: A First, Multicenter, Trans-Atlantic, Expert-Center, Collaborative Study. Ann. Surg. Oncol. 2024, 31, 81–89. [Google Scholar] [CrossRef]
- Christodoulou, M.; Pattilachan, T.; Ross, S.B.; Rosemurgy, A.; Sucandy, I. A single institution’s experience with robotic resections of biliary tract cancers: An analysis of the short-term outcomes and long-term survival. J. Gastrointest. Surg. 2024, 28, 1498–1504. [Google Scholar] [CrossRef]
- Yu, H.; Wu, S.D.; Chen, D.X.; Zhu, G. Laparoscopic resection of Bismuth type I and II hilar cholangiocarcinoma: An audit of 14 cases from two institutions. Dig. Surg. 2011, 28, 44–49. [Google Scholar] [CrossRef]
- Orzan, R.I.; Santa, D.; Lorenzovici, N.; Zareczky, T.A.; Pojoga, C.; Agoston, R.; Dulf, E.H.; Seicean, A. Deep Learning in Endoscopic Ultrasound: A Breakthrough in Detecting Distal Cholangiocarcinoma. Cancers 2024, 16, 3792. [Google Scholar] [CrossRef]
Study | R0 Resection Rate % (Lap vs. Open) | EBL (mL) (Lap vs. Open) | LOS (Days) (Lap vs. Open) | Complication Rate (%) (Lap vs. Open) | Mortality (%) (Lap vs. Open) |
---|---|---|---|---|---|
Jin et al. (2018) [14] | Not specified | MD over open = −164.31 mL, 95%CI: −220.91 to −107.72, p < 0.0001, I2 = 98% | MD over open = −3.84 days, 95%CI: −5.05 to −2.63, p < 0.0001, I2 = 88% | RR over open = 0.29, 95%CI: 0.17–0.50, p < 0.0001, I2 = 0%, absolute 13 to 40 fewer | Not specified |
Wang et al. (2023) [15] | 85.1 (lap) vs. 87.6 (open), p = 0.36 | Median: 200 (lap) vs. 300 (open), p = 0.685 | 14.32 (lap) vs. 17.95 (open), p < 0.001 | 12.11 (lap) vs. 22.88 (open), p = 0.006 | 3.1 (lap) vs. 6.1 (open), p = 0.082 |
He et al. (2022) [16] | 93.7 (lap) vs. 87.5 (open), p = 0.86 | Median: 300 (lap) vs. 600 (open), p = 0.012 | Median: 11.5 (lap) vs. 14 (open), p = 0.254 | 12.5 (lap) vs. 21.8 (open), p = 0.695 | 1 (lap) vs. 0 (open), p = 0.721 |
Yin et al. (2024) [17] | 80 (lap) vs. 78.6 (open), p = 0.55 | 350 (lap) vs. 550 (open), p = 0.062 | 17 (lap) vs. 19 (open), p = 0.027 | 28 (lap) vs. 21 (open), p = 0.786 | 7 (lap) vs. 2 (open), p = 0.289 |
Berardi et al. (2023) [18] | 82.4 (lap) | Range: 101.1 ± 13.6 to 1360 ± 809 (lap) | Range: 5.9 ± 2.1 to 36.2 ± 9.5 days (lap) | 41.3% (minor), 12.7% (major) (lap) | Not specified |
Ratti et al. (2020) [19] | 81.3 (lap) vs. 53.1 (open) | 380 (lap) vs. 470 (open), p = 0.048 | 10 (lap) vs. 14 (open), p = 0.048 | 12.5 (lap) vs. 15.6 (open) | 0 (lap) vs. 0 (open) |
Study | R0 Resection Rate % (Rob vs. Open) | EBL (mL) (Rob vs. Open) | LOS (Days) (Rob vs. Open) | Complication Rate (%) (Rob vs. Open) | Mortality (%) (Rob vs. Open) |
---|---|---|---|---|---|
Xu et al. (2016) [20] | 70 (Rob) | 1360 (Rob) vs. 1014 (open) | 16 (Rob) vs. 14 (open) | 30 (Rob) vs. 16 (open) | 10 (Rob) vs. 6.3 (open) |
Cillo et al. (2021) [21] | 75 (Rob) | 700 (Rob) | 9 (Rob) | 0 (Rob) | Not specified |
Magistri et al. (2023) [22] | 92.9 (Rob) | 150 (range 50–800) (Rob) | 6 (range 3–91) (Rob) | 21.5 (Rob) | 0 (Rob) |
Sucandy et al. (2024) [23] | 82 (Rob) | 200 (Rob) | 6 (Rob) | 16 (Rob) | 2.6 (Rob) |
Christodoulou et al. (2024) [24] | 87 (Rob) | 200 (Rob) | 4 (Rob) | 19 (Rob) | 32 (Rob) |
Berardi et al. (2023) [18] | 72.6 (Rob) | Range: 150–1360 (Rob) | Range: 9–16 (Rob) | 12.9 (Rob) | 1.6 (Rob) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorovinis, P.; Machairas, N.; Terra, A.; Palios, I.; Kykalos, S.; Dimitroulis, D. Minimally Invasive Surgery for Perihilar Cholangiocarcinoma—A Review of the Current Literature. J. Clin. Med. 2025, 14, 3748. https://doi.org/10.3390/jcm14113748
Dorovinis P, Machairas N, Terra A, Palios I, Kykalos S, Dimitroulis D. Minimally Invasive Surgery for Perihilar Cholangiocarcinoma—A Review of the Current Literature. Journal of Clinical Medicine. 2025; 14(11):3748. https://doi.org/10.3390/jcm14113748
Chicago/Turabian StyleDorovinis, Panagiotis, Nikolaos Machairas, Alexios Terra, Ifaistion Palios, Stylianos Kykalos, and Dimitrios Dimitroulis. 2025. "Minimally Invasive Surgery for Perihilar Cholangiocarcinoma—A Review of the Current Literature" Journal of Clinical Medicine 14, no. 11: 3748. https://doi.org/10.3390/jcm14113748
APA StyleDorovinis, P., Machairas, N., Terra, A., Palios, I., Kykalos, S., & Dimitroulis, D. (2025). Minimally Invasive Surgery for Perihilar Cholangiocarcinoma—A Review of the Current Literature. Journal of Clinical Medicine, 14(11), 3748. https://doi.org/10.3390/jcm14113748