Predicting Mortality in Atrial Fibrillation Patients Treated with Direct Oral Anticoagulants: A Machine Learning Study Based on the MIMIC-IV Database
Abstract
:1. Introduction
2. Materials and Methods
- True Positive (TP): Correctly predicted death of patient;
- True Negative (TN): Correctly predicted survival of patient;
- False Positive (FP): Incorrectly predicted survival of patient, type I error;
- False Negative (FN): Incorrectly predicted death of patient, type II error.
3. Results
3.1. The General Characterization of Patients Group
3.2. Machine Learning
3.3. Shapley Values
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AdaBoost | Adaptive Boosting |
AF | Atrial fibrillation |
AI | Artificial Intelligence |
AT | Antithrombin |
AUC | Area Under the Curve |
BMI | Body Mass Index |
CCI | Charlson Comorbidity Index |
CCU | Cardiac Care Unit |
CI | Confidence Interval |
CITI | Collaborative Institutional Training Initiative |
CSRU | Cardiac Surgery Recovery Unit |
DOACs | Direct Oral Anticoagulants |
DUA | Data Use Agreement |
ICD | International Classification of Diseases |
ICU | Intensive Care Unit |
KNN | k-Nearest Neighbors |
LASSO | Least Absolute Shrinkage and Selection Operator |
LightGBM | Light Gradient-Boosting Machine |
LR | Logistic Regression |
MCC | Matthews Correlation Coefficient |
MICE | Multiple Imputation by Chained Equations |
MICU | Medical Intensive Care Unit |
MIMIC | Medical Information Mart for Intensive Care |
NICU | Neonatal Intensive Care Unit |
RF | Random Forest |
ROC | Receiver Operating Characteristic |
SD | Standard deviation |
SHAP | SHapley Additive exPlanations |
SICU | Surgical Intensive Care Unit |
VKAs | traditional vitamin K antagonists |
XAI | Explainable Artificial Intelligence |
XGBoost | eXtreme Gradient Boosting |
References
- Massera, D.; Wang, D.; Vorchheimer, D.A.; Negassa, A.; Garcia, M.J. Increased Risk of Stroke and Mortality Following New-Onset Atrial Fibrillation during Hospitalization. Europace 2017, 19, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.J.; Katz, R.; Borovskiy, Y.; Killian, A.; Levine, J.M.; McNaughton, N.W.; Callans, D.; Supple, G.; Dixit, S.; Epstein, A.E.; et al. Race and Stroke in an Atrial Fibrillation Inception Cohort: Findings from the Penn Atrial Fibrillation Free Study. Heart. Rhythm. 2018, 15, 487–493. [Google Scholar] [CrossRef]
- Thrall, G.; Lane, D.; Carroll, D.; Lip, G.Y.H. Quality of Life in Patients with Atrial Fibrillation: A Systematic Review. Am. J. Med. 2006, 119, 448.E1–448.E19. [Google Scholar] [CrossRef]
- Go, A.S.; Hylek, E.M.; Phillips, K.A.; Chang, Y.; Henault, L.E.; Selby, J.V.; Singer, D.E. Prevalence of Diagnosed Atrial Fibrillation in Adults. JAMA 2001, 285, 2370. [Google Scholar] [CrossRef] [PubMed]
- Ball, J.; Carrington, M.J.; McMurray, J.J.V.; Stewart, S. Atrial Fibrillation: Profile and Burden of an Evolving Epidemic in the 21st Century. Int. J. Cardiol. 2013, 167, 1807–1824. [Google Scholar] [CrossRef]
- Kalarus, Z.; Średniawa, B.; Mitręga, K.; Wierucki, Ł.; Sokal, A.; Lip, G.; Bandosz, P.; Stokwiszewski, J.; Boidol, J.; Zieleniewicz, P.; et al. Prevalence of Atrial Fibrillation in the 65 or over Polish Population. Report of Cross-Sectional NOMED-AF Study. Kardiol. Pol. 2023, 81, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Steffel, J.; Collins, R.; Antz, M.; Cornu, P.; Desteghe, L.; Haeusler, K.G.; Oldgren, J.; Reinecke, H.; Roldan-Schilling, V.; Rowell, N.; et al. 2021 European Heart Rhythm Association Practical Guide on the Use of Non-Vitamin K Antagonist Oral Anticoagulants in Patients with Atrial Fibrillation. EP Eur. 2021, 23, 1612–1676. [Google Scholar] [CrossRef]
