The Relation Between Cardiac Output and Cerebral Blood Flow in ME/CFS Patients with a POTS Response During a Tilt Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tilt-Test Protocol
2.2. Extracranial Doppler: Cerebral Blood Flow Measurements
2.3. End-Tidal CO2 Pressure Measurements
2.4. Doppler Echocardiographic Measurements
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Srichawla, B.S.; Garcia-Dominguez, M.A. Regional dynamic cerebral autoregulation across anterior and posterior circulatory territories: A detailed exploration and its clinical implications. World J. Crit. Care Med. 2024, 13, 97149. [Google Scholar] [CrossRef] [PubMed]
- Hoiland, R.L.; Fisher, J.A.; Ainslie, P.N. Regulation of the cerebral circulation by arterial carbon dioxide. Compr. Physiol. 2019, 9, 1101–1154. [Google Scholar] [CrossRef] [PubMed]
- Claassen, J.; Thijssen, D.H.J.; Panerai, R.B.; Faraci, F.M. Regulation of cerebral blood flow in humans: Physiology and clinical implications of autoregulation. Physiol. Rev. 2021, 101, 1487–1559. [Google Scholar] [CrossRef]
- Papasilekas, T.; Themistoklis, K.M.; Melanis, K.; Patrikelis, P.; Spartalis, E.; Korfias, S.; Sakas, D. A brief review of brain’s blood flow-metabolism coupling and pressure autoregulation. J. Neurol. Surg. A Cent. Eur. Neurosurg. 2021, 82, 257–261. [Google Scholar] [CrossRef]
- ter Laan, M.; van Dijk, J.M.; Elting, J.W.; Staal, M.J.; Absalom, A.R. Sympathetic regulation of cerebral blood flow in humans: A review. Br. J. Anaesth. 2013, 111, 361–367. [Google Scholar] [CrossRef]
- Gyawali, P.; Lillicrap, T.P.; Esperon, C.G.; Bhattarai, A.; Bivard, A.; Spratt, N. Whole blood Viscosity and cerebral blood flow in acute ischemic stroke. Semin. Thromb. Hemost. 2024, 50, 580–591. [Google Scholar] [CrossRef]
- Meng, L.; Hou, W.; Chui, J.; Han, R.; Gelb, A.W. Cardiac output and cerebral blood flow: The integrated regulation of brain perfusion in adult humans. Anesthesiology 2015, 123, 1198–1208. [Google Scholar] [CrossRef]
- Castle-Kirszbaum, M.; Parkin, W.G.; Goldschlager, T.; Lewis, P.M. Cardiac output and cerebral blood flow: A systematic review of cardio-cerebral coupling. J. Neurosurg. Anesthesiol. 2022, 34, 352–363. [Google Scholar] [CrossRef]
- Timmers, H.J.; Wieling, W.; Soetekouw, P.M.; Bleijenberg, G.; Van Der Meer, J.W.; Lenders, J.W. Hemodynamic and neurohumoral responses to head-up tilt in patients with chronic fatigue syndrome. Clin. Auton. Res. 2002, 12, 273–280. [Google Scholar] [CrossRef]
- Streeten, D.H.; Thomas, D.; Bell, D.S. The roles of orthostatic hypotension, orthostatic tachycardia, and subnormal erythrocyte volume in the pathogenesis of the chronic fatigue syndrome. Am. J. Med. Sci. 2000, 320, 1–8. [Google Scholar] [CrossRef]
- van Campen, C.L.M.C.; Rowe, P.C.; Visser, F.C. The myalgic encephalomyelitis/chronic fatigue syndrome patients with joint hypermobility show larger cerebral blood flow reductions during orthostatic stress testing than patients without hypermobility: A case control study. Med. Res. Arch. 2021, 9. [Google Scholar] [CrossRef]
- Fu, Q.; Vangundy, T.B.; Galbreath, M.M.; Shibata, S.; Jain, M.; Hastings, J.L.; Bhella, P.S.; Levine, B.D. Cardiac origins of the postural orthostatic tachycardia syndrome. J. Am. Coll. Cardiol. 2010, 55, 2858–2868. [Google Scholar] [CrossRef]
