Exercise Prescription in Cardio-Oncology
Abstract
:1. Introduction
2. Exercise Prescription in Cardiology
2.1. Patients Undergoing Percutaneous Coronary Intervention
2.2. Stable Coronary Artery Disease
2.3. Heart Failure
3. Exercise Prescription in Oncology
4. Exercise in Cardio-Oncology
4.1. Main Mechanisms of Cardiovascular Protection Induced by Exercise in Cancer Patients
4.1.1. Positive Cardiac Remodeling
4.1.2. Modulation of Inflammation and Oxidative Stress
4.1.3. Mitigation of Autonomic Dysfunction
4.2. Evidence Supporting Exercise in Cardio-Oncology
4.2.1. Cardiovascular Outcomes
Year of Publication, Author, and Type of Study | Sample Size (n) | Patient Population Characteristics | Outcomes Observed in the Exercise Group (EG) vs. the Control Group (CG) |
---|---|---|---|
2024 Jung et al. (Observational cohort study) [91] | 269,943 | Different cancer survivor cohorts | ↓ myocardial infarction ↓ heart failure |
2020 Kim et al. (Observational cohort study) [90] | 39,775 | Breast cancer survivor | ↓ cardiovascular disease ↓ stroke ↓ coronary artery disease |
2017 Jones et al. (Observational cohort study) [89] | 2973 | Non-metastatic breast cancer survivors | ↓ cardiovascular mortality ↓ coronary artery disease ↓ heart failure |
4.2.2. Cardiorespiratory Fitness (CRF)
Year of Publication, Author, and Type of Study | Sample Size (n) | Patient Population Characteristics | Outcomes Observed in the Exercise Group (EG) vs. the Control Group (CG) |
---|---|---|---|
2021 Pérez et al. (Meta-analysis) [109] | 2.515 | Different cohorts of cancer survivors (breast, lung, colorectal, prostate, and testicular cancers) | Difference in peak VO2 favoring the exercise group over the control group (SMD = 0.44) |
2020 Maginador et al. (Meta-analysis) [108] | 493 | Breast cancer survivor undergoing chemotherapy | Compared to baseline, peak VO2 ↑ 9.97% in EG and ↓ 10.18% in the CG |
2018 Sweegers et al. (Meta-analysis) [107] | 3.515 | Different cohorts of cancer survivors (breast, genitourinary, hematological, gastrointestinal, gynecological, and pulmonary) | Compared to baseline ↑ VO2peak 1.80 mL·kg−1·min−1 in EG |
2018 Scott et al. (Meta-analysis) [106] | 3.632 | Different cohorts of cancer survivors (Solid and hematological malignancies, breast cancer) | Compared to baseline ↑ VO2peak: 2.80 mL·kg−1·min−1 in EG |
2016 Zhou et al. [105] | 314 | Acute leukemia patient | Improvement in CRF (SMD = 0.45) in EG as indicated by better performance on the walking test |
2011 Jones et al. (Meta-analysis) [104] | 571 | Different cohorts of cancer survivors (breast, prostate, colon, and lymphoma) | Compared to baseline ↑ VO2peak 2.90 mL·kg−1·min−1 in EG |
4.2.3. Cardio Protection by Physical Exercise During Chemotherapy
Year of Publication, Author, and Type of Study | Sample Size (n) | Patient Population Characteristics | Outcomes Observed in the Exercise Group (EG) vs. the Control Group (CG) |
---|---|---|---|
2024 Díaz-Balboa et al. (RCT) [110] | 122 | Breast cancer patients planned to receive anthracyclines and/or anti-HER2 | After chemotherapy (CT), a reduction in resting LVEF was observed in both groups, with an attenuated decline in the exercise group (EG) compared to the control group (CG). |
2023 Foulkes et al. (RCT) [114] | 104 | Breast cancer patients planned to receive anthracyclines | After CT the EG showed superior stress echocardiographic parameters, less functional decline at 4 months, and lower troponin elevation, with no differences in resting LVEF compared to the CG. |
2023 Antunes et al. (RCT) [115] | 93 | Early-stage breast cancer patients planned to receive anthracyclines | After CT the EG, unlike the CG, showed an improvement in cardiorespiratory fitness (↑ VO2peak) from baseline. A non-significant attenuation of LVEF reduction was observed in the EG. |
2023 Kirkham et al. (RCT) [118] | 74 | Breast cancer patients planned to receive anthracyclines and/or anti-HER2 | EG showed a more favorable lipid profile compared to CG. No differences were observed in resting LVEF. |
2020 Chung et al. (RCT) [111] | 32 | Breast cancer patients planned to receive anthracyclines | After CT, LVEF improved in EG and worsened in CG. EG showed better resting LVEF, diastolic function, and less cardiac hypertrophy at 3, 6 and 12 months post-chemotherapy, as well as higher VO2peak at 12 months. |
2020 Hojan et al. (RCT) [112] | 68 | Breast cancer patients planned to receive anti-HER2 | Following CT, exercise stabilized resting LVEF and 6MWT performance in EG, while CG experienced a decline in both parameters. |
4.2.4. Additional Cardiovascular Benefits
Year of Publication, Author, and Type of Study | Sample Size (n) | Patient Population Characteristics | Outcomes Observed in the Exercise Group (EG) vs. the Control Group (CG) |
---|---|---|---|
2023 Kirkham et al. (RCT) [118] | 74 | Breast cancer patients planned to receive anthracyclines and/or anti-HER2 | ↓ total cholesterol ↑ LDL cholesterol |
2020 Jones et al. (RCT) [125] | 51 | Breast cancer survivors | Reduction in arterial stiffness (↓ aortic pulse wave velocity), along with improvements in CRF (↑ VO2 peak) and muscle strength. |
2019 Lee et al. (RCT) [122] | 100 | Early-stage breast cancer survivors | ↓ CVD risk ↓ blood pressure ↑ HDL cholesterol ↓ LDL cholesterol ↓ diagnosis of diabetes |
2018 Beaudry et al. (Meta-analysis) [124] | 163 | After chemotherapy in breast and prostate cancer | Improvement in vascular endothelial function |
2018 Dieli-Conwright et al. (RCT) [121] | 100 | Breast cancer survivors | ↓ blood pressure ↓ triglycerides ↑ HDL cholesterol ↓ BMI ↓ fasting blood glucose ↓ metabolic syndrome z-score |
2017 Adams et al. (RCT) [126] | 63 | Testicular cancer survivors | ↓ CVD risk ↓ rest heart rate ↓ blood pressure ↓ arterial thickness and arterial stiffness ↑ postexercise parasympathetic reactivation ↓ inflammation ↓ LDL cholesterol |
2013 Galvao et al. (RCT) [123] | 100 | Long-term prostate cancer survivors | ↑ HDL levels, along with additional benefits such as improved CRF (↑ 6MWT distance) and increased muscle strength. |
2016 Zhu et al. (Meta-analysis) [49] | 2659 | Breast cancer survivors | ↓ insulin and insulin-like growth factor-II, ↓ BMI additional benefits such as improved quality of life, social well-being, and reduced depression and anxiety (as assessed by validated questionnaires). |