- Grześk, G.; Rogowicz, D.; Wołowiec, Ł.; Ratajczak, A.; Gilewski, W.; Chudzińska, M.; Sinkiewicz, A.; Banach, J. The Clinical Significance of Drug–Food Interactions of Direct Oral Anticoagulants. Int. J. Mol. Sci. 2021, 22, 8531. [Google Scholar] [CrossRef]
- Grześk, G. Therapeutic Monitoring of Direct Oral Anticoagulants—an 8-Year Observational Study. Acta Haematol. Pol. 2021, 52, 446–452. [Google Scholar] [CrossRef]
- Ledziński, Ł.; Grześk, G. Artificial Intelligence Technologies in Cardiology. J. Cardiovasc. Dev. Dis. 2023, 10, 202. [Google Scholar] [CrossRef]
- Xu, Q.; Peng, Y.; Tan, J.; Zhao, W.; Yang, M.; Tian, J. Prediction of Atrial Fibrillation in Hospitalized Elderly Patients With Coronary Heart Disease and Type 2 Diabetes Mellitus Using Machine Learning: A Multicenter Retrospective Study. Front. Public Health 2022, 10, 842104. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Lin, C. Real-World Observational Study of Assessment of CHA2DS2-VASc, C2HEST and HAVOC Scores for Atrial Fibrillation among Patients with Rheumatological Disorders: A Nationwide Analysis. Postgrad. Med. J. 2022, 98, 837–841. [Google Scholar] [CrossRef] [PubMed]
- Fox, K.A.A.; Virdone, S.; Pieper, K.S.; Bassand, J.-P.; Camm, A.J.; Fitzmaurice, D.A.; Goldhaber, S.Z.; Goto, S.; Haas, S.; Kayani, G.; et al. GARFIELD-AF Risk Score for Mortality, Stroke, and Bleeding within 2 Years in Patients with Atrial Fibrillation. Eur. Heart J. Qual. Care Clin. Outcomes 2022, 8, 214–227. [Google Scholar] [CrossRef]
- Hu, W.; Lin, C. Comparisons of HATCH, HAVOC and CHA2DS2-VASc Scores for All-Cause Mortality Prediction in Atrial Fibrillation: A Real-World Evidence Study. Postgrad. Med. J. 2023, 99, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Jin, F.; Cao, H.; Li, Q.; Zhang, P. Development of a Risk Score for Predicting One-Year Mortality in Patients with Atrial Fibrillation Using XGBoost-Assisted Feature Selection. Pol. Heart J. 2024, 82, 941–948. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, J.; Wei, L.; Xing, W.; Shang, H.; Liu, G.; Liu, F. Prediction of All-Cause Mortality in Coronary Artery Disease Patients with Atrial Fibrillation Based on Machine Learning Models. BMC Cardiovasc. Disord. 2021, 21, 499. [Google Scholar] [CrossRef]
- Falsetti, L.; Rucco, M.; Proietti, M.; Viticchi, G.; Zaccone, V.; Scarponi, M.; Giovenali, L.; Moroncini, G.; Nitti, C.; Salvi, A. Risk Prediction of Clinical Adverse Outcomes with Machine Learning in a Cohort of Critically Ill Patients with Atrial Fibrillation. Sci. Rep. 2021, 11, 18925. [Google Scholar] [CrossRef]
- Alistair, J.; Lucas, B.; Tom, P.; Brian, G.; Benjamin, M.; Steven, H.; Leo, A.C.; Roger, M. MIMIC-IV, version 3.1; PhysioNet: Boston, MA, USA, 2024. [Google Scholar]
- Johnson, A.E.W.; Bulgarelli, L.; Shen, L.; Gayles, A.; Shammout, A.; Horng, S.; Pollard, T.J.; Hao, S.; Moody, B.; Gow, B.; et al. MIMIC-IV, a Freely Accessible Electronic Health Record Dataset. Sci. Data 2023, 10, 1. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet. Circulation 2000, 101, E215–E220. [Google Scholar] [CrossRef]