- Wyller, V.B.; Vitelli, V.; Sulheim, D.; Fagermoen, E.; Winger, A.; Godang, K.; Bollerslev, J. Altered neuroendocrine control and association to clinical symptoms in adolescent chronic fatigue syndrome: A cross-sectional study. J. Transl. Med. 2016, 14, 121. [Google Scholar] [CrossRef]
- van Campen, C.L.M.C.; Verheugt, F.W.A.; Rowe, P.C.; Visser, F.C. Cerebral blood flow is reduced in ME/CFS during head-up tilt testing even in the absence of hypotension or tachycardia: A quantitative, controlled study using doppler echography. Clin. Neurophysiol. Pract. 2020, 5, 50–58. [Google Scholar] [CrossRef]
- Davenport, T.E.; Lehnen, M.; Stevens, S.R.; VanNess, J.M.; Stevens, J.; Snell, C.R. Chronotropic intolerance: An overlooked determinant of symptoms and activity limitation in myalgic encephalomyelitis/chronic fatigue syndrome? Front. Pediatr. 2019, 7, 82. [Google Scholar] [CrossRef]
- Nakatomi, Y.; Mizuno, K.; Ishii, A.; Wada, Y.; Tanaka, M.; Tazawa, S.; Onoe, K.; Fukuda, S.; Kawabe, J.; Takahashi, K.; et al. Neuroinflammation in patients with chronic fatigue syndrome/myalgic encephalomyelitis: An 11C-(R)-PK11195 PET study. J. Nucl. Med. 2014, 55, 945–950. [Google Scholar] [CrossRef]
- Wang, X.L.; Ling, T.Y.; Charlesworth, M.C.; Figueroa, J.J.; Low, P.; Shen, W.K.; Lee, H.C. Autoimmunoreactive IgGs against cardiac lipid raft-associated proteins in patients with postural orthostatic tachycardia syndrome. Transl. Res. 2013, 162, 34–44. [Google Scholar] [CrossRef]
- Scherbakov, N.; Szklarski, M.; Hartwig, J.; Sotzny, F.; Lorenz, S.; Meyer, A.; Grabowski, P.; Doehner, W.; Scheibenbogen, C. Peripheral endothelial dysfunction in myalgic encephalomyelitis/chronic fatigue syndrome. ESC Heart Fail. 2020, 7, 1064–1071. [Google Scholar] [CrossRef]
- Nunes, J.M.; Kruger, A.; Proal, A.; Kell, D.B.; Pretorius, E. The occurrence of hyperactivated platelets and fibrinaloid microclots in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Pharmaceuticals 2022, 15, 931. [Google Scholar] [CrossRef]
- van Campen, C.M.C.; Verheugt, F.W.A.; Rowe, P.C.; Visser, F.C. The cardiac output–cerebral blood flow relationship is abnormal in most myalgic encephalomyelitis/chronic fatigue syndrome patients with a normal heart rate and blood pressure response during a tilt test. Healthcare 2024, 12, 2566. [Google Scholar] [CrossRef]
- van Campen, C.M.C.; Rowe, P.C.; Visser, F.C. Two different hemodynamic responses in ME/CFS patients with postural orthostatic tachycardia syndrome during head-up tilt testing. J. Clin. Med. 2024, 13, 7726. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, K.; Straus, S.E.; Hickie, I.; Sharpe, M.C.; Dobbins, J.G.; Komaroff, A. The chronic fatigue syndrome: A comprehensive approach to its definition and study. International chronic fatigue syndrome study group. Ann. Intern. Med. 1994, 121, 953–959. [Google Scholar] [CrossRef]
- Carruthers, B.M.; van de Sande, M.I.; DE Meirleir, K.L.; Klimas, N.G.; Broderick, G.; Mitchell, T.; Staines, D.; Powles, A.C.; Speight, N.; Vallings, R.; et al. Myalgic encephalomyelitis: International consensus criteria. J. Intern. Med. 2011, 270, 327–338. [Google Scholar] [CrossRef]