5. Main Exercise Protocols in Cardio-Oncology
5.1. Aerobic Training
5.2. Resistance Training
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Abbreviations
6MWT | European Society of Cardiology |
BMI | 6 min walking test |
CPET | body mass index |
CRF | cardiopulmonary exercise test |
ESC | cardiorespiratory fitness |
HDL | High-density lipoprotein |
HFpEF | Heart Failure with preserved Ejection Fraction |
HFrEF | heart failure with reduced ejection fraction |
IGF-II | insulin like growth factor 2 |
IGFBP-1 | Insulin-like Growth Factor Binding Protein 1 |
LDL | Low Density Lipoprotein |
LVEF | left ventricular ejection fraction |
MET | Metabolic Equivalent of Task |
peak VO2 | peak oxygen uptake |
QoL | quality of life |
RCTs | randomized control trials |
References
- Abreu, A.; Frederix, I.; Dendale, P.; Janssen, A.; Doherty, P.; Piepoli, M.F.; Völler, H.; Davos, C.H. Standardization and quality improvement of secondary prevention through cardiovascular rehabilitation programmes in Europe: The avenue towards EAPC accreditation programme: A position statement of the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology (EAPC). Eur. J. Prev. Cardiol. 2021, 28, 496–509. [Google Scholar] [PubMed]
- Ambrosetti, M.; Abreu, A.; Corrà, U.; Davos, C.H.; Hansen, D.; Frederix, I.; Iliou, M.C.; Pedretti, R.F.E.; Schmid, J.-P.; Vigorito, C.; et al. Secondary prevention through comprehensive cardiovascular rehabilitation: From knowledge to implementation. 2020 update. A position paper from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur. J. Prev. Cardiol. 2021, 28, 460–495. [Google Scholar] [CrossRef] [PubMed]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.-A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the management of acute coronary syndromes: Developed by the task force on the management of acute coronary syndromes of the European Society of Cardiology (ESC). Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [PubMed]
- Dibben, G.O.; Faulkner, J.; Oldridge, N.; Rees, K.; Thompson, D.R.; Zwisler, A.D.; Taylor, R.S. Exercise-based cardiac rehabilitation for coronary heart disease: A meta-analysis. Eur. Heart J. 2023, 44, 452–469. [Google Scholar] [CrossRef]
- Ford, T.J.; Corcoran, D.; Berry, C. Stable coronary syndromes: Pathophysiology, diagnostic advances and therapeutic need. Heart 2018, 104, 284–292. [Google Scholar]
- Hansen, D.; Beckers, P.; Neunhäuserer, D.; Bjarnason-Wehrens, B.; Piepoli, M.F.; Rauch, B.; Völler, H.; Corrà, U.; Garcia-Porrero, E.; Schmid, J.-P.; et al. Standardised Exercise Prescription for Patients with Chronic Coronary Syndrome and/or Heart Failure: A Consensus Statement from the EXPERT Working Group. Sports Med. 2023, 53, 2013–2037. [Google Scholar] [CrossRef]
- Rauch, B.; Davos, C.H.; Doherty, P.; Saure, D.; Metzendorf, M.I.; Salzwedel, A.; Völler, H.; Jensen, K.; Schmid, J.-P. The prognostic effect of cardiac rehabilitation in the era of acute revascularisation and statin therapy: A systematic review and meta-analysis of randomized and non-randomized studies—The Cardiac Rehabilitation Outcome Study (CROS). Eur. J. Prev. Cardiol. 2016, 23, 1914–1939. [Google Scholar] [CrossRef]
- Uddin, J.; Zwisler, A.D.; Lewinter, C.; Moniruzzaman, M.; Lund, K.; Tang, L.H.; Taylor, R.S. Predictors of exercise capacity following exercise-based rehabilitation in patients with coronary heart disease and heart failure: A meta-regression analysis. Eur. J. Prev. Cardiol. 2016, 23, 683–693. [Google Scholar] [CrossRef]
- De Schutter, A.; Kachur, S.; Lavie, C.J.; Menezes, A.; Shum, K.K.; Bangalore, S.; Arena, R.; Milani, R.V. Cardiac rehabilitation fitness changes and subsequent survival. Eur. Heart J. Qual. Care Clin. Outcomes 2018, 4, 173–179. [Google Scholar] [CrossRef]
- O’Connor, C.M.; Whellan, D.J.; Lee, K.L.; Keteyian, S.J.; Cooper, L.S.; Ellis, S.J.; Leifer, E.S.; Kraus, W.E.; Kitzman, D.W.; Blumenthal, J.A.; et al. Efficacy and Safety of Exercise Training in Patients with Chronic Heart Failure: HF-ACTION Randomized Controlled Trial. JAMA 2009, 301, 1439–1450. [Google Scholar] [CrossRef]
- Flynn, K.E.; Piña, I.L.; Whellan, D.J.; Lin, L.; Blumenthal, J.A.; Ellis, S.J.; Fine, L.J.; Howlett, J.G.; Keteyian, S.J.; Kitzman, D.W.; et al. Effects of Exercise Training on Health Status in Patients with Chronic Heart Failure: HF-ACTION Randomized Controlled Trial. JAMA 2009, 301, 1451–1459. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.S.; Long, L.; Mordi, I.R.; Madsen, M.T.; Davies, E.J.; Dalal, H.; Rees, K.; Singh, S.J.; Gluud, C.; Zwisler, A.-D. Exercise-Based Rehabilitation for Heart Failure: Cochrane Systematic Review, Meta-Analysis, and Trial Sequential Analysis. JACC Heart Fail. 2019, 7, 691–705. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.S.; Walker, S.; Smart, N.A.; Piepoli, M.F.; Warren, F.C.; Ciani, O.; O’Connor, C.; Whellan, D.; Keteyian, S.J.; Coats, A.; et al. Impact of exercise-based cardiac rehabilitation in patients with heart failure (ExTraMATCH II) on mortality and hospitalisation: An individual patient data meta-analysis of randomised trials. Eur. J. Heart Fail. 2018, 20, 1735–1743. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar]
- Pandey, A.; Parashar, A.; Kumbhani, D.J.; Agarwal, S.; Garg, J.; Kitzman, D.; Levine, B.D.; Drazner, M.; Berry, J.D. Exercise Training in Patients With Heart Failure and Preserved Ejection Fraction. Circ. Heart Fail. 2015, 8, 33–40. [Google Scholar] [CrossRef]
- Caminiti, G.; Volterrani, M.; Iellamo, F.; Marazzi, G.; Silvestrini, M.; Giamundo, D.M.; Morsella, V.; Biasio, D.D.; Franchini, A.; Perrone, M.A. Exercise Training for Patients with Heart Failure and Preserved Ejection Fraction. A Narrative Review. Monaldi Arch. Chest Dis. 2025. [Google Scholar] [CrossRef]
- La Gerche, A.; Howden, E.J.; Haykowsky, M.J.; Lewis, G.D.; Levine, B.D.; Kovacic, J.C. Heart Failure With Preserved Ejection Fraction as an Exercise Deficiency Syndrome: JACC Focus Seminar 2/4. J. Am. Coll. Cardiol. 2022, 80, 1177–1191. [Google Scholar] [CrossRef]
- Cancer Prevention Overview-NCI. 2009. Available online: https://www.cancer.gov/about-cancer/causes-prevention/patient-prevention-overview-pdq (accessed on 7 April 2025).
