Effects of Equine-Assisted Therapy: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Eligibility Criteria
Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Methodological Quality Assessment of Research Articles
2.5. Statistical Analysis
3. Results
Studies | Randomized Total (IG/CG) | Age (Years) Mean ± SD | Gender N (%) | Classification | Intervention/Control Details | Study Duration | Intervention/ Control | Outcomes |
---|---|---|---|---|---|---|---|---|
Randomized CP studies | GMFCS | |||||||
Lucena-Anton (2018) [25] | 44 (22/22) | IG: 9.5 ± 2.74 CG: 8227 ± 2.42 | IG: 13M 9F CG: 15 M 7F | IV–V | IG: 45 min/week CG: 2 sessions/week | 12 weeks | EAT/Conventional therapy | MAS |
Matusiak-Wieczorek (2020) [26] | 45 (15/15/15) | IG: 7.93 ± 2.6 IG: 7.6 ± 1.84 CG: 8.13 ± 2.56 | IG: 9M 6F IG: 8M 7F CG: 8M 7F | I–II | IG: 30 min/twice a week IG: 30 min/week CG: - | 12 weeks | EAT/EAT/Not received EAT | SAS |
Mutoh (2019) [27] | 24 (12/12) | IG: 8 ± 3 CG: 9 ± 3 | IG: 5M (42) CG: 6M (50) IG: 7F (58) CG: 6F (50) | II–III | IG: 30 min/week CG:weekly recreation program Follow-up: 3 month | 1 year | EAT/Recreation program | 5 MWT WHOQOL-BREF GMFM-66 |
Deutz (2018) [28] | 73 (35/38) | IG: 9.29 ± 3.7 CG: 8.87 ± 2.9 | IG: 23M 12F CG: 21M 17F | II–IV | IG: once–twice/week CG: once–twice/week | 32–36 weeks | 35 early treatment/ 38 late treatment | GMFM-66 CHQ-28 KIDSCREEN-27 parental versions |
Kwon (2015) [29] | 91 (45/46) | IG: 5.7 ± 1.9 CG: 5.9 ± 1.8 | IG: 20M (44) CG: 29M (63) IG: 25F (56) CG: 17F (37) | I–IV | IG: 30 min/twice a week CG: 30 min/twice a week | 8 weeks | EAT/Home-based aerobic exercise (walking or cycling) | GMFM-88 PBS |
Davis et al. (2009) [30] | 99 (50/49) | IG: 7.7 ± 2.4 CG: 8.2 ± 2.5 | IG: 26M (52) CG: 27M (55.1) IG: 24 (48) CG: 22 (44.9) | I–III | IG: 30–40 min/week CG: normal daily/weekly routines | 10 weeks | EAT/Usual activities | Cerebral Palsy Quality of Life Questionnaire for Children GMFM-66 KIDSCREEN CHQ-28 |
Kang (2012) [31] | 43 (14/15/14) | IG: 8.2 ± 1.1 PTG: 8.2 ± 1.1 CG: 7.8 ± 1.5 | IG: 7M 7F PTG: 8M 7F CG: 7M 7F | Not Reported | IG: 30 min/semi-weekly PTG: 30 min/semi-weekly CG: - | 8 weeks | EAT/Physiotherapy/No treatment | Force plate (PMD Multifunction Force Measuring Plate; Zebris, Gemany, 2004) |
Benda et al. (2003) [32] | 15 (7/8) | 4–12 years | Not Reported | Not Reported | IG: 8 min CG: 8 min | 1 session | EAT/Stationary Barel | electromyography |
Non-Randomized CP studies | ||||||||
Kwon (2011) [33] | 32 (16/16) | IG: 6.4 ± 1.7 CG: 6.1 ± 1.7 | IG: 11M 5F CG: 10M 6F | I–II | IG: 30 min/twice a week CG: 30 min/twice a week | 8 weeks | EAT/Neurodevelopmental therapy | Gait Analysis (Vicon 612 Motion Analysis System) GMFM-88 PBS |
Park (2014) [34] | 55 (34/21) | IG: 6.68 ± 2.64 CG: 7.76 ± 3.67 | IG: 15M 19F CG: 10M 11F | I–IV | IG: 45 min/twice a week CG: 30 min/week | 8 weeks | EAT/Outpatient physical and occupational therapy | GMFM-66 GMFM-88 PEDI-FSS |
Matusiak-Wieczorek (2016) [35] | 39 (19/20) | IG: 8.42 ± 2.24 CG: 8.3 ± 2.62 | IG: 10M 9F CG: 11M 9F | I–II | IG: 30 min/week CG: - | 12 weeks | EAT/Usual activities of daily living and attended different forms of rehabilitation | SAS |