- Bergstra, J.; Yamins, D.; Cox, D. Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; PMLR: Atlanta, GA, USA, 2013; Volume 28, pp. 115–123. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 3146–3154. [Google Scholar]
- Xia, Y.; Liang, A.; Wang, M.; Zhang, J. Risk Analysis of the Association between EASIX and All-Cause Mortality in Critical Ill Patients with Atrial Fibrillation: A Retrospective Study from MIMIC-IV Database. Eur. J. Med. Res 2025, 30, 344. [Google Scholar] [CrossRef]
- Morrone, D.; Kroep, S.; Ricci, F.; Renda, G.; Patti, G.; Kirchhof, P.; Chuang, L.-H.; van Hout, B.; De Caterina, R. Mortality Prediction of the CHA2DS2-VASc Score, the HAS-BLED Score, and Their Combination in Anticoagulated Patients with Atrial Fibrillation. J. Clin. Med. 2020, 9, 3987. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 3146–3154. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From Local Explanations to Global Understanding with Explainable AI for Trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Van Gelder, I.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.J.G.M.; De Potter, T.J.R.; Dwight, J.; Guasti, L.; Hanke, T.; et al. 2024 ESC Guidelines for the Management of Atrial Fibrillation Developed in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2024, 45, 3314–3414. [Google Scholar] [CrossRef] [PubMed]
- Camm, A.J.; Amarenco, P.; Haas, S.; Hess, S.; Kirchhof, P.; Kuhls, S.; van Eickels, M.; Turpie, A.G.G. XANTUS: A Real-World, Prospective, Observational Study of Patients Treated with Rivaroxaban for Stroke Prevention in Atrial Fibrillation. Eur. Heart J. 2016, 37, 1145–1153. [Google Scholar] [CrossRef]
- Lavalle, C.; Pierucci, N.; Mariani, M.V.; Piro, A.; Borrelli, A.; Grimaldi, M.; Rossillo, A.; Notarstefano, P.; Compagnucci, P.; Russo, A.D.; et al. Italian Registry in the Setting of Atrial Fibrillation Ablation with Rivaroxaban-IRIS. Minerva Cardiol. Angiol. 2024, 72, 625–637. [Google Scholar] [CrossRef]
- Larsen, T.B.; Skjøth, F.; Nielsen, P.B.; Kjældgaard, J.N.; Lip, G.Y.H. Comparative Effectiveness and Safety of Non-Vitamin K Antagonist Oral Anticoagulants and Warfarin in Patients with Atrial Fibrillation: Propensity Weighted Nationwide Cohort Study. BMJ 2016, 353, i3189. [Google Scholar] [CrossRef]
- Luo, Y.; Dong, R.; Liu, J.; Wu, B. A Machine Learning-Based Predictive Model for the in-Hospital Mortality of Critically Ill Patients with Atrial Fibrillation. Int. J. Med. Inform. 2024, 191, 105585. [Google Scholar] [CrossRef]
- Li, Q.; Nie, J.; Cao, M.; Luo, C.; Sun, C. Association between Inflammation Markers and All-Cause Mortality in Critical Ill Patients with Atrial Fibrillation: Analysis of the Multi-Parameter Intelligent Monitoring in Intensive Care (MIMIC-IV) Database. IJC Heart Vasc. 2024, 51, 101372. [Google Scholar] [CrossRef]
- Hu, Y.; Zhao, Y.; Zhang, J.; Li, C. The Association between Triglyceride Glucose-Body Mass Index and All-Cause Mortality in Critically Ill Patients with Atrial Fibrillation: A Retrospective Study from MIMIC-IV Database. Cardiovasc. Diabetol. 2024, 23, 64. [Google Scholar] [CrossRef]
- Johnson, A.E.W.; Pollard, T.J.; Shen, L.; Lehman, L.H.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Anthony Celi, L.; Mark, R.G. MIMIC-III, a Freely Accessible Critical Care Database. Sci. Data 2016, 3, 160035. [Google Scholar] [CrossRef]