- SMITHHR Depression in cancer patients: Pathogenesis, implications and treatment. Oncol. Lett. 2015, 9, 1509–1514. [CrossRef]
- Alam, M.M.; Rahman, T.; Afroz, Z.; Chakraborty, P.A.; Wahab, A.; Zaman, S.; Hawlader, M.D.H. Quality of Life (QoL) of cancer patients and its association with nutritional and performance status: A pilot study. Heliyon 2020, 6, e05250. [Google Scholar] [CrossRef]
- Cormie, P.; Zopf, E.M.; Zhang, X.; Schmitz, K.H. The Impact of Exercise on Cancer Mortality, Recurrence, and Treatment-Related Adverse Effects. Epidemiol. Rev. 2017, 39, 71–92. [Google Scholar] [CrossRef]
- Beasley, J.M.; Kwan, M.L.; Chen, W.Y.; Weltzien, E.K.; Kroenke, C.H.; Lu, W.; Nechuta, S.J.; Cadmus-Bertram, L.; Patterson, R.E.; Sternfeld, B.; et al. Meeting the Physical Activity Guidelines and Survival After Breast Cancer: Findings from the After Breast Cancer Pooling Project. Breast Cancer Res. Treat. 2012, 131, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.M.; Li, N.; Liu, Q.; Yasui, Y.; Leisenring, W.; Nathan, P.C.; Gibson, T.; Armenian, S.H.; Nilsen, T.S.; Oeffinger, K.C.; et al. Association of Exercise with Mortality in Adult Survivors of Childhood Cancer. JAMA Oncol. 2018, 4, 1352–1358. [Google Scholar] [CrossRef] [PubMed]
- Morishita, S.; Hamaue, Y.; Fukushima, T.; Tanaka, T.; Fu, J.B.; Nakano, J. Effect of Exercise on Mortality and Recurrence in Patients With Cancer: A Systematic Review and Meta-Analysis. Integr. Cancer Ther. 2020, 19, 1534735420917462. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, S.A.; Patni, M.A.; El-Tanani, M.; Rangraze, I.R.; Wali, A.F.; Babiker, R.; Satyam, S.M.; El-Tanani, Y.; Almetwally, A.A.M.S. Impact of Lifestyle Modifications on Cancer Mortality: A Systematic Review and Meta-Analysis. Medicina 2025, 61, 307. [Google Scholar] [CrossRef]
- Cao, C.; Friedenreich, C.M.; Yang, L. Association of Daily Sitting Time and Leisure-Time Physical Activity with Survival Among US Cancer Survivors. JAMA Oncol. 2022, 8, 395–403. [Google Scholar] [CrossRef]
- Thorsen, L.; Courneya, K.S.; Steene-Johannessen, J.; Gran, J.M.; Haugnes, H.S.; Negaard, H.F.S.; Kiserud, C.E.; Fosså, S.D. Association of physical activity with overall mortality among long-term testicular cancer survivors: A longitudinal study. Int. J. Cancer 2023, 153, 1512–1519. [Google Scholar] [CrossRef]
- Physical Activity and Cancer Fact Sheet-NCI. 2020. Available online: https://www.cancer.gov/about-cancer/causes-prevention/risk/obesity/physical-activity-fact-sheet (accessed on 7 April 2025).
- Thomas, R.; Kenfield, S.A.; Yanagisawa, Y.; Newton, R.U. Why exercise has a crucial role in cancer prevention, risk reduction and improved outcomes. Br. Med. Bull. 2021, 139, 100–119. [Google Scholar] [CrossRef]
- Ueshima, K.; Ishikawa-Takata, K.; Yorifuji, T.; Suzuki, E.; Kashima, S.; Takao, S.; Sugiyama, M.; Ohta, T.; Doi, H. Physical activity and mortality risk in the Japanese elderly: A cohort study. Am. J. Prev. Med. 2010, 38, 410–418. [Google Scholar] [CrossRef]
- Van Blarigan, E.L.; Zhang, S.; Ou, F.S.; Venlo, A.; Ng, K.; Atreya, C.; Van Loon, K.; Niedzwiecki, D.; Giovannucci, E.; Wolfe, E.G.; et al. Association of Diet Quality with Survival Among People With Metastatic Colorectal Cancer in the Cancer and Leukemia B and Southwest Oncology Group 80405 Trial. JAMA Netw. Open 2020, 3, e2023500. [Google Scholar] [CrossRef]
- Palesh, O.; Kamen, C.; Sharp, S.; Golden, A.; Neri, E.; Spiegel, D.; Koopman, C. Physical Activity and Survival in Women with Advanced Breast Cancer. Cancer Nurs. 2018, 41, E31–E38. [Google Scholar] [CrossRef]
- Patel, A.V.; Bernstein, L.; Deka, A.; Feigelson, H.S.; Campbell, P.T.; Gapstur, S.M.; Colditz, G.A.; Thun, M.J. Leisure time spent sitting in relation to total mortality in a prospective cohort of US adults. Am. J. Epidemiol. 2010, 172, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; de Oliveira, C.; Demakakos, P. Non-exercise physical activity and survival: English longitudinal study of ageing. Am. J. Prev. Med. 2014, 47, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Watts, E.L.; Matthews, C.E.; Freeman, J.R.; Gorzelitz, J.S.; Hong, H.G.; Liao, L.M.; McClain, K.M.; Saint-Maurice, P.F.; Shiroma, E.J.; Moore, S.C. Association of Leisure Time Physical Activity Types and Risks of All-Cause, Cardiovascular, and Cancer Mortality Among Older Adults. JAMA Netw. Open 2022, 8, e2228510. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.M.; Nagle, C.M.; Ibiebele, T.I.; Grant, P.T.; Obermair, A.; Friedlander, M.L.; DeFazio, A.; Webb, P.M. A healthy lifestyle and survival among women with ovarian cancer. Int. J. Cancer 2020, 147, 3361–3369. [Google Scholar] [CrossRef]
- Friedenreich, C.M.; Wang, Q.; Neilson, H.K.; Kopciuk, K.A.; McGregor, S.E.; Courneya, K.S. Physical Activity and Survival After Prostate Cancer. Eur. Urol. 2016, 70, 576–585. [Google Scholar] [CrossRef]
- Di Maso, M.; Augustin, L.S.A.; Toffolutti, F.; Stocco, C.; Dal Maso, L.; Jenkins, D.J.A.; Fleshner, N.E.; Serraino, D.; Polesel, J. Adherence to Mediterranean Diet, Physical Activity and Survival after Prostate Cancer Diagnosis. Nutrients 2021, 13, 243. [Google Scholar] [CrossRef]
- Walter, V.; Jansen, L.; Knebel, P.; Chang-Claude, J.; Hoffmeister, M.; Brenner, H. Physical activity and survival of colorectal cancer patients: Population-based study from Germany. Int. J. Cancer 2017, 140, 1985–1997. [Google Scholar] [CrossRef]
- Jee, Y.; Kim, Y.; Jee, S.H.; Ryu, M. Exercise and cancer mortality in Korean men and women: A prospective cohort study. BMC Public Health 2018, 18, 761. [Google Scholar] [CrossRef]
- Cannioto, R.A.; Hutson, A.; Dighe, S.; McCann, W.; McCann, S.E.; Zirpoli, G.R.; Barlow, W.; Kelly, K.M.; DeNysschen, C.A.; Hershman, D.L.; et al. Physical Activity Before, During, and After Chemotherapy for High-Risk Breast Cancer: Relationships with Survival. J. Natl. Cancer Inst. 2021, 113, 54–63. [Google Scholar] [CrossRef]
- Mok, Y.; Jeon, C.; Lee, G.J.; Jee, S.H. Physical Activity Level and Colorectal Cancer Mortality. Asia Pac. J. Public Health 2016, 28, 638–647. [Google Scholar] [CrossRef]
- Bian, Z.; Zhang, R.; Yuan, S.; Fan, R.; Wang, L.; Larsson, S.C.; Theodoratou, E.; Zhu, Y.; Wu, S.; Ding, Y.; et al. Healthy lifestyle and cancer survival: A multinational cohort study. Int. J. Cancer 2024, 154, 1709–1718. [Google Scholar] [CrossRef] [PubMed]
