Correlation Between End-Tidal Carbon Dioxide and Regional Cerebral Oxygen Saturation During Cardiopulmonary Resuscitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Cardiopulmonary Resuscitation
2.3. Statistical Analysis
2.4. Confounding Variables
3. Results
Correlation Between rSO2 and ETCO2 Prior to ROSC
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AHA | American Heart Association |
ALS | Advanced life support |
CI | Confidence interval |
CPR | Cardiopulmonary resuscitation |
EEG | Electroencephalogram |
ETCO2 | End-tidal carbon dioxide |
IHCA | In-hospital cardiac arrest |
IQR | Interquartile range |
MOC-9 | Masimo Open Connect MOC-9 Module |
NaHCO3 | Sodium bicarbonate |
NIRS | Near-infrared spectroscopy |
OHCA | Out-of-hospital cardiac arrest |
PEA | Pulseless electrical activity |
pVT | Pulseless ventricular tachycardia |
ROSC | Return of spontaneous circulation |
rSO2 | Regional cerebral oxygen saturation |
RRT | Rapid Response Team |
SD | Standard deviation |
VF | Ventricular fibrillation |
References
- Wu, L.; Narasimhan, B.; Bhatia, K.; Ho, K.S.; Krittanawong, C.; Aronow, W.S.; Lam, P.; Virani, S.S.; Pamboukian, S.V. Temporal Trends in Characteristics and Outcomes Associated with In-Hospital Cardiac Arrest: A 20-Year Analysis (1999–2018). J. Am. Heart. Assoc. 2021, 10, e021572. [Google Scholar] [CrossRef] [PubMed]
- Gräsner, J.T.; Herlitz, J.; Tjelmeland, I.B.M.; Wnent, J.; Masterson, S.; Lilja, G.; Bein, B.; Böttiger, B.W.; Rosell-Ortiz, F.; Nolan, J.P.; et al. European Resuscitation Council Guidelines 2021: Epidemiology of cardiac arrest in Europe. Resuscitation 2021, 161, 61–79. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics—2019 Update: A Report From the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef]
- Soar, J.; Böttiger, B.W.; Carli, P.; Couper, K.; Deakin, C.D.; Djärv, T.; Lott, C.; Olasveengen, T.; Paal, P.; Pellis, T.; et al. European resuscitation council guidelines 2021: Adult advanced life support. Resuscitation 2021, 161, 115–151. [Google Scholar] [CrossRef] [PubMed]
- Sandroni, C.; De Santis, P.; D’Arrigo, S. Capnography during cardiac arrest. Resuscitation 2018, 132, 73–77. [Google Scholar] [CrossRef]
- Skulec, R.; Vojtisek, P.; Cerny, V. Correlation between end-tidal carbon dioxide and the degree of compression of heart cavities measured by transthoracic echocardiography during cardiopulmonary resuscitation for out-of-hospital cardiac arrest. Crit. Care 2019, 23, 334. [Google Scholar] [CrossRef] [PubMed]
- Lewis, L.M.; Stothert, J.; Standeven, J.; Chandel, B.; Kurtz, M.; Fortney, J. Correlation of end-tidal CO2 to cerebral perfusion during CPR. Ann. Emerg. Med. 1992, 21, 1131–1134. [Google Scholar] [CrossRef]
- Maconochie, I.K.; de Caen, A.R.; Aickin, R.; Atkins, D.L.; Biarent, D.; Guerguerian, A.M.; Kleinman, M.E.; Kloeck, D.A.; Meaney, P.A.; Nadkarni, V.M.; et al. Pediatric Basic Life Support and Pediatric Advanced Life Support Chapter Collaborators. Part 6: Pediatric basic life support and pediatric advanced life support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation 2015, 95, e147–e168. [Google Scholar]