- van Campen, C.L.M.C.; Verheugt, F.W.A.; Visser, F.C. Cerebral blood flow changes during tilt table testing in healthy volunteers, as assessed by doppler imaging of the carotid and vertebral arteries. Clin. Neurophysiol. Pract. 2018, 3, 91–95. [Google Scholar] [CrossRef]
- Eeftinck Schattenkerk, D.W.; van Lieshout, J.J.; van den Meiracker, A.H.; Wesseling, K.R.; Blanc, S.; Wieling, W.; van Montfrans, G.A.; Settels, J.J.; Wesseling, K.H.; Westerhof, B.E. Nexfin noninvasive continuous blood pressure validated against riva-rocci/korotkoff. Am. J. Hypertens. 2009, 22, 378–383. [Google Scholar] [CrossRef]
- Martina, J.R.; Westerhof, B.E.; van Goudoever, J.; de Beaumont, E.M.; Truijen, J.; Kim, Y.S.; Immink, R.V.; Jobsis, D.A.; Hollmann, M.W.; Lahpor, J.R.; et al. Noninvasive continuous arterial blood pressure monitoring with nexfin(r). Anesthesiology 2012, 116, 1092–1103. [Google Scholar] [CrossRef]
- Fedorowski, A.; Burri, P.; Melander, O. Orthostatic hypotension in genetically related hypertensive and normotensive individuals. J. Hypertens. 2009, 27, 976–982. [Google Scholar] [CrossRef]
- Freeman, R.; Wieling, W.; Axelrod, F.B.; Benditt, D.G.; Benarroch, E.; Biaggioni, I.; Cheshire, W.P.; Chelimsky, T.; Cortelli, P.; Gibbons, C.H.; et al. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Auton. Neurosci. 2011, 161, 46–48. [Google Scholar] [CrossRef]
- Sheldon, R.S.; Grubb, B.P., 2nd; Olshansky, B.; Shen, W.K.; Calkins, H.; Brignole, M.; Raj, S.R.; Krahn, A.D.; Morillo, C.A.; Stewart, J.M.; et al. 2015 heart rhythm society expert consensus statement on the diagnosis and treatment of postural tachycardia syndrome, inappropriate sinus tachycardia, and vasovagal syncope. Heart Rhythm 2015, 12, e41–e63. [Google Scholar] [CrossRef]
- Shen, W.K.; Sheldon, R.S.; Benditt, D.G.; Cohen, M.I.; Forman, D.E.; Goldberger, Z.D.; Grubb, B.P.; Hamdan, M.H.; Krahn, A.D.; Link, M.S.; et al. 2017 ACC/AHA/HRS guideline for the evaluation and management of patients with syncope: Executive summary: A report of the American college of cardiology/American heart association task force on clinical practice guidelines and the heart rhythm society. J. Am. Coll. Cardiol. 2017, 70, 620–663. [Google Scholar] [CrossRef]
- Stewart, J.M.; Pianosi, P.; Shaban, M.A.; Terilli, C.; Svistunova, M.; Visintainer, P.; Medow, M.S. Postural hyperventilation as a cause of postural tachycardia syndrome: Increased systemic vascular resistance and decreased cardiac output when upright in all postural tachycardia syndrome variants. J. Am. Heart Assoc. 2018, 7, e008854. [Google Scholar] [CrossRef] [PubMed]
- Maes, F.; Pierard, S.; de Meester, C.; Boulif, J.; Amzulescu, M.; Vancraeynest, D.; Pouleur, A.-C.; Pasquet, A.; Gerber, B.; Vanoverschelde, J.-L. Impact of left ventricular outflow tract ellipticity on the grading of aortic stenosis in patients with normal ejection fraction. J. Cardiovasc. Magn. Reson. 2017, 19, 37. [Google Scholar] [CrossRef] [PubMed]