- Johnsson, A.; Broberg, P.; Krüger, U.; Johnsson, A.; Tornberg, Å.B.; Olsson, H. Physical activity and survival following breast cancer. Eur. J. Cancer Care 2019, 28, e13037. [Google Scholar] [CrossRef]
- Choi, J.; Park, J.Y.; Kim, J.E.; Lee, M.; Lee, K.; Lee, J.K.; Kang, D.; Shin, A.; Choi, J.-Y. Impact of pre- and post-diagnosis physical activity on the mortality of patients with cancer: Results from the Health Examinees-G study in Korea. Cancer Med. 2023, 12, 16591–16603. [Google Scholar] [CrossRef]
- Friedenreich, C.M.; Stone, C.R.; Cheung, W.Y.; Hayes, S.C. Physical Activity and Mortality in Cancer Survivors: A Systematic Review and Meta-Analysis. JNCI Cancer Spectr. 2020, 4, pkz080. [Google Scholar] [CrossRef] [PubMed]
- Ammitzbøll, G.; Søgaard, K.; Karlsen, R.V.; Tjønneland, A.; Johansen, C.; Frederiksen, K.; Bidstrup, P. Physical activity and survival in breast cancer. Eur. J. Cancer 2016, 66, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Filis, P.; Markozannes, G.; Chan, D.S.; Mauri, D.; Foukakis, T.; Matikas, A.; Droufakou, S.; Pentheroudakis, G.; Tsilidis, K. Grading the evidence for physical activity and any outcome in cancer survivors: An Umbrella review of 740 meta-analytic associations. Crit. Rev. Oncol. Hematol. 2025, 207, 104602. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, X.; Wang, Y.; Xiong, H.; Zhao, Y.; Sun, F. Effects of exercise intervention in breast cancer survivors: A meta-analysis of 33 randomized controlled trails. OncoTargets Ther. 2016, 9, 2153–2168. [Google Scholar] [CrossRef]
- Miyamoto, T.; Nagao, A.; Okumura, N.; Hosaka, M. Effect of Post-diagnosis Physical Activity on Breast Cancer Recurrence: A Systematic Review and Meta-analysis. Curr. Oncol. Rep. 2022, 24, 1645–1659. [Google Scholar] [CrossRef]
- Cariolou, M.; Abar, L.; Aune, D.; Balducci, K.; Becerra-Tomás, N.; Greenwood, D.C.; Markozannes, G.; Nanu, N.; Vieira, R.; Giovannucci, E.L.; et al. Postdiagnosis recreational physical activity and breast cancer prognosis: Global Cancer Update Programme (CUP Global) systematic literature review and meta-analysis. Int. J. Cancer 2023, 152, 600–615. [Google Scholar] [CrossRef]
- Brown, J.C.; Huedo-Medina, T.B.; Pescatello, L.S.; Pescatello, S.M.; Ferrer, R.A.; Johnson, B.T. Efficacy of exercise interventions in modulating cancer-related fatigue among adult cancer survivors: A meta-analysis. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2011, 20, 123–133. [Google Scholar] [CrossRef]
- Andersen, H.H.; Vinther, A.; Lund, C.M.; Paludan, C.; Jørgensen, C.T.; Nielsen, D.; Juhl, C.B. Effectiveness of different types, delivery modes and extensiveness of exercise in patients with breast cancer receiving systemic treatment-A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 2022, 178, 103802. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Markozannes, G.; Abar, L.; Balducci, K.; Cariolou, M.; Nanu, N.; Vieira, R.; Anifowoshe, Y.O.; Greenwood, D.C.; Clinton, S.K.; et al. Physical Activity and Health-Related Quality of Life in Women with Breast Cancer: A Meta-Analysis. JNCI Cancer Spectr. 2022, 6, pkac072. [Google Scholar] [CrossRef] [PubMed]
- Cheema, B.S.; Kilbreath, S.L.; Fahey, P.P.; Delaney, G.P.; Atlantis, E. Safety and efficacy of progressive resistance training in breast cancer: A systematic review and meta-analysis. Breast Cancer Res. Treat. 2014, 148, 249–268. [Google Scholar] [CrossRef]
- Reverte-Pagola, G.; Sánchez-Trigo, H.; Saxton, J.; Sañudo, B. Supervised and Non-Supervised Exercise Programs for the Management of Cancer-Related Fatigue in Women with Breast Cancer: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 3428. [Google Scholar] [CrossRef] [PubMed]
- Soares Falcetta, F.; de Araújo Vianna Träsel, H.; de Almeida, F.K.; Rangel Ribeiro Falcetta, M.; Falavigna, M.; Dornelles Rosa, D. Effects of physical exercise after treatment of early breast cancer: Systematic review and meta-analysis. Breast Cancer Res. Treat. 2018, 170, 455–476. [Google Scholar] [CrossRef]
- Andersen, M.F.; Midtgaard, J.; Bjerre, E.D. Do Patients with Prostate Cancer Benefit from Exercise Interventions? A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 972. [Google Scholar] [CrossRef]
- Vashistha, V.; Singh, B.; Kaur, S.; Prokop, L.J.; Kaushik, D. The Effects of Exercise on Fatigue, Quality of Life, and Psychological Function for Men with Prostate Cancer: Systematic Review and Meta-analyses. Eur. Urol. Focus. 2016, 2, 284–295. [Google Scholar] [CrossRef]
- Ussing, A.; Mikkelsen, M.L.K.; Villumsen, B.R.; Wejlgaard, J.; Bistrup, P.E.; Birkefoss, K.; Bandholm, T. Supervised exercise therapy compared with no exercise therapy to reverse debilitating effects of androgen deprivation therapy in patients with prostate cancer: A systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2022, 25, 491–506. [Google Scholar] [CrossRef]
- Qiu, S.; Jiang, C.; Zhou, L. Physical activity and mortality in patients with colorectal cancer: A meta-analysis of prospective cohort studies. Eur. J. Cancer Prev. Off. J. Eur. Cancer Prev. Organ. ECP 2020, 29, 15–26. [Google Scholar] [CrossRef]
- Wang, L.; Yu, M.; Ma, Y.; Tian, R.; Wang, X. Effect of Pulmonary Rehabilitation on Postoperative Clinical Status in Patients with Lung Cancer and Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. Evid-Based Complement Altern. Med. 2022, 2022, 4133237. [Google Scholar] [CrossRef]
- Pu, C.Y.; Batarseh, H.; Zafron, M.L.; Mador, M.J.; Yendamuri, S.; Ray, A.D. Effects of Preoperative Breathing Exercise on Postoperative Outcomes for Patients with Lung Cancer Undergoing Curative Intent Lung Resection: A Meta-analysis. Arch. Phys. Med. Rehabil. 2021, 102, 2416–2427.e4. [Google Scholar] [CrossRef] [PubMed]
- Dinas, P.C.; Koutedakis, Y.; Flouris, A.D. Effects of exercise and physical activity on depression. Ir. J. Med. Sci. 2011, 180, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Puklin, L.S.; Harrigan, M.; Cartmel, B.; Sanft, T.; Gottlieb, L.; Zhou, B.; Ferrucci, L.M.; Li, F.-Y.; Spiegelman, D.; Sharifi, M.; et al. Randomized Trial Evaluating a Self-Guided Lifestyle Intervention Delivered via Evidence-Based Materials versus a Waitlist Group on Changes in Body Weight, Diet Quality, Physical Activity, and Quality of Life among Breast Cancer Survivors. Cancers 2023, 15, 4719. [Google Scholar] [CrossRef] [PubMed]