- Grześk, G.; Janiszewska, E.; Malinowski, B.; Kubica, A.; Wiciński, M. Adherence in Patients with Atrial Fibrillation Treated with Dabigatran. Kardiol. Pol. 2018, 76, 1562–1563. [Google Scholar] [CrossRef] [PubMed]
- Wołowiec, Ł.; Kusiak, M.; Budzyński, J.; Wołowiec, A.; Jaśniak, A.; Wiciński, M.; Pedrycz-Wieczorska, A.; Rogowicz, D.; Grześk, G. Therapeutic Drug Monitoring of Direct Oral Anticoagulants in Patients with Extremely Low and High Body Weight—Pilot Study. J. Clin. Med. 2023, 12, 4969. [Google Scholar] [CrossRef] [PubMed]
- Whittemore, H.; Posen, A.K.; Hellenbart, E.L.; Groo, V.; Wenzler, E.; Tilton, J.J. The Impact of Body Weight and Renal Function on the Risk of Bleeding with Direct Oral Anticoagulants in Atrial Fibrillation. Ann. Pharmacother. 2021, 55, 1309–1317. [Google Scholar] [CrossRef]
- Yang, D.; Ye, S.; Zhang, K.; Huang, Z.; Zhang, L. Association between Obesity and Short- and Medium-Term Mortality in Critically Ill Patients with Atrial Fibrillation: A Retrospective Cohort Study. BMC Cardiovasc. Disord. 2023, 23, 150. [Google Scholar] [CrossRef]
- Son, B.; Myung, J.; Shin, Y.; Kim, S.; Kim, S.H.; Chung, J.-M.; Noh, J.; Cho, J.; Chung, H.S. Improved Patient Mortality Predictions in Emergency Departments with Deep Learning Data-Synthesis and Ensemble Models. Sci. Rep. 2023, 13, 15031. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Chao, C.; Wu, C.; Chien, T.; Li, C. Machine Learning-Based Predictions of Mortality and Readmission in Type 2 Diabetes Patients in the ICU. Appl. Sci. 2024, 14, 8443. [Google Scholar] [CrossRef]
- Li, X.; Wu, R.; Zhao, W.; Shi, R.; Zhu, Y.; Wang, Z.; Pan, H.; Wang, D. Machine Learning Algorithm to Predict Mortality in Critically Ill Patients with Sepsis-Associated Acute Kidney Injury. Sci. Rep. 2023, 13, 5223. [Google Scholar] [CrossRef]
- Sharifi-Kia, A.; Nahvijou, A.; Sheikhtaheri, A. Machine Learning-Based Mortality Prediction Models for Smoker COVID-19 Patients. BMC Med. Inform. Decis. Mak. 2023, 23, 129. [Google Scholar] [CrossRef]
- Gao, J.; Lu, Y.; Ashrafi, N.; Domingo, I.; Alaei, K.; Pishgar, M. Prediction of Sepsis Mortality in ICU Patients Using Machine Learning Methods. BMC Med. Inform. Decis. Mak. 2024, 24, 228. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Chao, Y.; Xu, M.; Geng, X.; Hu, X. DEVELOPMENT OF A MACHINE LEARNING MODEL FOR PREDICTING 28-DAY MORTALITY OF SEPTIC PATIENTS WITH ATRIAL FIBRILLATION. Shock 2023, 59, 400–408. [Google Scholar] [CrossRef]
Feature | Survivors (n = 6086) | Non-Survivors (n = 345) | p-Value (Two-Sided) |
---|---|---|---|
Age [years], median (Q1,Q3) | 76 (68,84) | 81 (73,88) | 0.00000 |
Gender, male, n (%) | 3416 (56.13%) | 167 (48.41%) | 0.00589 |
Congestive Heart Failure, n (%) | 2768 (45.48%) | 243 (70.43%) | 0.00000 |
Dementia, n (%) | 398 (6.54%) | 49 (14.20%) | 0.00000 |
Diabetes without Complications, n (%) | 1313 (21.57%) | 77 (22.32%) | 0.79510 |
Paraplegia, n (%) | 316 (5.19%) | 54 (15.65%) | 0.00000 |
Metastatic Solid Tumor, n (%) | 192 (3.15%) | 39 (11.30%) | 0.00000 |
Readmission within 60 days, n (%) | 1249 (20.52%) | 120 (34.78%) | 0.00000 |
Marital Status: Widowed, n (%) | 1051 (17.27%) | 74 (21.45%) | 0.05546 |
Observation Admission, n (%) | 2702 (44.40%) | 103 (29.86%) | 0.00000 |
Surgical Admission, n (%) | 418 (6.87%) | 5 (1.45%) | 0.00012 |
Microbiology: Negative, n (%) | 5113 (84.01%) | 191 (55.36%) | 0.00000 |