Alemdaroglu (2016) [36] | 16 (9/7) | Total: 7.5 ± 1.7 | 9 M (56) 7 F (44) | I–V | IG: 2 times 30 min/week CG: 5 days/week | 5 weeks | EAT/Conventional rehabilitation program | (MFRT) Goniometric measurement of hip abduction AS |
MacKinnon (1995) [37] | 19 (10/9) | Total: 6.5 ± 6.5 | IG: 3M 7F CG: 6M 3F | mild and moderate | IG: 60 min/once a week CG: - | 26 weeks | EAT/waiting list | GMFM Bertoti scale PDMS Bruininks–Oseretsky test of motor proficiency Vineland Adaptive Behaviour Scale Harters Self-Perception Scale CBC |
Baik (2014) [38] | 16 (8/8) | IG: 12.2 ± 3.6 CG: 8.12 ± 2.58 | Not Reported | Not Reported | IG: 60 min/twice a week CG: not reported | 12 weeks | EAT/Rehabilitation | MAS Passive goniometer measure ROM |
Randomized Elderly studies | ||||||||
White-Lewis (2019) [39] | 20 (10/10) | IG: 61.9 ± 6.05 CG: 65.80 ± 7.42 | IG: 4M (40) CG: 0M (0) IG: 6F (60) CG: 10F (100) | IG: 60 min/week CG: 60 min/week | 6 weeks | EAT/Exercice Education | hand-held goniometer measure ROM VAS Likert Scale AIMS 2 | |
Diniz (2020) [40] | 30 (15/15) | IG: 66.07 ± 5.8 CG: 68.47 ± 5.85 | IG: 4M 11F CG: 2M 13F | IG: 30 min/week CG: - | 10 weeks | EAT/Daily activities without physiotherapy | BBS TUG FRT Sit-and-Reach Test | |
Araujo (2013) [41] | 28 (12/16) | IG: 65.59 ± 6.5 CG: 65.81 ± 6.6 | IG: 4M 8F CG: 2M 14F | IG: 30 min/twice a week CG: - | 8 weeks | ΕAΤ/Daily activities without physiotherapy | TUG 30 CST BBS | |
Kim (2014) [42] | 22 (11/11) | IG: 70.3 ± 3.4 CG: 68.5 ± 3.2 | IG: 5M 6F CG: 7M 4F | IG: 20 min/three times/week CG: 20 min/three times/week | 8 weeks | ΕAΤ/Treadmill | BPM Force platform (5.3, SMS Health care Inc., UK) | |
Non Randomized Elderly studies | ||||||||
Homnick (2015) [43] | 15 (9/6) | IG: 70.1 CG: 69.3 | IG: 2M 7F CG: 3M 3F | IG: 45 min/week CG: - | 10 weeks | ΕAΤ/Usual activities | BBS FABS | |
Araujo (2011) [44] | 17 (7/10) | 60–84 | IG: 2M 5F CG: 0M 10F | IG: 30 min/twice a week CG: - | 8 weeks | ΕAΤ/Controls | A Stabilometer (AMTI AccuSway Plus using Balance Clinic software) TUG | |
Randomized MS studies | Pattern of MS | |||||||
Vermöhlen (2018) [45] | 67 (30/37) | IG: 50 CG: 51 | IG: 3M (10) CG: 10M (27) IG: 27F (90) CG: 27F (73) | Reported 2 RR | IG: once/week CG: - | 12 weeks | EAT/Continued previous therapy | BBS FSS MSQoL-54 VAS NRS |
Moraes (2020) [46] | 33 (17/16) | IG: 45.5 ± 9.7 CG: 44.8 ± 8.8 | IG: 1M 16F CG: 1M 15F | RR | IG: 30 min/twice a week CG: - | 8 weeks | EAT/ Maintained therapeutic routine | T25FW 6 MWT |
Non Randomized MS studies | ||||||||
Silkwood-Sherer (2007) [47] | 15 (9/6) | IG: 42.4 ± 14.2 CG: 47.7 ± 9.3 | IG: 4M 5F CG: 2M 4F | 8 RR 4 PR | IG: 40 min/week CG: not reported | 14 weeks | EAT/Controls | BBS POMA |
Munoz-Lasa (2011) [48] | 27 (12/15) | IG: 45.8 CG: 46.2 | IG: 5M 7F CG: 6M 9F | 14 RR 9 SP 4 PP | IG: 30–40 min/week CG: 30–40 min/week | 10 weeks- 4 weeks resting period-10 weeks | EAT/Physiotherapy | POMA Barthel Index |
Randomized Stroke studies | ||||||||
Bunketorp-Kall (2017) [49] | 82 (41/41) | IG: 62.6 ± 6.5 CG: 63.7 ± 6.7 | IG: 24M (58.5) CG: 22M (53.7) IG: 17F (41.5) CG: 19F (46.3) | IG: 2 sessions/week CG: - Follow-up: 6 months | 12 weeks | EAT/Controls | SIS (version 2.0) TUG BBS BDL-BS Grippit Barrow Neurological Institute screen for higher cerebral functions Letter–number sequencing test | |