- Jacot, W.; Arnaud, A.; Jarlier, M.; Lefeuvre-Plesse, C.; Dalivoust, P.; Senesse, P.; Azzedine, A.; Tredan, O.; Sadot-Lebouvier, S.; Mas, S.; et al. Brief Hospital Supervision of Exercise and Diet During Adjuvant Breast Cancer Therapy Is Not Enough to Relieve Fatigue: A Multicenter Randomized Controlled Trial. Nutrients 2020, 12, 3081. [Google Scholar] [CrossRef]
- Focht, B.C.; Lucas, A.R.; Grainger, E.; Simpson, C.; Fairman, C.M.; Thomas-Ahner, J.M.; Buell, J.; Monk, J.P.; Mortazavi, A.; Clinton, S.K. Effects of a Group-Mediated Exercise and Dietary Intervention in the Treatment of Prostate Cancer Patients Undergoing Androgen Deprivation Therapy: Results From the IDEA-P Trial. Ann. Behav. Med. Publ. Soc. Behav. Med. 2018, 52, 412–428. [Google Scholar] [CrossRef]
- O’Neill, R.F.; Haseen, F.; Murray, L.J.; O’Sullivan, J.M.; Cantwell, M.M. A randomised controlled trial to evaluate the efficacy of a 6-month dietary and physical activity intervention for patients receiving androgen deprivation therapy for prostate cancer. J. Cancer Surviv. Res. Pract. 2015, 9, 431–440. [Google Scholar] [CrossRef]
- Dinas, P.C.; on behalf of the Students of Module 5104 (Introduction to Systematic Reviews); Karaventza, M.; Liakou, C.; Georgakouli, K.; Bogdanos, D.; Metsios, G.S. Combined Effects of Physical Activity and Diet on Cancer Patients: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 1749. [Google Scholar] [CrossRef]
- Au, P.C.M.; Li, H.L.; Lee, G.K.Y.; Li, G.H.Y.; Chan, M.; Cheung, B.M.Y.; Wong, I.C.-K.; Lee, V.H.-F.; Mok, J.; Yip, B.H.-K.; et al. Sarcopenia and mortality in cancer: A meta-analysis. Osteoporos. Sarcopenia 2021, 7 (Suppl. S1), S28–S33. [Google Scholar] [CrossRef]
- Iyengar, N.M.; Hudis, C.A.; Dannenberg, A.J. Obesity and cancer: Local and systemic mechanisms. Annu. Rev. Med. 2015, 66, 297–309. [Google Scholar] [CrossRef]
- Ulmer, H.; Borena, W.; Rapp, K.; Klenk, J.; Strasak, A.; Diem, G.; Concin, H.; Nagel, G. Serum triglyceride concentrations and cancer risk in a large cohort study in Austria. Br. J. Cancer 2009, 101, 1202–1206. [Google Scholar] [CrossRef]
- Kim, C.B.; Park, J.H.; Park, H.S.; Kim, H.J.; Park, J.J. Effects of Whey Protein Supplement on 4-Week Resistance Exercise-Induced Improvements in Muscle Mass and Isokinetic Muscular Function under Dietary Control. Nutrients 2023, 15, 1003. [Google Scholar] [CrossRef] [PubMed]
- Franczyk, B.; Gluba-Brzózka, A.; Ciałkowska-Rysz, A.; Ławiński, J.; Rysz, J. The Impact of Aerobic Exercise on HDL Quantity and Quality: A Narrative Review. Int. J. Mol. Sci. 2023, 24, 4653. [Google Scholar] [CrossRef] [PubMed]
- Luna-Castillo, K.P.; Olivares-Ochoa, X.C.; Hernández-Ruiz, R.G.; Llamas-Covarrubias, I.M.; Rodríguez-Reyes, S.C.; Betancourt-Núñez, A.; Vizmanos, B.; Martínez-López, E.; Muñoz-Valle, J.F.; Márquez-Sandoval, F.; et al. The Effect of Dietary Interventions on Hypertriglyceridemia: From Public Health to Molecular Nutrition Evidence. Nutrients 2022, 14, 1104. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.J.; Chien, K.R. Signaling pathways for cardiac hypertrophy and failure. N. Engl. J. Med. 1999, 341, 1276–1283. [Google Scholar] [CrossRef]
- Schüttler, D.; Clauss, S.; Weckbach, L.T.; Brunner, S. Molecular Mechanisms of Cardiac Remodeling and Regeneration in Physical Exercise. Cells 2019, 8, 1128. [Google Scholar] [CrossRef]
- Boström, P.; Mann, N.; Wu, J.; Quintero, P.A.; Plovie, E.R.; Panáková, D.; Gupta, R.K.; Xiao, C.; MacRae, C.A.; Rosenzweig, A.; et al. C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell 2010, 143, 1072–1083. [Google Scholar] [CrossRef]
- Beltrami, A.P.; Barlucchi, L.; Torella, D.; Baker, M.; Limana, F.; Chimenti, S.; Kasahara, H.; Rota, M.; Musso, E.; Urbanek, K.; et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003, 114, 763–776. [Google Scholar] [CrossRef]
- Eulalio, A.; Mano, M.; Dal Ferro, M.; Zentilin, L.; Sinagra, G.; Zacchigna, S.; Giacca, M. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 2012, 492, 376–381. [Google Scholar] [CrossRef]
- Shi, J.; Bei, Y.; Kong, X.; Liu, X.; Lei, Z.; Xu, T.; Wang, H.; Xuan, Q.; Chen, P.; Xu, J.; et al. miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Theranostics 2017, 7, 664–676. [Google Scholar] [CrossRef]
- Gejl, K.D.; Andersson, E.P.; Nielsen, J.; Holmberg, H.C.; Ørtenblad, N. Effects of Acute Exercise and Training on the Sarcoplasmic Reticulum Ca2+ Release and Uptake Rates in Highly Trained Endurance Athletes. Front. Physiol. 2020, 11, 810. [Google Scholar] [CrossRef]
- D’Ascenzi, F.; Anselmi, F.; Fiorentini, C.; Mannucci, R.; Bonifazi, M.; Mondillo, S. The benefits of exercise in cancer patients and the criteria for exercise prescription in cardio-oncology. Eur. J. Prev. Cardiol. 2021, 28, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.R.; Habibian, M. Break a sweat to reduce cardiotoxicity-the benefits of exercise training during anthracycline chemotherapy. Eur. J. Prev. Cardiol. 2019, 26, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Coumbe, B.G.T.; Groarke, J.D. Cardiovascular Autonomic Dysfunction in Patients with Cancer. Curr. Cardiol. Rep. 2018, 20, 69. [Google Scholar] [CrossRef]
- Kirkham, A.A.; Lloyd, M.G.; Claydon, V.E.; Gelmon, K.A.; McKenzie, D.C.; Campbell, K.L. A Longitudinal Study of the Association of Clinical Indices of Cardiovascular Autonomic Function with Breast Cancer Treatment and Exercise Training. Oncologist 2019, 24, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Lavín-Pérez, A.M.; Collado-Mateo, D.; Hinojo González, C.; Batista, M.; Mayo, X.; Ruisánchez Villar, C.; Jiménez, A. An online home-based exercise program improves autonomic dysfunction in breast cancer survivors. Front. Physiol. 2023, 14, 1256644. [Google Scholar] [CrossRef]
- Lavín-Pérez, A.M.; Collado-Mateo, D.; Mayo, X.; Liguori, G.; Humphreys, L.; Jiménez, A. Can Exercise Reduce the Autonomic Dysfunction of Patients With Cancer and Its Survivors? A Systematic Review and Meta-Analysis. Front. Psychol. 2021, 12, 712823. [Google Scholar] [CrossRef]