- Kanjwal, K.; Saeed, B.; Karabin, B.; Kanjwal, Y.; Grubb, B.P. Clinical presentation and management of patients with hyperadrenergic postural orthostatic tachycardia syndrome. A single center experience. Cardiol. J. 2011, 18, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Angeli, A.M.; Salonen, B.R.; Ganesh, R.; Hurt, R.T.; Abdalrhim, A.; Mueller, M.; Volcheck, M.; Aakre, C. Symptom presentation by phenotype of postural orthostatic tachycardia syndrome. Sci. Rep. 2024, 14, 205. [Google Scholar] [CrossRef]
- Okamoto, L.E.; Urechie, V.; Rigo, S.; Abner, J.J.; Giesecke, M.; Muldowney, J.A.S.; Furlan, R.; Shibao, C.A.; Shirey-Rice, J.K.; Pulley, J.M.; et al. Hyperadrenergic postural tachycardia syndrome: Clinical biomarkers and response to guanfacine. Hypertension 2024, 81, 2237–2247. [Google Scholar] [CrossRef]
- Green, E.A.; Raj, V.; Shibao, C.A.; Biaggioni, I.; Black, B.K.; Dupont, W.D.; Robertson, D.; Raj, S.R. Effects of norepinephrine reuptake inhibition on postural tachycardia syndrome. J. Am. Heart Assoc. 2013, 2, e000395. [Google Scholar] [CrossRef]
- Goldstein, D.S.; Cheshire, W.P. Roles of catechol neurochemistry in autonomic function testing. Clin. Auton. Res. 2018, 28, 273–288. [Google Scholar] [CrossRef]
- Fang, Y.C.; Hsieh, Y.C.; Hu, C.J.; Tu, Y.K. Endothelial dysfunction in neurodegenerative diseases. Int. J. Mol. Sci. 2023, 24, 2909. [Google Scholar] [CrossRef]
- Bai, T.; Yu, S.; Feng, J. Advances in the role of endothelial cells in cerebral small vessel disease. Front. Neurol. 2022, 13, 861714. [Google Scholar] [CrossRef]
- Dubchenko, E.; Ivanov, A.; Spirina, N.; Smirnova, N.; Melnikov, M.; Boyko, A.; Gusev, E.; Kubatiev, A. Hyperhomocysteinemia and endothelial dysfunction in multiple sclerosis. Brain Sci. 2020, 10, 637. [Google Scholar] [CrossRef]
- Kollár, B.; Blaho, A.; Valovičová, K.; Poddaný, M.; Valkovič, P.; Straka, I.; Turčáni, P.; Šiarnik, P. Impairment of endothelial function in Parkinson’s disease. BMC Res. Notes 2022, 15, 284. [Google Scholar] [CrossRef] [PubMed]
- Newton, D.J.; Kennedy, G.; Chan, K.K.; Lang, C.C.; Belch, J.J.; Khan, F. Large and small artery endothelial dysfunction in chronic fatigue syndrome. Int. J. Cardiol. 2012, 154, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Sandvik, M.K.; Sørland, K.; Leirgul, E.; Rekeland, I.G.; Stavland, C.S.; Mella, O.; Fluge, Ø. Endothelial dysfunction in ME/CFS patients. PLoS ONE 2023, 18, e0280942. [Google Scholar] [CrossRef]
- McLaughlin, M.; Sanal-Hayes, N.E.M.; Hayes, L.D.; Berry, E.C.; Sculthorpe, N.F. People with long COVID and myalgic encephalomyelitis/chronic fatigue syndrome exhibit similarly impaired vascular function. Am. J. Med. 2023, 138, 560–566. [Google Scholar] [CrossRef]
- Bryan, R.M. Cerebral blood flow and energy metabolism during stress. Am. J. Physiol. Heart Circ. Physiol. 1990, 259, H269–H280. [Google Scholar] [CrossRef]
- Jenkins, P.O.; Mehta, M.A.; Sharp, D.J. Catecholamines and cognition after traumatic brain injury. Brain 2016, 139, 2345–2371. [Google Scholar] [CrossRef]
- Phillips, A.A.; Chan, F.H.N.; Zheng, M.M.Z.; Krassioukov, A.V.; Ainslie, P.N. Neurovascular coupling in humans: Physiology, methodological advances and clinical implications. J. Cereb. Blood Flow Metab. 2015, 36, 647–664. [Google Scholar] [CrossRef]