- Perkins, G.D.; Graesner, J.T.; Semeraro, F.; Olasveengen, T.; Soar, J.; Lott, C.; Van de Voorde, P.; Madar, J.; Zideman, D.; Mentzelopoulos, S.; et al. European Resuscitation Council Guideline Collaborators. European Resuscitation Council Guidelines for Resuscitation 2021: Section 1. Executive summary. Resuscitation 2021, 95, 1–80. [Google Scholar] [CrossRef]
- Touma, O.; Davies, M. The prognostic value of end tidal carbon dioxide during cardiac arrest: A systematic review. Resuscitation 2013, 84, 1470–1479. [Google Scholar] [CrossRef]
- Takegawa, R.; Hayashida, K.; Rolston, D.M.; Li, T.; Miyara, S.J.; Ohnishi, M.; Shiozaki, T.; Becker, L.B. Near-infrared spectroscopy assessments of regional cerebral oxygen saturation for the prediction of clinical outcomes in patients with cardiac arrest: A review of clinical impact, evolution, and future directions. Front. Med. 2020, 7, 587–930. [Google Scholar] [CrossRef] [PubMed]
- Schnaubelt, S.; Sulzgruber, P.; Menger, J.; Skhirtladze-Dworschak, K.; Sterz, F.; Dworschak, M. Regional cerebral oxygen saturation during cardiopulmonary resuscitation as a predictor of return of spontaneous circulation and favourable neurological outcome–a review of the current literature. Resuscitation 2018, 125, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Nolan, J.P.; Berg, R.A.; Andersen, L.W.; Bhanji, F.; Chan, P.S.; Donnino, M.W.; Lim, S.H.; Ma, M.H.; Nadkarni, V.M.; Starks, M.A.; et al. Cardiac Arrest and Cardiopulmonary Resuscitation Outcome Reports: Update of the Utstein Resuscitation Registry Template for In-Hospital Cardiac Arrest: A Consensus Report From a Task Force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia). Circulation 2019, 140, e746–e757. [Google Scholar]
- Okamoto, H.; Hoka, S.; Kawasaki, T.; Okuyama, T.; Takahashi, S. Changes in end-tidal carbon dioxide tension following sodium bicarbonate administration: Correlation with cardiac output and haemoglobin concentration. Acta Anaesthesiol. Scand. 1995, 39, 79–84. [Google Scholar] [CrossRef]
- Lim, S.L.; Myint, M.Z.; Woo, K.L.; Chee, E.Y.H.; Hong, C.S.; Beqiri, E.; Smielewski, P.; Ong, M.E.; Sharma, V.K. Multi-Modal Assessment of Cerebral Hemodynamics in Resuscitated Out-of-Hospital Cardiac Arrest Patients: A Case-Series. Life 2024, 14, 1067. [Google Scholar] [CrossRef] [PubMed]
- Weil, M.H.; Bisera, J.; Trevino, R.P.; Rackow, E.C. Cardiac output and end-tidal carbon dioxide. Crit. Care Med. 1985, 13, 907–909. [Google Scholar] [CrossRef]
- Sanders, A.B.; Atlas, M.; Ewy, G.A.; Kern, K.B.; Bragg, S. Expired PCO2 as an index of coronary perfusion pressure. Am. J. Emerg. Med. 1985, 3, 147–149. [Google Scholar] [CrossRef]
- Meaney, P.A.; Bobrow, B.J.; Mancini, M.E.; Christenson, J.; de Caen, A.R.; Bhanji, F.; Abella, B.S.; Kleinman, M.E.; Edelson, D.P.; Berg, R.A.; et al. CPR Quality Summit Investigators, the American Heart Association Emergency Cardiovascular Care Committee, and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation. Cardiopulmonary resuscitation quality: [corrected] improving cardiac resuscitation outcomes both inside and outside the hospital: A consensus statement from the American Heart Association. Circulation 2013, 128, 417–435. [Google Scholar]