- Jones, L.W.; Habel, L.A.; Weltzien, E.; Castillo, A.; Gupta, D.; Kroenke, C.H.; Kwan, M.L.; Quesenberry, C.P.; Scott, J.; Sternfeld, B.; et al. Exercise and Risk of Cardiovascular Events in Women with Nonmetastatic Breast Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34, 2743–2749. [Google Scholar] [CrossRef]
- Kim, K.H.; Choi, S.; Kim, K.; Chang, J.; Kim, S.M.; Kim, S.R.; Cho, Y.; Oh, Y.H.; Lee, G.; Son, J.S.; et al. Association between physical activity and subsequent cardiovascular disease among 5-year breast cancer survivors. Breast Cancer Res. Treat. 2021, 188, 203–214. [Google Scholar] [CrossRef]
- Jung, W.; Cho, I.Y.; Jung, J.; Cho, M.H.; Koo, H.Y.; Park, Y.M.M.; Han, K.; Shin, D.W. Changes in Physical Activity and Cardiovascular Disease Risk in Cancer Survivors: A Nationwide Cohort Study. JACC CardioOncol. 2024, 6, 879–889. [Google Scholar] [CrossRef]
- Jones, L.W.; Courneya, K.S.; Mackey, J.R.; Muss, H.B.; Pituskin, E.N.; Scott, J.M.; Hornsby, W.E.; Coan, A.D.; Herndon, J.E.; Douglas, P.S.; et al. Cardiopulmonary function and age-related decline across the breast cancer survivorship continuum. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2012, 30, 2530–2537. [Google Scholar] [CrossRef]
- Johansen, S.H.; Wisløff, T.; Edvardsen, E.; Kollerud, S.T.; Jensen, J.S.S.; Agwu, G.; Matsoukas, K.; Scott, J.M.; Nilsen, T.S. Effects of Systemic Anticancer Treatment on Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis. JACC CardioOncol. 2025, 7, 96–106. [Google Scholar] [CrossRef]
- Dillon, H.T.; Foulkes, S.J.; Baik, A.H.; Scott, J.M.; Touyz, R.M.; Herrmann, J.; Haykowsky, M.J.; La Gerche, A.; Howden, E.J. Cancer Therapy and Exercise Intolerance: The Heart Is But a Part: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol. 2024, 6, 496–513. [Google Scholar] [CrossRef] [PubMed]
- Foulkes, S.J.; Haykowsky, M.J.; Li, T.; Wang, J.; Kennedy, M.; Kirkham, A.A.; Thompson, R.B.; Paterson, D.I.; La Gerche, A.; Pituskin, E. Determinants of Impaired Peak Oxygen Uptake in Breast Cancer Survivors: JACC: CardioOncology Primer. JACC CardioOncol. 2024, 6, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Beaudry, R.I.; Howden, E.J.; Foulkes, S.; Bigaran, A.; Claus, P.; Haykowsky, M.J.; Gerche, A.L. Determinants of exercise intolerance in breast cancer patients prior to anthracycline chemotherapy. Physiol. Rep. 2019, 7, e13971. [Google Scholar] [CrossRef] [PubMed]
- Bolam, K.A.; Howden, E.J. Impaired Cardiorespiratory Fitness in Cancer Survivors: Time to Come Together to Solve a Complex Problem. JACC CardioOncol. 2025, 7, 107–109. [Google Scholar] [CrossRef]
- Herrero, F.; Balmer, J.; San Juan, A.F.; Foster, C.; Fleck, S.J.; Pérez, M.; Cañete, S.; Earnest, C.P.; Lucía, A. Is cardiorespiratory fitness related to quality of life in survivors of breast cancer? J. Strength. Cond. Res. 2006, 20, 535–540. [Google Scholar]
- Wood, W.A.; Deal, A.M.; Reeve, B.B.; Abernethy, A.P.; Basch, E.; Mitchell, S.A.; Shatten, C.; Hie Kim, Y.; Whitley, J.; Serody, J.S.; et al. Cardiopulmonary fitness in patients undergoing hematopoietic SCT: A pilot study. Bone Marrow Transpl. 2013, 48, 1342–1349. [Google Scholar] [CrossRef]
- Lakoski, S.G.; Willis, B.L.; Barlow, C.E.; Leonard, D.; Gao, A.; Radford, N.B.; Farrell, S.W.; Douglas, P.S.; Berry, J.D.; DeFina, L.F.; et al. Midlife Cardiorespiratory Fitness, Incident Cancer, and Survival After Cancer in Men: The Cooper Center Longitudinal Study. JAMA Oncol. 2015, 1, 231–237. [Google Scholar] [CrossRef]
- Jones, L.W.; Hornsby, W.E.; Goetzinger, A.; Forbes, L.M.; Sherrard, E.L.; Quist, M.; Lane, A.T.; West, M.; Eves, N.D.; Gradison, M.; et al. Prognostic significance of functional capacity and exercise behavior in patients with metastatic non-small cell lung cancer. Lung Cancer (Amst. Neth.) 2012, 76, 248–252. [Google Scholar] [CrossRef]
- Groarke, J.D.; Payne, D.L.; Claggett, B.; Mehra, M.R.; Gong, J.; Caron, J.; Mahmood, S.S.; Hainer, J.; Neilan, T.G.; Partridge, A.H.; et al. Association of post-diagnosis cardiorespiratory fitness with cause-specific mortality in cancer. Eur. Heart J. Qual. Care Clin. Outcomes 2020, 6, 315–322. [Google Scholar] [CrossRef]
- Bettariga, F.; Galvao, D.A.; Taaffe, D.R.; Bishop, C.; Lopez, P.; Maestroni, L.; Quinto, G.; Crainich, U.; Verdini, E.; Bandini, E.; et al. Association of muscle strength and cardiorespiratory fitness with all-cause and cancer-specific mortality in patients diagnosed with cancer: A systematic review with meta-analysis. Br. J. Sports Med. 2025, 59, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.W.; Liang, Y.; Pituskin, E.N.; Battaglini, C.L.; Scott, J.M.; Hornsby, W.E.; Haykowsky, M. Effect of exercise training on peak oxygen consumption in patients with cancer: A meta-analysis. Oncologist 2011, 16, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhu, J.; Gu, Z.; Yin, X. Efficacy of Exercise Interventions in Patients with Acute Leukemia: A Meta-Analysis. PLoS ONE 2016, 11, e0159966. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.M.; Zabor, E.C.; Schwitzer, E.; Koelwyn, G.J.; Adams, S.C.; Nilsen, T.S.; Moskowitz, C.S.; Matsoukas, K.; Iyengar, N.M.; Dang, C.T.; et al. Efficacy of Exercise Therapy on Cardiorespiratory Fitness in Patients with Cancer: A Systematic Review and Meta-Analysis. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 2297–2305. [Google Scholar] [CrossRef]
- Sweegers, M.G.; Altenburg, T.M.; Brug, J.; May, A.M.; van Vulpen, J.K.; Aaronson, N.K.; Arbane, G.; Bohus, M.; Courneya, K.S.; Daley, A.J.; et al. Effects and moderators of exercise on muscle strength, muscle function and aerobic fitness in patients with cancer: A meta-analysis of individual patient data. Br. J. Sports Med. 2019, 53, 812. [Google Scholar] [CrossRef]
- Maginador, G.; Lixandrão, M.E.; Bortolozo, H.I.; Vechin, F.C.; Sarian, L.O.; Derchain, S.; Telles, G.D.; Zopf, E.; Ugrinowitsch, C.; Conceição, M.S. Aerobic Exercise-Induced Changes in Cardiorespiratory Fitness in Breast Cancer Patients Receiving Chemotherapy: A Systematic Review and Meta-Analysis. Cancers 2020, 12, 2240. [Google Scholar] [CrossRef]
- Lavín-Pérez, A.M.; Collado-Mateo, D.; Mayo, X.; Humphreys, L.; Liguori, G.; James Copeland, R.; Del Villar Álvarez, F.; Jiménez, A. High-intensity exercise to improve cardiorespiratory fitness in cancer patients and survivors: A systematic review and meta-analysis. Scand. J. Med. Sci. Sports 2021, 31, 265–294. [Google Scholar] [CrossRef]