Bunketorp-Kall (2019) [50] | 82 (41/41) | IG: 62.6 ± 6.5 CG: 63.7 ± 6.7 | IG: 24M (58.5) CG: 22M (53.7) IG: 17F (41.5) CG: 19F (46.3). | IG: 2 sessions/week CG: - Follow-up: 6 months | 12 weeks | EAT/Controls | 10 MWT 6 MWT M-MAS | |
Non Randomized Stroke studies | ||||||||
Beinotti (2010) [51] | 20 (10/10) | IG: 59 CG: 52 | IG: 8M 2F CG: 6M 4F | IG: hippotherapy once/week + conventional therapy twice/week CG: 3 times/week Follow-up: 6 months | 16 weeks | EAT/Conventional treatment | Functional Ambulation Category Scale Fugl–Meyer Scale BBS Cadence |
3.1. Quality Assessment
3.1.1. Cerebral Palsy
3.1.2. Elderly Individuals
3.1.3. Multiple Sclerosis (MS)
3.1.4. Stroke
3.2. Meta-Analysis
3.2.1. Berg Balance Scale (BBS) and Pediatric Balance Scale (PBS)
3.2.2. Time up and Go (TUG)
3.2.3. Gross Motor Function Measure (GMFM)
3.2.4. Tinetti Performance Oriented Mobility Assessment (POMA)
3.2.5. Child Health Questionnaire (CHQ)28—Physical Domain
4. Discussion
4.1. Impact of EAT on Specific Populations
4.1.1. Cerebral Palsy
4.1.2. Elderly Individuals
4.1.3. Multiple Sclerosis
4.1.4. Stroke
4.1.5. Methodological Considerations
4.2. Clinical Implications
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BBS | Berg Balance Scale |
CHQ | Child Health Questionnaire |
CP | Cerebral Palsy |
EAT | Equine-Assisted Therapy |
GMFM | Gross Motor Function Measure |
MS | Multiple Sclerosis |
PBS | Pediatric Balance Scale |
POMA | Performance Oriented Mobility Assessment |
TUG | Time up and Go test |
References
- Meregillano, G. Hippotherapy. Phys. Med. Rehabil. Clin. N. Am. 2004, 15, 843–854, vii. [Google Scholar] [CrossRef] [PubMed]
- Stergiou, A.; Tzoufi, M.; Ntzani, E.; Varvarousis, D.; Beris, A.; Ploumis, A. Therapeutic Effects of Horseback Riding Interventions: A Systematic Review and Meta-analysis. Am. J. Phys. Med. Rehabil. 2017, 96, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Mattila-Rautiainen, S.; Brennan, R.; Emond, N.; Horne, V.; Volpe, G.; Arrieta, K.; Stergiou, A. A prospective International Study of Terminology in human-equine interactions—Preliminary results. HETI J. Int. Res. Pract. 2023, 22, 28–42. [Google Scholar] [CrossRef]
- Krivickas, L.S. Exercise in neuromuscular disease. J. Clin. Neuromuscul. Dis. 2003, 5, 29–39. [Google Scholar] [CrossRef]
- Encheff, J.L.; Armstrong, C.; Masterson, M.; Fox, C.; Gribble, P. Hippotherapy effects on trunk, pelvic, and hip motion during ambulation in children with neurological impairments. Pediatr. Phys. Ther. 2012, 24, 242–250. [Google Scholar] [CrossRef]
- Janura, M.; Peham, C.; Dvorakova, T.; Elfmark, M. An assessment of the pressure distribution exerted by a rider on the back of a horse during hippotherapy. Hum. Mov. Sci. 2009, 28, 387–393. [Google Scholar] [CrossRef]
- Hyun, C.; Kim, K.; Lee, S.; Ko, N.; Lee, I.S.; Koh, S.E. The Short-term Effects of Hippotherapy and Therapeutic Horseback Riding on Spasticity in Children with Cerebral Palsy: A Meta-analysis. Pediatr. Phys. Ther. 2022, 34, 172–178. [Google Scholar] [CrossRef]