- Marimón, G.A.; Dockery, W.K.; Sheridan, M.J.; Agarwal, S. Near-infrared spectroscopy cerebral and somatic (renal) oxygen saturation correlation to continuous venous oxygen saturation via intravenous oximetry catheter. J. Crit. Care 2011, 26, 202–208. [Google Scholar] [CrossRef]
- Sung, T.Y.; Kang, W.S.; Han, S.J.; Kim, J.S.; Chee, H.K.; Shin, J.K.; Kim, S.H. Does near-infrared spectroscopy provide an early warning of low haematocrit following the initiation of hypothermic cardiopulmonary bypass in cardiac surgery? J. Int. Med. Res 2011, 39, 1497–1503. [Google Scholar] [CrossRef]
- Calderon-Arnulphi, M.; Alaraj, A.; Slavin, K.V. Near infrared technology in neuroscience: Past, present and future. Neurol. Res. 2009, 31, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Pedrini, L.; Magnoni, F.; Sensi, L.; Pisano, E.; Ballestrazzi, M.S.; Cirelli, M.R.; Pilato, A. Is Near-Infrared Spectroscopy a Reliable Method to Evaluate Clamping Ischemia during Carotid Surgery? Stroke Res. Treat. 2012, 2012, 156975. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Tsukuda, J.; Onoe, R.; Morisawa, K.; Yoshida, T.; Hayashi, K.; Fujitani, S. Association between regional cerebral oxygen saturation and outcome of patients with out-of-hospital cardiac arrest: An observational study. Resusc. Plus 2023, 13, 100343. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Walker, R.; Blackwood, J.; Chapman, F.; Crackel, J.; Kudenchuk, P.; Rea, T. Cerebral Oximetry during Out-of-Hospital Resuscitation: Pilot Study of First Responder Implementation. Prehosp. Emerg. Care 2022, 26, 519–523. [Google Scholar] [CrossRef]
- Wiest, C.; Philipp, A.; Foltan, M.; Lunz, D.; Merten, C.; Blecha, S.; Seyfried, T.; Geismann, F.; Schneckenpointner, R.; Müller, T.; et al. Does cerebral near-infrared spectroscopy (NIRS) help to predict futile cannulation in extracorporeal cardiopulmonary resuscitation (ECPR)? Resuscitation 2021, 168, 186–190. [Google Scholar] [CrossRef]
- Al-Subu, A.M.; Hacker, T.A.; Eickhoff, J.C.; Ofori-Amanfo, G.; Eldridge, M.W. Two-site regional oxygen saturation and capnography monitoring during resuscitation after cardiac arrest in a swine pediatric ventricular fibrillatory arrest model. J. Clin. Monit. Comput. 2020, 34, 63–70. [Google Scholar] [CrossRef]
- Kämäräinen, A.; Sainio, M.; Olkkola, K.T.; Huhtala, H.; Tenhunen, J.; Hoppu, S. Quality controlled manual chest compressions and cerebral oxygenation during in-hospital cardiac arrest. Resuscitation 2012, 83, 138–142. [Google Scholar] [CrossRef]
- Huppert, E.L.; Parnia, S. Cerebral oximetry: A developing tool for monitoring cerebral oxygenation during cardiopulmonary resuscitation. Ann. N. Y. Acad. Sci. 2022, 1509, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Shellen, S.; Parnia, S.; Huppert, E.L.; Gonzales, A.M.; Pollard, K. Integrating rSO2 and EEG monitoring in cardiopulmonary resuscitation: A novel methodology. Resusc. Plus 2024, 18, 100644. [Google Scholar] [CrossRef]