- Díaz-Balboa, E.; Peña-Gil, C.; Rodríguez-Romero, B.; Cuesta-Vargas, A.I.; Lado-Baleato, O.; Martínez-Monzonís, A.; Pedreira-Pérez, M.; Palacios-Ozores, P.; López-López, R.; González-Juanatey, J.R.; et al. Exercise-based cardio-oncology rehabilitation for cardiotoxicity prevention during breast cancer chemotherapy: The ONCORE randomized controlled trial. Prog. Cardiovasc. Dis. 2024, 85, 74–81. [Google Scholar] [CrossRef]
- Chung, W.P.; Yang, H.L.; Hsu, Y.T.; Hung, C.H.; Liu, P.Y.; Liu, Y.W.; Chan, S.-H.; Tsai, K.-L. Real-time exercise reduces impaired cardiac function in breast cancer patients undergoing chemotherapy: A randomized controlled trial. Ann. Phys. Rehabil. Med. 2022, 65, 101485. [Google Scholar] [CrossRef]
- Hojan, K.; Procyk, D.; Horyńska-Kęstowicz, D.; Leporowska, E.; Litwiniuk, M. The Preventive role of Regular Physical Training in Ventricular Remodeling, Serum Cardiac Markers, and Exercise Performance Changes in Breast Cancer in Women Undergoing Trastuzumab Therapy-An REH-HER Study. J. Clin. Med. 2020, 9, 1379. [Google Scholar] [CrossRef]
- Ma, Z. Effect of anthracycline combined with aerobic exercise on the treatment of breast cancer. Pak. J. Pharm. Sci. 2018, 3, 1125–1129. [Google Scholar]
- Foulkes, S.J.; Howden, E.J.; Haykowsky, M.J.; Antill, Y.; Salim, A.; Nightingale, S.S.; Loi, S.; Claus, P.; Janssens, K.; Mitchell, A.M.; et al. Exercise for the Prevention of Anthracycline-Induced Functional Disability and Cardiac Dysfunction: The BREXIT Study. Circulation 2023, 147, 532–545. [Google Scholar] [CrossRef] [PubMed]
- Antunes, P.; Joaquim, A.; Sampaio, F.; Nunes, C.; Ascensão, A.; Vilela, E.; Teixeira, M.; Capela, A.; Amarelo, A.; Marques, C.; et al. Effects of exercise training on cardiac toxicity markers in women with breast cancer undergoing chemotherapy with anthracyclines: A randomized controlled trial. Eur. J. Prev. Cardiol. 2023, 30, 844–855. [Google Scholar] [CrossRef] [PubMed]
- Hornsby, W.E.; Douglas, P.S.; West, M.J.; Kenjale, A.A.; Lane, A.R.; Schwitzer, E.R.; Ray, K.A.; Herndon, J.E.; Coan, A.; Gutierrez, A.; et al. Safety and efficacy of aerobic training in operable breast cancer patients receiving neoadjuvant chemotherapy: A phase II randomized trial. Acta Oncol. Stock. Swed. 2014, 53, 65–74. [Google Scholar] [CrossRef]
- Howden, E.J.; Bigaran, A.; Beaudry, R.; Fraser, S.; Selig, S.; Foulkes, S.; Antill, Y.; Nightingale, S.; Loi, S.; Haykowsky, M.J.; et al. Exercise as a diagnostic and therapeutic tool for the prevention of cardiovascular dysfunction in breast cancer patients. Eur. J. Prev. Cardiol. 2019, 26, 305–315. [Google Scholar] [CrossRef]
- Kirkham, A.A.; Mackey, J.R.; Thompson, R.B.; Haykowsky, M.J.; Oudit, G.Y.; McNeely, M.; Coulden, R.; Stickland, M.K.; Baracos, V.E.; Dyck, J.R.B.; et al. TITAN Trial: A Randomized Controlled Trial of a Cardiac Rehabilitation Care Model in Breast Cancer. JACC Adv. 2023, 2, 100424. [Google Scholar] [CrossRef]
- Antunes, P.; Esteves, D.; Nunes, C.; Amarelo, A.; Fonseca-Moutinho, J.; Afreixo, V.; Costa, H.; Alves, A.; Joaquim, A. Effects of Exercise on Cardiac Function Outcomes in Women Receiving Anthracycline or Trastuzumab Treatment for Breast Cancer: A Systematic Review and Meta-Analysis. Appl. Sci. 2021, 11, 8336. [Google Scholar] [CrossRef]
- Linhares, B.G.; Linhares, D.G.; Boppre, G.; Zacca, R. New insights into cardioprotection in breast cancer patients undergoing physical exercise during chemotherapy: A systematic review and meta-analysis. Curr. Probl. Cardiol. 2024, 49, 102743. [Google Scholar] [CrossRef]
- Dieli-Conwright, C.M.; Courneya, K.S.; Demark-Wahnefried, W.; Sami, N.; Lee, K.; Buchanan, T.A.; Spicer, D.V.; Tripathy, D.; Bernstein, L.; Mortimer, J.E. Effects of Aerobic and Resistance Exercise on Metabolic Syndrome, Sarcopenic Obesity, and Circulating Biomarkers in Overweight or Obese Survivors of Breast Cancer: A Randomized Controlled Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 875–883. [Google Scholar] [CrossRef]
- Lee, K.; Tripathy, D.; Demark-Wahnefried, W.; Courneya, K.S.; Sami, N.; Bernstein, L.; Spicer, D.; Buchanan, T.A.; Mortimer, J.E.; Dieli-Conwright, C.M. Effect of Aerobic and Resistance Exercise Intervention on Cardiovascular Disease Risk in Women With Early-Stage Breast Cancer. JAMA Oncol. 2019, 5, 710–714. [Google Scholar] [CrossRef]
- Galvão, D.A.; Spry, N.; Denham, J.; Taaffe, D.R.; Cormie, P.; Joseph, D.; Lamb, D.S.; Chambers, S.K.; Newton, R.U. A multicentre year-long randomised controlled trial of exercise training targeting physical functioning in men with prostate cancer previously treated with androgen suppression and radiation from TROG 03.04 RADAR. Eur. Urol. 2014, 65, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Beaudry, R.I.; Liang, Y.; Boyton, S.T.; Tucker, W.J.; Brothers, R.M.; Daniel, K.M.; Rao, R.; Haykowsky, M.J. Meta-analysis of Exercise Training on Vascular Endothelial Function in Cancer Survivors. Integr. Cancer Ther. 2018, 17, 192–199. [Google Scholar] [CrossRef]
- Jones, L.M.; Stoner, L.; Baldi, J.C.; McLaren, B. Circuit resistance training and cardiovascular health in breast cancer survivors. Eur. J. Cancer Care 2020, 29, e13231. [Google Scholar] [CrossRef] [PubMed]
- Adams, S.C.; DeLorey, D.S.; Davenport, M.H.; Stickland, M.K.; Fairey, A.S.; North, S.; Szczotka, A.; Courneya, K.S. Effects of high-intensity aerobic interval training on cardiovascular disease risk in testicular cancer survivors: A phase 2 randomized controlled trial. Cancer 2017, 123, 4057–4065. [Google Scholar] [CrossRef]
- Schmitz, K.H.; Courneya, K.S.; Matthews, C.; Demark-Wahnefried, W.; Galvão, D.A.; Pinto, B.M.; Irwin, M.L.; Wolin, K.Y.; Segal, R.J.; Lucia, A.; et al. American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med. Sci. Sports Exerc. 2010, 42, 1409–1426. [Google Scholar] [CrossRef]
- Stefani, L.; Galanti, G.; Klika, R. Clinical Implementation of Exercise Guidelines for Cancer Patients: Adaptation of ACSM’s Guidelines to the Italian Model. J. Funct. Morphol. Kinesiol. 2017, 2, 4. [Google Scholar] [CrossRef]
- AIOM. LINEE GUIDA LUNGOVIVENTI. 2024. Available online: https://www.aiom.it/linee-guida-aiom-2024-lungoviventi/ (accessed on 8 April 2025).
