The Potential Role of Vitamin D in the Pterygium Pathophysiology—A Possible New Therapeutic Perspective and Narrative Review
Abstract
:1. Introduction
2. Pterygium Pathophysiology: Current Insight
3. Vitamin D and Pterygium
4. Rethinking Pterygium: New Perspectives on Its Pathophysiology and Therapy
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Simunovic, M.; Supe-Domic, D.; Karin, Z.; Degoricija, M.; Paradzik, M.; Skrabic, R.; Jukic, A.; Bozic, J.; Skrabic, V. The Relationship of Vitamin D Status, Adherence to the Mediterranean Diet, and Physical Activity in Obese Children and Adolescents. J. Med. Food 2021, 24, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Charoenngam, N.; Holick, M.F. Immunologic Effects of Vitamin d on Human Health and Disease. Nutrients 2020, 12, 2097. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.N.; Zhang, X.J.; Ling, X.T.; Bui, C.H.T.; Wang, Y.M.; Ip, P.; Chu, W.K.; Chen, L.J.; Tham, C.C.; Yam, J.C.; et al. Vitamin D and Ocular Diseases: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 4226. [Google Scholar] [CrossRef]
- Krajisnik, T.; Björklund, P.; Marsell, R.; Ljunggren, Ö.; Åkerström, G.; Jonsson, K.B.; Westin, G.; Larsson, T.E. Fibroblast Growth Factor-23 Regulates Parathyroid Hormone and 1α-Hydroxylase Expression in Cultured Bovine Parathyroid Cells. J. Endocrinol. 2007, 195, 125–131. [Google Scholar] [CrossRef]
- Urakawa, I.; Yamazaki, Y.; Shimada, T.; Iijima, K.; Hasegawa, H.; Okawa, K.; Fujita, T.; Fukumoto, S.; Yamashita, T. Klotho Converts Canonical FGF Receptor into a Specific Receptor for FGF23. Nature 2006, 444, 770–774. [Google Scholar] [CrossRef]
- Knutson, J.C.; DeLuca, H.F. 25-Hydroxyvitamin D3-24-Hydroxylase. Subcellular Location and Properties. Biochemistry 1974, 13, 1543–1548. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.; Prosser, D.E.; Kaufmann, M. 25-Hydroxyvitamin D-24-Hydroxylase (CYP24A1): Its Important Role in the Degradation of Vitamin D. Arch. Biochem. Biophys. 2012, 523, 9–18. [Google Scholar] [CrossRef]
- Shimada, T.; Kakitani, M.; Yamazaki, Y.; Hasegawa, H.; Takeuchi, Y.; Fujita, T.; Fukumoto, S.; Tomizuka, K.; Yamashita, T. Targeted Ablation of Fgf23 Demonstrates an Essential Physiological Role of FGF23 in Phosphate and Vitamin D Metabolism. J. Clin. Investig. 2004, 113, 561–568. [Google Scholar] [CrossRef]
- Kolek, O.I.; Hines, E.R.; Jones, M.D.; LeSueur, L.K.; Lipko, M.A.; Kiela, P.R.; Collins, J.F.; Haussler, M.R.; Ghishan, F.K. 1α,25-Dihydroxyvitamin D3 Upregulates FGF23 Gene Expression in Bone: The Final Link in a Renal-Gastrointestinal-Skeletal Axis That Controls Phosphate Transport. Am. J. Physiol.-Gastrointest. Liver Physiol. 2005, 289, G1036–G1042. [Google Scholar] [CrossRef]
- Moallem, E.; Kilav, R.; Silver, J.; Naveh-Many, T. RNA-Protein Binding and Post-Transcriptional Regulation of Parathyroid Hormone Gene Expression by Calcium and Phosphate. J. Biol. Chem. 1998, 273, 5253–5259. [Google Scholar] [CrossRef]
- Fenercioglu, A.K. The Anti-Inflammatory Roles of Vitamin D for Improving Human Health. Curr. Issues Mol. Biol. 2024, 46, 13514–13525. [Google Scholar] [CrossRef] [PubMed]
- Hollis, B.W.; Wagner, C.L. New Insights into the Vitamin D Requirements during Pregnancy. Bone Res. 2017, 5, 17030. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kelly, A.S. Review of Childhood Obesity: From Epidemiology, Etiology, and Comorbidities to Clinical Assessment and Treatment. Mayo Clin. Proc. 2017, 92, 251–265. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.T.; Stenger, S.; Li, H.; Wenzel, L.; Tan, B.H.; Krutzik, S.R.; Ochoa, M.T.; Schauber, J.; Wu, K.; Meinken, C.; et al. Toll-like Receptor Triggering of a Vitamin D–Mediated Human Response. Science 2006, 311, 1770–1773. [Google Scholar] [CrossRef]