- Deakin, C.D.; Yang, J.; Nguyen, R.; Zhu, J.; Brett, S.J.; Nolan, J.P.; Perkins, G.D.; Pogson, D.G.; Parnia, S. Effects of epinephrine on cerebral oxygenation during cardiopulmonary resuscitation: A prospective cohort study. Resuscitation 2016, 109, 138–144. [Google Scholar] [CrossRef]
Variables | IHCA (n = 104) | ||
---|---|---|---|
Non-ROSC (n = 50) | ROSC (n = 54) | ||
Sex | Male (%) | 34 (68%) | 32 (59%) |
Age (years) | Me (IQR) | 69 (62; 75) | 70 (63; 75) |
<65 (years) | 17 (34%) | 15 (28%) | |
≥65 (years) | 33 (66%) | 39 (72%) | |
Duration of resuscitation (min) | Me (IQR) | 25 (21; 30) | 15 (10; 20) |
Min | 15 | 5 | |
Max | 40 | 31 | |
rSO2 (%) | M (SD) | 35.6 (5.6) | 63.8 (7.4) |
Min | 19 | 38 | |
Max | 56 | 84 | |
ETCO2 (mmHg) | M (SD) | 17 (4.8) | 26 (4.9) |
Min | 4 | 11 | |
Max | 40 | 64 | |
Initial rhythm | Asystole (%) | 20 (40%) | 13 (24%) |
PEA (%) | 24 (48%) | 30 (56%) | |
VF (%) | 5 (10%) | 7 (13%) | |
pVT (%) | 1 (2%) | 4 (7%) |
ROSC n = 54 | |||||
---|---|---|---|---|---|
Variable | M4 (SD) | M3 (SD) | M2 (SD) | M1 (SD) | p for Post Hoc Test |
rSO2 (%) | 64.6 (6.9) | 65.8 (6.4) | 68 (6.3) | 70.4 (5.6) | M4–M3 p < 0.001 M3–M2 p < 0.001 M2–M1 p = 0.003 |
ETCO2 (mmHg) | 26.2 (4.6) | 28.2 (5.4) | 28.8 (5.8) | 32.2 (5.1) | M4–M3 p < 0.001 M3–M2 p = 1.000 M2–M1 p < 0.001 |
Group | Parameter | M4 (Mean ± SD) | M3 | M2 | M1 | ΔM4–M1 | Pearson r |
---|---|---|---|---|---|---|---|
ROSC (n = 54) | rSO2 (%) | 64.6 ± 6.9 | 65.8 | 68.0 | 70.4 | +5.8 | 0.873 |
ETCO2 (mmHg) | 26.2 ± 4.6 | 28.2 | 28.8 | 32.2 | +6.0 | 0.873 | |
non-ROSC (n = 50) | rSO2 (%) | 34.7 ± 5.2 | 34.9 | 35.2 | 35.3 | +0.6 | 0.317 |
ETCO2 (mmHg) | 16.3 ± 4.1 | 16.5 | 16.6 | 16.8 | +0.5 | 0.317 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Putowski, M.; Dudzikowska, M.; Wieczorek, W.; Pruc, M.; Szarpak, L.; Siudak, Z. Correlation Between End-Tidal Carbon Dioxide and Regional Cerebral Oxygen Saturation During Cardiopulmonary Resuscitation. J. Clin. Med. 2025, 14, 3747. https://doi.org/10.3390/jcm14113747
Putowski M, Dudzikowska M, Wieczorek W, Pruc M, Szarpak L, Siudak Z. Correlation Between End-Tidal Carbon Dioxide and Regional Cerebral Oxygen Saturation During Cardiopulmonary Resuscitation. Journal of Clinical Medicine. 2025; 14(11):3747. https://doi.org/10.3390/jcm14113747
Chicago/Turabian StylePutowski, Mateusz, Magdalena Dudzikowska, Wojciech Wieczorek, Michal Pruc, Lukasz Szarpak, and Zbigniew Siudak. 2025. "Correlation Between End-Tidal Carbon Dioxide and Regional Cerebral Oxygen Saturation During Cardiopulmonary Resuscitation" Journal of Clinical Medicine 14, no. 11: 3747. https://doi.org/10.3390/jcm14113747
APA StylePutowski, M., Dudzikowska, M., Wieczorek, W., Pruc, M., Szarpak, L., & Siudak, Z. (2025). Correlation Between End-Tidal Carbon Dioxide and Regional Cerebral Oxygen Saturation During Cardiopulmonary Resuscitation. Journal of Clinical Medicine, 14(11), 3747. https://doi.org/10.3390/jcm14113747