- Prieto, A.; Martins Almeida Ayupe, K.; Nemetala Gomes, L.; Saude, A.C.; Gutierres Filho, P. Effects of equine-assisted therapy on the functionality of individuals with disabilities: Systematic review and meta-analysis. Physiother. Theory Pract. 2022, 38, 1091–1106. [Google Scholar] [CrossRef]
- Guindos-Sanchez, L.; Lucena-Anton, D.; Moral-Munoz, J.A.; Salazar, A.; Carmona-Barrientos, I. The Effectiveness of Hippotherapy to Recover Gross Motor Function in Children with Cerebral Palsy: A Systematic Review and Meta-Analysis. Children 2020, 7, 106. [Google Scholar] [CrossRef]
- Suarez-Iglesias, D.; Bidaurrazaga-Letona, I.; Sanchez-Lastra, M.A.; Gil, S.M.; Ayan, C. Effectiveness of equine-assisted therapies for improving health outcomes in people with multiple sclerosis: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2021, 55, 103161. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Downs, S.H.; Black, N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- La Porta, F.; Caselli, S.; Susassi, S.; Cavallini, P.; Tennant, A.; Franceschini, M. Is the Berg Balance Scale an internally valid and reliable measure of balance across different etiologies in neurorehabilitation? A revisited Rasch analysis study. Arch. Phys. Med. Rehabil. 2012, 93, 1209–1216. [Google Scholar] [CrossRef]
- Franjoine, M.R.; Gunther, J.S.; Taylor, M.J. Pediatric balance scale: A modified version of the berg balance scale for the school-age child with mild to moderate motor impairment. Pediatr. Phys. Ther. 2003, 15, 114–128. [Google Scholar] [CrossRef]
- Russell, D.J.; Rosenbaum, P.L.; Cadman, D.T.; Gowland, C.; Hardy, S.; Jarvis, S. The gross motor function measure: A means to evaluate the effects of physical therapy. Dev. Med. Child. Neurol. 1989, 31, 341–352. [Google Scholar] [CrossRef]
- Sebastiao, E.; Sandroff, B.M.; Learmonth, Y.C.; Motl, R.W. Validity of the Timed Up and Go Test as a Measure of Functional Mobility in Persons with Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2016, 97, 1072–1077. [Google Scholar] [CrossRef]
- Tinetti, M.E.; Williams, T.F.; Mayewski, R. Fall risk index for elderly patients based on number of chronic disabilities. Am. J. Med. 1986, 80, 429–434. [Google Scholar] [CrossRef]
- Landgraf, J.; Abetz, L.; Ware, J. Child Health Questionnaire (CHQ): A User’s Manual; Health Act: Boston, MA, USA, 1999. [Google Scholar]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Hardy, R.J.; Thompson, S.G. Detecting and describing heterogeneity in meta-analysis. Stat. Med. 1998, 17, 841–856. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef]
- Lucena-Anton, D.; Rosety-Rodriguez, I.; Moral-Munoz, J.A. Effects of a hippotherapy intervention on muscle spasticity in children with cerebral palsy: A randomized controlled trial. Complement. Ther. Clin. Pract. 2018, 31, 188–192. [Google Scholar] [CrossRef]
- Matusiak-Wieczorek, E.; Dziankowska-Zaborszczyk, E.; Synder, M.; Borowski, A. The Influence of Hippotherapy on the Body Posture in a Sitting Position among Children with Cerebral Palsy. Int. J. Environ. Res. Public. Health 2020, 17. [Google Scholar] [CrossRef]