- Adams, J.S.; Ren, S.; Liu, P.T.; Chun, R.F.; Lagishetty, V.; Gombart, A.F.; Borregaard, N.; Modlin, R.L.; Hewison, M. Vitamin D-Directed Rheostatic Regulation of Monocyte Antibacterial Responses. J. Immunol. 2009, 182, 4289–4295. [Google Scholar] [CrossRef]
- Colotta, F.; Jansson, B.; Bonelli, F. Modulation of Inflammatory and Immune Responses by Vitamin D. J. Autoimmun. 2017, 85, 78–97. [Google Scholar] [CrossRef]
- Zhang, Y.; Leung, D.Y.M.; Richers, B.N.; Liu, Y.; Remigio, L.K.; Riches, D.W.; Goleva, E. Vitamin D Inhibits Monocyte/Macrophage Proinflammatory Cytokine Production by Targeting MAPK Phosphatase-1. J. Immunol. 2012, 188, 2127–2135. [Google Scholar] [CrossRef]
- Wang, Q.; He, Y.; Shen, Y.; Zhang, Q.; Chen, D.; Zuo, C.; Qin, J.; Wang, H.; Wang, J.; Yu, Y. Vitamin D Inhibits Cox-2 Expression and Inflammatory Response by Targeting Thioesterase Superfamily Member 4. J. Biol. Chem. 2014, 289, 11681–11694. [Google Scholar] [CrossRef]
- Doss, M.; White, M.R.; Tecle, T.; Hartshorn, K.L. Human Defensins and LL-37 in Mucosal Immunity. J. Leukoc. Biol. 2009, 87, 79–92. [Google Scholar] [CrossRef]
- Xu, H.; Soruri, A.; Gieseler, R.K.H.; Peters, J.H. 1,25-Dihydroxyvitamin D3 Exerts Opposing Effects to IL-4 on MHC Class-II Antigen Expression, Accessory Activity, and Phagocytosis of Human Monocytes. Scand. J. Immunol. 1993, 38, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Baeke, F.; Korf, H.; Overbergh, L.; van Etten, E.; Verstuyf, A.; Gysemans, C.; Mathieu, C. Human T Lymphocytes Are Direct Targets of 1,25-Dihydroxyvitamin D3 in the Immune System. J. Steroid Biochem. Mol. Biol. 2010, 121, 221–227. [Google Scholar] [CrossRef]
- Mahon, B.D.; Wittke, A.; Weaver, V.; Cantorna, M.T. The Targets of Vitamin D Depend on the Differentiation and Activation Status of CD4 Positive T Cells. J. Cell Biochem. 2003, 89, 922–932. [Google Scholar] [CrossRef]
- Jeffery, L.E.; Burke, F.; Mura, M.; Zheng, Y.; Qureshi, O.S.; Hewison, M.; Walker, L.S.K.; Lammas, D.A.; Raza, K.; Sansom, D.M. 1,25-Dihydroxyvitamin D3 and IL-2 Combine to Inhibit T Cell Production of Inflammatory Cytokines and Promote Development of Regulatory T Cells Expressing CTLA-4 and FoxP3. J. Immunol. 2009, 183, 5458–5467. [Google Scholar] [CrossRef]
- Cantorna, M.T.; Snyder, L.; Lin, Y.D.; Yang, L. Vitamin D and 1,25(OH)2D Regulation of T Cells. Nutrients 2015, 7, 3011–3021. [Google Scholar] [CrossRef]
- Di Liberto, D.; Scazzone, C.; La Rocca, G.; Cipriani, P.; Lo Pizzo, M.; Ruscitti, P.; Agnello, L.; Ciaccio, M.; Dieli, F.; Giacomelli, R.; et al. Vitamin D Increases the Production of IL-10 by Regulatory T Cells in Patients with Systemic Sclerosis. Clin. Exp. Rheumatol. 2019, 37, 76–81. [Google Scholar] [PubMed]
- Cantorna, M.T.; Waddell, A. The Vitamin D Receptor Turns off Chronically Activated T Cells. Ann. N. Y. Acad. Sci. 2014, 1317, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Heine, G.; Niesner, U.; Chang, H.D.; Steinmeyer, A.; Zügel, U.; Zuberbier, T.; Radbruch, A.; Worm, M. 1,25-Dihydroxyvitamin D3 Promotes IL-10 Production in Human B Cells. Eur. J. Immunol. 2008, 38, 2210–2218. [Google Scholar] [CrossRef]
- Lemire, J.M.; Adams, J.S.; Sakai, R.; Jordan, S.C. 1α,25-Dihydroxyvitamin D3 Suppresses Proliferation and Immunoglobulin Production by Normal Human Peripheral Blood Mononuclear Cells. J. Clin. Investig. 1984, 74, 657–661. [Google Scholar] [CrossRef]