No applied procedures, n (%) | 2197 (36.10%) | 53 (15.36%) | 0.00000 |
Heparin, n (%) | 3984 (65.46%) | 313 (90.72%) | 0.00000 |
Obesity, n (%) | 831 (13.65%) | 37 (10.72%) | 0.14204 |
Anion Gap [mEq/L], mean ± SD | 15.89 ± 3.55 | 18.33 ± 4.27 | 0.00000 |
Bicarbonate [mEq/L], mean ± SD | 27.79 ± 4.04 | 30.58 ± 5.30 | 0.00000 |
Creatinine [mg/dL], mean ± SD | 1.43 ± 1.28 | 2.05 ± 1.87 | 0.00000 |
Hemoglobin [g/dL], mean ± SD | 12.45 ± 2.07 | 11.6 ± 2.08 | 0.00000 |
Potassium [mEq/L], mean ± SD | 4.69 ± 0.71 | 5.26 ± 0.98 | 0.00000 |
Sodium [mEq/L], mean ± SD | 141.88 ± 4.01 | 144.94 ± 5.67 | 0.00000 |
Urea Nitrogen [mg/dL], mean ± SD | 30.76 ± 21.11 | 48.97 ± 27.20 | 0.00000 |
White Blood Cells [109/μL], mean ± SD | 12.3 ± 9.55 | 17.35 ± 10.19 | 0.00000 |
Sum of ICU Length of Stay [days], median (Q1,Q3) | 0 (0, 1.45) | 3.19 (1.68, 7.73) | 0.00000 |
Number of Diagnoses, median (Q1,Q3) | 17 (12,22) | 27 (21,33) | 0.00000 |
Charlson Comorbidity Index, median (Q1,Q3) | 5 (4,7) | 8 (6,10) | 0.00000 |
Hospital Days [days], median (Q1,Q3) | 5 (2,9) | 13 (8,23) | 0.00000 |
Algorithm | AUC (95%CI) | Accuracy (95%CI) | Sensitivity (95%CI) | Specificity (95%CI) | MCC (95%CI) |
---|---|---|---|---|---|
LightGBM | 0.873 (0.865–0.881) | 0.862 (0.856–0.867) | 0.886 (0.870–0.901) | 0.860 (0.854–0.866) | 0.439 (0.427–0.450) |
XGBoost | 0.871 (0.863–0.879) | 0.846 (0.840–0.853) | 0.899 (0.882–0.915) | 0.843 (0.836–0.850) | 0.422 (0.411–0.433) |
RF | 0.862 (0.854–0.870) | 0.853 (0.846–0.859) | 0.873 (0.855–0.890) | 0.851 (0.845–0.858) | 0.419 (0.409–0.429) |
AdaBoost | 0.844 (0.839–0.849) | 0.764 (0.745–0.783) | 0.934 (0.908–0.961) | 0.754 (0.733–0.775) | 0.348 (0.340–0.357) |
LR | 0.795 (0.785–0.805) | 0.770 (0.765–0.776) | 0.822 (0.801–0.842) | 0.767 (0.762–0.773) | 0.301 (0.291–0.312) |
Algorithm | AUC (95%CI) | Accuracy (95%CI) | Sensitivity (95%CI) | Specificity (95%CI) | MCC (95%CI) |
---|---|---|---|---|---|
LightGBM | 0.886 (0.849–0.919) | 0.862 (0.842–0.880) | 0.913 (0.842–0.973) | 0.859 (0.839–0.878) | 0.450 (0.388–0.507) |
XGBoost | 0.873 (0.834–0.908) | 0.849 (0.828–0.868) | 0.899 (0.823–0.967) | 0.846 (0.825–0.866) | 0.425 (0.362–0.483) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ledziński, Ł.; Grześk, E.; Ledzińska, M.; Grześk, G. Predicting Mortality in Atrial Fibrillation Patients Treated with Direct Oral Anticoagulants: A Machine Learning Study Based on the MIMIC-IV Database. J. Clin. Med. 2025, 14, 3697. https://doi.org/10.3390/jcm14113697
Ledziński Ł, Grześk E, Ledzińska M, Grześk G. Predicting Mortality in Atrial Fibrillation Patients Treated with Direct Oral Anticoagulants: A Machine Learning Study Based on the MIMIC-IV Database. Journal of Clinical Medicine. 2025; 14(11):3697. https://doi.org/10.3390/jcm14113697
Chicago/Turabian StyleLedziński, Łukasz, Elżbieta Grześk, Małgorzata Ledzińska, and Grzegorz Grześk. 2025. "Predicting Mortality in Atrial Fibrillation Patients Treated with Direct Oral Anticoagulants: A Machine Learning Study Based on the MIMIC-IV Database" Journal of Clinical Medicine 14, no. 11: 3697. https://doi.org/10.3390/jcm14113697
APA StyleLedziński, Ł., Grześk, E., Ledzińska, M., & Grześk, G. (2025). Predicting Mortality in Atrial Fibrillation Patients Treated with Direct Oral Anticoagulants: A Machine Learning Study Based on the MIMIC-IV Database. Journal of Clinical Medicine, 14(11), 3697. https://doi.org/10.3390/jcm14113697