- Mutoh, T.; Mutoh, T.; Tsubone, H.; Takada, M.; Doumura, M.; Ihara, M.; Shimomura, H.; Taki, Y.; Ihara, M. Impact of Long-Term Hippotherapy on the Walking Ability of Children with Cerebral Palsy and Quality of Life of Their Caregivers. Front. Neurol. 2019, 10, 834. [Google Scholar] [CrossRef]
- Deutz, U.; Heussen, N.; Weigt-Usinger, K.; Leiz, S.; Raabe, C.; Polster, T.; Daniela, S.; Moll, C.; Lucke, T.; Krageloh-Mann, I.; et al. Impact of Hippotherapy on Gross Motor Function and Quality of Life in Children with Bilateral Cerebral Palsy: A Randomized Open-Label Crossover Study. Neuropediatrics 2018, 49, 185–192. [Google Scholar] [CrossRef]
- Kwon, J.Y.; Chang, H.J.; Yi, S.H.; Lee, J.Y.; Shin, H.Y.; Kim, Y.H. Effect of hippotherapy on gross motor function in children with cerebral palsy: A randomized controlled trial. J. Altern. Complement. Med. 2015, 21, 15–21. [Google Scholar] [CrossRef]
- Davis, E.; Davies, B.; Wolfe, R.; Raadsveld, R.; Heine, B.; Thomason, P.; Dobson, F.; Graham, H.K. A randomized controlled trial of the impact of therapeutic horse riding on the quality of life, health, and function of children with cerebral palsy. Dev. Med. Child. Neurol. 2009, 51, 111–119; discussion 188. [Google Scholar] [CrossRef]
- Kang, H.; Jung, J.; Yu, J. Effects of Hippotherapy on the Sitting Balance of Children with Cerebral Palsy: A Randomized Control Trial. J. Phys. Ther. Sci. 2012, 24, 833–836. [Google Scholar] [CrossRef]
- Benda, W.; McGibbon, N.H.; Grant, K.L. Improvements in muscle symmetry in children with cerebral palsy after equine-assisted therapy (hippotherapy). J. Altern. Complement. Med. 2003, 9, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.Y.; Chang, H.J.; Lee, J.Y.; Ha, Y.; Lee, P.K.; Kim, Y.H. Effects of hippotherapy on gait parameters in children with bilateral spastic cerebral palsy. Arch. Phys. Med. Rehabil. 2011, 92, 774–779. [Google Scholar] [CrossRef] [PubMed]
- Park, E.S.; Rha, D.W.; Shin, J.S.; Kim, S.; Jung, S. Effects of hippotherapy on gross motor function and functional performance of children with cerebral palsy. Yonsei Med. J. 2014, 55, 1736–1742. [Google Scholar] [CrossRef] [PubMed]
- Matusiak-Wieczorek, E.; Malachowska-Sobieska, M.; Synder, M. Influence of Hippotherapy on Body Balance in the Sitting Position Among Children with Cerebral Palsy. Ortop. Traumatol. Rehabil. 2016, 18, 165–175. [Google Scholar] [CrossRef]
- Alemdaroglu, E.; Yanikoglu, I.; Oken, O.; Ucan, H.; Ersoz, M.; Koseoglu, B.F.; Kapicioglu, M.I. Horseback riding therapy in addition to conventional rehabilitation program decreases spasticity in children with cerebral palsy: A small sample study. Complement. Ther. Clin. Pract. 2016, 23, 26–29. [Google Scholar] [CrossRef]
- Mackinnon, J.R.; Noh, S.; Lariviere, J.; Macphail, A.; Allan, D.E.; Laliberte, D. A study of therapeutic effects of horseback riding for children with cerebral palsy. Phys. Occup. Ther. Pediatr. 1995, 15, 17–34. [Google Scholar] [CrossRef]
- Baik, K.; Byeun, J.K.; Baek, J.K. The effects of horseback riding participation on the muscle tone and range of motion for children with spastic cerebral palsy. J. Exerc. Rehabil. 2014, 10, 265–270. [Google Scholar] [CrossRef]