- Raj, S.R.; Black, B.K.; Biaggioni, I.; Paranjape, S.Y.; Ramirez, M.; Dupont, W.D.; Robertson, D. Propranolol decreases tachycardia and improves symptoms in the postural tachycardia syndrome: Less is more. Circulation 2009, 120, 725–734. [Google Scholar] [CrossRef]
- Vernino, S.; Bourne, K.M.; Stiles, L.E.; Grubb, B.P.; Fedorowski, A.; Stewart, J.M.; Arnold, A.C.; Pace, L.A.; Axelsson, J.; Boris, J.R.; et al. Postural orthostatic tachycardia syndrome (POTS): State of the science and clinical care from a 2019 national institutes of health expert consensus meeting—Part 1. Auton. Neurosci. Basic Clin. 2021, 235, 102828. [Google Scholar] [CrossRef]
- Raj, S.R.; Bourne, K.M.; Stiles, L.E.; Miglis, M.G.; Cortez, M.M.; Miller, A.J.; Freeman, R.; Biaggioni, I.; Rowe, P.C.; Sheldon, R.S.; et al. Postural orthostatic tachycardia syndrome (POTS): Priorities for POTS care and research from a 2019 national institutes of health expert consensus meeting—Part 2. Auton. Neurosci. Basic Clin. 2021, 235, 102836. [Google Scholar] [CrossRef]
- van Campen, C.L.M.C.; Verheugt, F.W.A.; Rowe, P.C.; Visser, F.C. Comparison of the finger plethysmography derived stroke volumes by nexfin CO trek and suprasternal aortic doppler derived stroke volume measruements in adults with myalgic encephaolomyelitis/chronic fatgitue syndrome and in healthy controls. Technol. Health Care 2021, 29, 629–642. [Google Scholar] [CrossRef] [PubMed]
- Top, K.A.; Bettinger, J.A.; Embree, J.E.; Jadavji, T.; Purewal, R.; Sauvé, L.; Papenburg, J.; Deeks, S.L.; Wilson, S.E.; Dahdah, N.; et al. Active surveillance for myocarditis and pericarditis in Canadian children 2021–2022: A Canadian immunization monitoring program active study. J. Pediatr. 2025, in press. [Google Scholar] [CrossRef]
- Bushi, G.; Gaidhane, S.; Ballal, S.; Kumar, S.; Bhat, M.; Sharma, S.; Kumar, M.R.; Rustagi, S.; Khatib, M.N.; Rai, N.; et al. Postural orthostatic tachycardia syndrome after COVID-19 vaccination: A systematic review. BMC Cardiovasc. Disord. 2024, 24, 643. [Google Scholar] [CrossRef] [PubMed]
- Okongwu, C.C.; Olaofe, O.O. Cardiac myxoma: A comprehensive review. J. Cardiothorac. Surg. 2025, 20, 151. [Google Scholar] [CrossRef]
- Jamaleddin Ahmad, F.A.; Ali Abdi, S.I.; Verma, T.; Barsinge, T.; Banderas Echeverry, W.M.; Sampath, N.; Fathima, A.; Khelifi, A.; Ashraf Sanour, O.; Zerin, A.; et al. A comprehensive review of effusive-constrictive pericarditis, diagnosis, and management. Cardiol. Rev. 2025, Online ahead of print. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Fagiani, V.; Nicolosi, G.L.; Lombardo, M. The influence of pectus excavatum on biventricular mechanics: A systematic review and meta-analysis. Minerva Cardiol. Angiol. 2024, online ahead of print. [Google Scholar] [CrossRef]
- Sanada, Y.; Azuma, J.; Hirano, Y.; Hasegawa, Y.; Yamamoto, T. Overlapping myocarditis and postural orthostatic tachycardia syndrome after COVID-19 messenger RNA vaccination: A case report. Cureus 2022, 14, e31006. [Google Scholar] [CrossRef]
- van Campen, C.L.i.M.C.; Rowe, P.C.; Verheugt, F.W.A.; Visser, F.C. Influence of end-tidal CO2 on cerebral blood flow during orthostatic stress in controls and adults with myalgic encephalomyelitis/chronic fatigue syndrome. Physiol. Rep. 2023, 11, e15639. [Google Scholar] [CrossRef]