- Jones, L.W.; Eves, N.D.; Haykowsky, M.; Joy, A.A.; Douglas, P.S. Cardiorespiratory exercise testing in clinical oncology research: Systematic review and practice recommendations. Lancet Oncol. 2008, 9, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K.; Vogt, L.; Thiel, C.; Jäger, E.; Banzer, W. Validity of the six-minute walk test in cancer patients. Int. J. Sports Med. 2013, 34, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Pelliccia, A.; Sharma, S.; Gati, S.; Bäck, M.; Börjesson, M.; Caselli, S.; Collet, J.-P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease: The Task Force on sports cardiology and exercise in patients with cardiovascular disease of the European Society of Cardiology (ESC). Eur. Heart J. 2021, 42, 17–96. [Google Scholar] [CrossRef]
- Neuendorf, T.; Haase, R.; Schroeder, S.; Schumann, M.; Nitzsche, N. Effects of high-intensity interval training on functional performance and maximal oxygen uptake in comparison with moderate intensity continuous training in cancer patients: A systematic review and meta-analysis. Support. Care Cancer Off. J. Multinatl. Assoc. Support. Care Cancer 2023, 31, 643. [Google Scholar] [CrossRef]
- Campbell, K.L.; Winters-Stone, K.M.; Wiskemann, J.; May, A.M.; Schwartz, A.L.; Courneya, K.S.; Zucker, D.S.; Matthews, C.E.; Ligibel, J.A.; Gerber, L.H.; et al. Exercise Guidelines for Cancer Survivors: Consensus Statement from International Multidisciplinary Roundtable. Med. Sci. Sports Exerc. 2019, 51, 2375–2390. [Google Scholar] [CrossRef] [PubMed]
- Cortellini, A.; Palumbo, P.; Porzio, G.; Verna, L.; Giordano, A.V.; Masciocchi, C.; Parisi, A.; Cannita, K.; Ficorella, C.; Bozzetti, F. Single-institution study of correlations between skeletal muscle mass, its density, and clinical outcomes in non-small cell lung cancer patients treated with first-line chemotherapy. Thorac. Cancer 2018, 9, 1623–1630. [Google Scholar] [CrossRef] [PubMed]
- Brzycki, M. Strength Testing—Predicting a One-Rep Max from Reps-to-Fatigue. J. Phys. Educ. Recreat. Danc. 1993, 64, 88–90. [Google Scholar] [CrossRef]
- Coratella, G. Appropriate Reporting of Exercise Variables in Resistance Training Protocols: Much more than Load and Number of Repetitions. Sports Med. Open 2022, 8, 99. [Google Scholar] [CrossRef]
- Progression Models in Resistance Training for Healthy Adults. Med. Sci. Sports Exerc. 2009, 41, 687. [CrossRef]
- Backer, I.C.D.; Breda, E.V.; Vreugdenhil, A.; Nijziel, M.R.; Kester, A.D.; Schep, G. High-intensity strength training improves quality of life in cancer survivors. Acta Oncol. 2007, 46, 1143. [Google Scholar] [CrossRef]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef]
- Scott, J.M.; Nilsen, T.S.; Gupta, D.; Jones, L.W. Exercise Therapy and Cardiovascular Toxicity in Cancer. Circulation 2018, 137, 1176–1191. [Google Scholar] [CrossRef]
- Sasso, J.P.; Eves, N.D.; Christensen, J.F.; Koelwyn, G.J.; Scott, J.; Jones, L.W. A framework for prescription in exercise-oncology research. J. Cachexia Sarcopenia Muscle 2015, 6, 115–124. [Google Scholar] [CrossRef]
- Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef]
- Halasz, G.; Piepoli, M.F. Editor’s presentation: Towards a personalised approach in exercise-based cardiovascular rehabilitation: An European Association of Preventive Cardiology (EAPC) call for action. Eur. J. Prev. Cardiol. 2020, 27, 1347–1349. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.K.; Chen, F.H.; Lin, S.F. An AI-Based Exercise Prescription Recommendation System. Appl. Sci. 2021, 11, 2661. [Google Scholar] [CrossRef]
- Gao, T.; Ren, H.; He, S.; Liang, D.; Xu, Y.; Chen, K.; Wang, Y.; Zhu, Y.; Dong, H.; Xu, Z.; et al. Development of an interpretable machine learning-based intelligent system of exercise prescription for cardio-oncology preventive care: A study protocol. Front. Cardiovasc. Med. 2022, 9, 1091885. [Google Scholar] [CrossRef] [PubMed]
Step 1: define cardiovascular and cancer therapy-related cardiotoxicity risk | ||
Step 2: define training zones: %VO2 max, %HRR, %HRmax, RPE | ||
Step 3: prescribe exercise | Frequency and duration | - 150–300 min/week of moderate-intensity aerobic exercise or |
- 75–150 min/week of vigorous-intensity aerobic activity or | ||
- equivalent combination of both (30–60 min/session) | ||
Intensity | - Moderate: Borg Scale 12–13; 40–69% peak VO2; 55–74% peak HR; 40–69% HRR | |
- Vigorous: Borg Scale 14–16; 70–85% peak VO2; 75–90% peak HR; 70–85% HRR |
Define cardiovascular and cancer therapy-related cardiotoxicity risk | ||
Step 1: estimate maximal strength | Define Maximum Repetition (RM) | |
For more fragile patients less invasive methods for estimating maximal strength are available, such as the Brzycki formula | ||
Step 2: prescribe exercise | Load | Muscular strength: 60–70% 1 RM (novice/intermediate) and 80–100% 1 RM (advanced) |
Muscular Hypertrophy: 70–85% 1 RM (novice/intermediate) and 70–100% 1 RM (advanced) | ||
Muscular Endurance: <70% 1 RM | ||
Volume | Muscular strength: 1–3 sets of 8–12 reps (novice/intermediate) and 2–6 sets of 1–8 reps (advanced)—1–3 min recovery | |
Muscular hypertrophy: 1–3 sets of 8–12 reps (novice/intermediate) and 3–6 sets of 1–12 reps (advanced) | ||
Muscular endurance: 2–4 sets of 10–25 reps | ||
Intensity | Muscular strength: 2–3 days/week (novice), 3–4 days/week (intermediate), and 4–6 days/week (advanced) | |
Muscular hypertrophy: 3–4 days/week (split routine for intermediate/advanced) | ||
Muscular endurance: 2–3 days/week (full body) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campana, N.; Fazzini, L.; Donisi, C.; Nava, A.; Migliari, M.; Deidda, M.; Pretta, A.; Scartozzi, M.; Cadeddu Dessalvi, C. Exercise Prescription in Cardio-Oncology. J. Clin. Med. 2025, 14, 3724. https://doi.org/10.3390/jcm14113724
Campana N, Fazzini L, Donisi C, Nava A, Migliari M, Deidda M, Pretta A, Scartozzi M, Cadeddu Dessalvi C. Exercise Prescription in Cardio-Oncology. Journal of Clinical Medicine. 2025; 14(11):3724. https://doi.org/10.3390/jcm14113724
Chicago/Turabian StyleCampana, Nicola, Luca Fazzini, Clelia Donisi, Alessandro Nava, Michele Migliari, Martino Deidda, Andrea Pretta, Mario Scartozzi, and Christian Cadeddu Dessalvi. 2025. "Exercise Prescription in Cardio-Oncology" Journal of Clinical Medicine 14, no. 11: 3724. https://doi.org/10.3390/jcm14113724
APA StyleCampana, N., Fazzini, L., Donisi, C., Nava, A., Migliari, M., Deidda, M., Pretta, A., Scartozzi, M., & Cadeddu Dessalvi, C. (2025). Exercise Prescription in Cardio-Oncology. Journal of Clinical Medicine, 14(11), 3724. https://doi.org/10.3390/jcm14113724