- White-Lewis, S.; Johnson, R.; Ye, S.; Russell, C. An equine-assisted therapy intervention to improve pain, range of motion, and quality of life in adults and older adults with arthritis: A randomized controlled trial. Appl. Nurs. Res. 2019, 49, 5–12. [Google Scholar] [CrossRef]
- Diniz, L.H.; de Mello, E.C.; Ribeiro, M.F.; Lage, J.B.; Bevilacqua Junior, D.E.; Ferreira, A.A.; Ferraz, M.; Rosa, R.C.; Teixeira, V.P.A.; Espindula, A.P. Impact of hippotherapy for balance improvement and flexibility in elderly people. J. Bodyw. Mov. Ther. 2020, 24, 92–97. [Google Scholar] [CrossRef]
- de Araujo, T.B.; de Oliveira, R.J.; Martins, W.R.; de Moura Pereira, M.; Copetti, F.; Safons, M.P. Effects of hippotherapy on mobility, strength and balance in elderly. Arch. Gerontol. Geriatr. 2013, 56, 478–481. [Google Scholar] [CrossRef]
- Kim, S.G.; Lee, C.W. The effects of hippotherapy on elderly persons’ static balance and gait. J. Phys. Ther. Sci. 2014, 26, 25–27. [Google Scholar] [CrossRef] [PubMed]
- Homnick, T.D.; Henning, K.M.; Swain, C.V.; Homnick, D.N. The effect of therapeutic horseback riding on balance in community-dwelling older adults: A pilot study. J. Appl. Gerontol. 2015, 34, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Araujo, T.B.; Silva, N.A.; Costa, J.N.; Pereira, M.M.; Safons, M.P. Effect of equine-assisted therapy on the postural balance of the elderly. Rev. Bras. Fisioter. 2011, 15, 414–419. [Google Scholar] [CrossRef]
- Vermohlen, V.; Schiller, P.; Schickendantz, S.; Drache, M.; Hussack, S.; Gerber-Grote, A.; Pohlau, D. Hippotherapy for patients with multiple sclerosis: A multicenter randomized controlled trial (MS-HIPPO). Mult. Scler. 2018, 24, 1375–1382. [Google Scholar] [CrossRef]
- Moraes, A.G.; Neri, S.G.R.; Motl, R.W.; Tauil, C.B.; Glehn, F.V.; Correa, E.C.; de David, A.C. Effect of hippotherapy on walking performance and gait parameters in people with multiple sclerosis. Mult. Scler. Relat. Disord. 2020, 43, 102203. [Google Scholar] [CrossRef]
- Silkwood-Sherer, D.; Warmbier, H. Effects of hippotherapy on postural stability, in persons with multiple sclerosis: A pilot study. J. Neurol. Phys. Ther. 2007, 31, 77–84. [Google Scholar] [CrossRef]
- Munoz-Lasa, S.; Ferriero, G.; Valero, R.; Gomez-Muniz, F.; Rabini, A.; Varela, E. Effect of therapeutic horseback riding on balance and gait of people with multiple sclerosis. G Ital. Med. Lav. Ergon. 2011, 33, 462–467. [Google Scholar]
- Bunketorp-Kall, L.; Lundgren-Nilsson, A.; Samuelsson, H.; Pekny, T.; Blomve, K.; Pekna, M.; Pekny, M.; Blomstrand, C.; Nilsson, M. Long-Term Improvements After Multimodal Rehabilitation in Late Phase After Stroke: A Randomized Controlled Trial. Stroke 2017, 48, 1916–1924. [Google Scholar] [CrossRef]
- Bunketorp-Kall, L.; Pekna, M.; Pekny, M.; Blomstrand, C.; Nilsson, M. Effects of horse-riding therapy and rhythm and music-based therapy on functional mobility in late phase after stroke. NeuroRehabilitation 2019, 45, 483–492. [Google Scholar] [CrossRef]