ME/CFS and POTS with a Limited % CO Reduction (≥−15) (n = 88) | ME/CFS and POTS with a Large %CO Reduction (<−15%) (n = 172) | p-Value | |
---|---|---|---|
Male/female * | 7/81 (8/92%) | 23/149 (41/59%) | 0.196 |
Age (years) ∞ | 33 (10) | 35 (10) | 0.221 |
Height (cm) ∞ | 174 (7) | 173 (8) | 0.438 |
Weight (kg) # | 64 (59–74) | 68 (59–80) | 0.146 |
BMI (kg/m2) # | 21.4 (19.5–24.3) | 24.2 (21.2–27.4) | 0.393 |
BSA (m2) | 1.77 (1.69–1.90) | 1.81 (1.68–1.96) | 0.048 |
Disease duration (years) # | 10 (3–14) | 9 (4–15) | 0.865 |
Disease severity ®: mild/moderate/severe | 21/40/27 | 38/92/42 | 0.431 |
(24/46/31%) | (22/54/24%) |
ME/CFS with POTS and a Limited %CO Reduction (≥−15%) (n = 88) | ME/CFS with POTS and a Large %CO Reduction (<−15%) (n = 172) | p-Value | |
---|---|---|---|
supine HR (bpm) | 76 (13) | 74 (12) | 0.170 |
end-tilt HR (bpm) # | 122 (114–132) | 106 (98–114) | <0.001 |
HR increase (bpm) | 49 (8) | 34 (4) | < 0.001 |
supine SV (mL) | 66 (12) | 69 (12) | 0.077 |
end-tilt SV (mL) # | 37 (7) | 33 (6) | <0.001 |
%SV reduction end-tilt | −43 (8) | −52 (5) | <0.001 |
supine CO (L/min) # | 4.81 (4.34–5.47) | 4.93 (4.22–5.56) | 0.880 |
end-tilt CO (L/min) # | 4.70 (4.29–5.32) | 3.42 (3.00–3.97) | <0.001 |
%CO reduction end-tilt | −1.8 (5.6) | −29.4 (5.1) | <0.001 |
CBF supine (mL/min) | 619 (94) | 626 (106) | 0.600 |
CBF end-tilt (mL/min) | 410 (366–476) | 428 (384–485) | 0.131 |
%CBF reduction end-tilt | −31.8 (6.6) | −30.1 (5.2) | 0.035 |
PETCO2 supine | 36 (4) n = 83 | 37 (3) n = 171 | 0.246 |
PETCO2 end-tilt | 25 (6) n = 83 | 27 (5) n = 171 | 0.001 |
PETCO2 reduction (mmHg) | −11 (5) n = 83 | −9 (4) n = 171 | 0.002 |
%pat PETCO2 ≥ 30/<30 mmHg * | 22/61 27/73% | 68/103 40/60% | 0.038 |
supine SBP (mmHg) | 132 (15) | 131 (15) | 0.727 |
end-tilt SBP (mmHg) | 127 (18) | 127 (18) | 0.948 |
supine DBP (mmHg) | 79 (8) | 80 (11) | 0.454 |
end-tilt DBP (mmHg) # | 86 (77–94) | 87 (79–95) | 0.436 |
MAP supine (mmHg) | 100 (10) | 100 (12) | 0.801 |
MAP end-tilt (mmHg) | 104 (13) | 104 (16) | 0.995 |
%MAP increase end-tilt | 4 (10) | 4 (13) | 0.856 |
Tilt duration (min) # | 7 (5–9) | 8 (6–13) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Campen, C.M.C.; Visser, F.C. The Relation Between Cardiac Output and Cerebral Blood Flow in ME/CFS Patients with a POTS Response During a Tilt Test. J. Clin. Med. 2025, 14, 3648. https://doi.org/10.3390/jcm14113648
van Campen CMC, Visser FC. The Relation Between Cardiac Output and Cerebral Blood Flow in ME/CFS Patients with a POTS Response During a Tilt Test. Journal of Clinical Medicine. 2025; 14(11):3648. https://doi.org/10.3390/jcm14113648
Chicago/Turabian Stylevan Campen, C. (Linda) M. C., and Frans C. Visser. 2025. "The Relation Between Cardiac Output and Cerebral Blood Flow in ME/CFS Patients with a POTS Response During a Tilt Test" Journal of Clinical Medicine 14, no. 11: 3648. https://doi.org/10.3390/jcm14113648
APA Stylevan Campen, C. M. C., & Visser, F. C. (2025). The Relation Between Cardiac Output and Cerebral Blood Flow in ME/CFS Patients with a POTS Response During a Tilt Test. Journal of Clinical Medicine, 14(11), 3648. https://doi.org/10.3390/jcm14113648