- Beinotti, F.; Correia, N.; Christofoletti, G.; Borges, G. Use of hippotherapy in gait training for hemiparetic post-stroke. Arq. Neuropsiquiatr. 2010, 68, 908–913. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Araujo, P.A.; Starling, J.M.P.; Oliveira, V.C.; Gontijo, A.P.B.; Mancini, M.C. Combining balance-training interventions with other active interventions may enhance effects on postural control in children and adolescents with cerebral palsy: A systematic review and meta-analysis. Braz. J. Phys. Ther. 2020, 24, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.G.; Yun, C.K. Effectiveness of treadmill training on gait function in children with cerebral palsy: Meta-analysis. J. Exerc. Rehabil. 2020, 16, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.M.; Cassidy, E.E.; Noorduyn, S.G.; O’Connell, N.E. Exercise interventions for cerebral palsy. Cochrane Database Syst. Rev. 2017, 6, CD011660. [Google Scholar] [CrossRef]
- Heussen, N.; Hausler, M. Equine-Assisted Therapies for Children with Cerebral Palsy: A Meta-analysis. Pediatrics 2022, 150, e2021055229. [Google Scholar] [CrossRef]
- Tricco, A.C.; Thomas, S.M.; Veroniki, A.A.; Hamid, J.S.; Cogo, E.; Strifler, L.; Khan, P.A.; Robson, R.; Sibley, K.M.; MacDonald, H.; et al. Comparisons of Interventions for Preventing Falls in Older Adults: A Systematic Review and Meta-analysis. JAMA 2017, 318, 1687–1699. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Du, S.; Wang, Q.; Xia, H.; Sun, R. Exercise interventions for improving physical function, daily living activities and quality of life in community-dwelling frail older adults: A systematic review and meta-analysis of randomized controlled trials. Geriatr. Nurs. 2020, 41, 261–273. [Google Scholar] [CrossRef]
- Hurst, C.; Weston, K.L.; McLaren, S.J.; Weston, M. The effects of same-session combined exercise training on cardiorespiratory and functional fitness in older adults: A systematic review and meta-analysis. Aging Clin. Exp. Res. 2019, 31, 1701–1717. [Google Scholar] [CrossRef]
- Badin, L.; Alibran, E.; Pothier, K.; Bailly, N. Effects of equine-assisted interventions on older adults’ health: A systematic review. Int. J. Nurs. Sci. 2022, 9, 542–552. [Google Scholar] [CrossRef]
- Razazian, N.; Kazeminia, M.; Moayedi, H.; Daneshkhah, A.; Shohaimi, S.; Mohammadi, M.; Jalali, R.; Salari, N. The impact of physical exercise on the fatigue symptoms in patients with multiple sclerosis: A systematic review and meta-analysis. BMC Neurol. 2020, 20, 93. [Google Scholar] [CrossRef]
- Jorgensen, M.; Dalgas, U.; Wens, I.; Hvid, L.G. Muscle strength and power in persons with multiple sclerosis—A systematic review and meta-analysis. J. Neurol. Sci. 2017, 376, 225–241. [Google Scholar] [CrossRef] [PubMed]
- Bueno-Antequera, J.; Munguia-Izquierdo, D. Exercise and Depressive Disorder. In Physical Exercise for Human Health. Advances in Experimental Medicine and Biology; Xiao, J., Ed.; Springer: Singapore, 2020; Volume 1228. [Google Scholar]
- Lavin-Perez, A.M.; Collado-Mateo, D.; Cana-Pino, A.; Villafaina, S.; Parraca, J.A.; Apolo-Arenas, M.D. Benefits of Equine-Assisted Therapies in People with Multiple Sclerosis: A Systematic Review. Evid. Based Complement. Alternat Med. 2022, 2022, 9656503. [Google Scholar] [CrossRef] [PubMed]
- Van Criekinge, T.; Truijen, S.; Schroder, J.; Maebe, Z.; Blanckaert, K.; van der Waal, C.; Vink, M.; Saeys, W. The effectiveness of trunk training on trunk control, sitting and standing balance and mobility post-stroke: A systematic review and meta-analysis. Clin. Rehabil. 2019, 33, 992–1002. [Google Scholar] [CrossRef]
- van Duijnhoven, H.J.; Heeren, A.; Peters, M.A.; Veerbeek, J.M.; Kwakkel, G.; Geurts, A.C.; Weerdesteyn, V. Effects of Exercise Therapy on Balance Capacity in Chronic Stroke: Systematic Review and Meta-Analysis. Stroke 2016, 47, 2603–2610. [Google Scholar] [CrossRef]
- Luo, L.; Zhu, S.; Shi, L.; Wang, P.; Li, M.; Yuan, S. High Intensity Exercise for Walking Competency in Individuals with Stroke: A Systematic Review and Meta-Analysis. J. Stroke Cerebrovasc. Dis. 2019, 28, 104414. [Google Scholar] [CrossRef]
- Santos de Assis, G.; Schlichting, T.; Rodrigues Mateus, B.; Gomes Lemos, A.; Dos Santos, A.N. Physical therapy with hippotherapy compared to physical therapy alone in children with cerebral palsy: Systematic review and meta-analysis. Dev. Med. Child. Neurol. 2022, 64, 156–161. [Google Scholar] [CrossRef]
Number of Studies | I2 | Heterogeneity P | Mean Difference (95% CI) | p | |
---|---|---|---|---|---|
BBS (Elderly) | 3 | 77.4% | 0.012 | 0.11 (−1.46, 1.68) | 0.889 |
BBS (Multiple sclerosis) | 2 | 0.0% | 0.559 | 2.48 (−1.79, 6.75) | 0.255 |
BBS (Stroke) | 2 | 0.0% | 0.623 | 0.99 (−1.84, 3.83) | 0.492 |
PBS (Cerebral palsy) | 2 | 0.0% | 0.629 | 3.21 (−1.82, 8.24) | 0.210 |
TUG (Overall) | 4 | 0.0% | 0.557 | −0.61 (−1.05, −0.17) | 0.006 |
TUG (Elderly) | 3 | 0.0% | 0.610 | −0.60 (−1.04, −0.16) | 0.007 |
TUG (Stroke) | 1 | - | - | −5.30 (−14.13, 3.53) | 0.239 |
GMFM 66 | 6 | 0.0% | 0.771 | 0.67 (−0.31, 1.66) | 0.182 |
GMFM 88 | 3 | 0.0% | 0.650 | 2.92 (−1.19, 7.02) | 0.164 |
GMFM A | 2 | 0.0% | 0.863 | 0.26 (−0.66, 1.19) | 0.579 |
GMFM B | 2 | 91.1% | 0.001 | 9.79 (−12.28, 31.86) | 0.385 |
GMFM C | 2 | 70.5% | 0.066 | 8.47 (−8.16, 25.11) | 0.318 |
GMFM D | 4 | 0.0% | 0.749 | 0.11 (−0.99, 1.20) | 0.847 |
GMFM E | 5 | 0.0% | 0.951 | 2.48 (0.61, 4.34) | 0.009 |
POMA | 2 | 0.0% | 0.585 | 2.32 (−0.83, 5.46) | 0.149 |
CHQ28 (physical domain) | 2 | 0.0% | 0.367 | 3.82 (−1.70, 9.34) | 0.175 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stergiou, A.N.; Ploumis, A.; Kamtsios, S.; Markozannes, G.; Christodoulou, P.; Varvarousis, D.N. Effects of Equine-Assisted Therapy: A Systematic Review and Meta-Analysis. J. Clin. Med. 2025, 14, 3731. https://doi.org/10.3390/jcm14113731
Stergiou AN, Ploumis A, Kamtsios S, Markozannes G, Christodoulou P, Varvarousis DN. Effects of Equine-Assisted Therapy: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2025; 14(11):3731. https://doi.org/10.3390/jcm14113731
Chicago/Turabian StyleStergiou, Alexandra N., Avraam Ploumis, Spyridon Kamtsios, Georgios Markozannes, Pineio Christodoulou, and Dimitrios N. Varvarousis. 2025. "Effects of Equine-Assisted Therapy: A Systematic Review and Meta-Analysis" Journal of Clinical Medicine 14, no. 11: 3731. https://doi.org/10.3390/jcm14113731
APA StyleStergiou, A. N., Ploumis, A., Kamtsios, S., Markozannes, G., Christodoulou, P., & Varvarousis, D. N. (2025). Effects of Equine-Assisted Therapy: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 14(11), 3731. https://doi.org/10.3390/jcm14113731