- Geldmeyer-Hilt, K.; Heine, G.; Hartmann, B.; Baumgrass, R.; Radbruch, A.; Worm, M. 1,25-Dihydroxyvitamin D3 Impairs NF-ΚB Activation in Human Naïve B Cells. Biochem. Biophys. Res. Commun. 2011, 407, 699–702. [Google Scholar] [CrossRef]
- Shirakawa, A.-K.; Nagakubo, D.; Hieshima, K.; Nakayama, T.; Jin, Z.; Yoshie, O. 1,25-Dihydroxyvitamin D3 Induces CCR10 Expression in Terminally Differentiating Human B Cells. J. Immunol. 2008, 180, 2786–2795. [Google Scholar] [CrossRef] [PubMed]
- Çalık Başaran, N.; Kırağı, D.; Tan, Ç.; Özışık, L.; Çağdaş Ayvaz, N.D.; Kocabeyoğlu, S.; Öz, Ş.G.; İrkeç, M.; Tezcan, F.İ. Ocular Changes and Tear Cytokines in Individuals with Low Serum Vitamin D Levels: A Cross-Sectional, Controlled Study. Ocul. Immunol. Inflamm. 2024, 32, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Ubels, J.L.; Schotanus, M.P.; Yin, Z.; Pintea, V.; Hammock, B.D.; Watsky, M.A. Enhancement of Vitamin D Metabolites in the Eye Following Vitamin D3 Supplementation and UV-B Irradiation. Curr. Eye Res. 2012, 37, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.H.; Albietz, J.; Harkin, D.G.; Kimlin, M.G.; Schmid, K.L. Impact of Oral Vitamin D Supplementation on the Ocular Surface in People with Dry Eye and/or Low Serum Vitamin D. Contact Lens Anterior Eye 2018, 41, 69–76. [Google Scholar] [CrossRef]
- Chu, W.K.; Choi, H.L.; Bhat, A.K.; Jhanji, V. Pterygium: New Insights. Eye 2020, 34, 1047–1050. [Google Scholar] [CrossRef]
- Lešin, M.; Paradaik, M.; Marin Lovria, J.; Olujia, I.; Ljubia, A.; Vuainovia, A.; Buaan, K.; Puljak, L. Cauterisation versus Fibrin Glue for Conjunctival Autografting in Primary Pterygium Surgery (CAGE CUP): Study Protocol of a Randomised Controlled Trial. BMJ Open 2018, 8, e020714. [Google Scholar] [CrossRef]
- Rezvan, F.; Khabazkhoob, M.; Hooshmand, E.; Yekta, A.; Saatchi, M.; Hashemi, H. Prevalence and Risk Factors of Pterygium: A Systematic Review and Meta-Analysis. Surv. Ophthalmol. 2018, 63, 719–735. [Google Scholar] [CrossRef]
- Pyo, E.Y.; Mun, G.H.; Yoon, K.C. The Prevalence and Risk Factors for Pterygium in South Korea: The Korea National Health and Nutrition Examination Survey (KNHANES) 2009–2010. Epidemiol. Health 2016, 38, e2016015. [Google Scholar] [CrossRef]
- Baheran, S.S.; Alany, R.G.; Schwikkard, S.; Muen, W.; Salman, L.N.; Freestone, N.; Al-Kinani, A.A. Pharmacological Treatment Strategies of Pterygium: Drugs, Biologics, and Novel Natural Products. Drug Discov. Today 2023, 1, 103416. [Google Scholar] [CrossRef]
- Stevenson, L.J.; Mackey, D.A.; Lingham, G.; Burton, A.; Brown, H.; Huynh, E.; Tan, I.J.; Franchina, M.; Sanfilippo, P.G.; Yazar, S. Has the Sun Protection Campaign in Australia Reduced the Need for Pterygium Surgery Nationally? Ophthalmic Epidemiol. 2021, 28, 105–113. [Google Scholar] [CrossRef]
- Van Acker, S.I.; Van den Bogerd, B.; Haagdorens, M.; Siozopoulou, V.; Ní Dhubhghaill, S.; Pintelon, I.; Koppen, C. Pterygium—The Good, the Bad, and the Ugly. Cells 2021, 10, 1567. [Google Scholar] [CrossRef] [PubMed]
- Clearfield, E.; Hawkins, B.S.; Kuo, I.C. Conjunctival Autograft Versus Amniotic Membrane Transplantation for Treatment of Pterygium: Findings From a Cochrane Systematic Review. Am. J. Ophthalmol. 2017, 182, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Rim, T.H.T.; Nam, J.; Kim, E.K.; Kim, T.I. Risk Factors Associated with Pterygium and Its Subtypes in Korea: The Korean National Health and Nutrition Examination Survey 2008–2010. Cornea 2013, 32, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Chen, X.; Kang, Y.; Ke, L.; Wei, X.; Zhang, W. Pterygium in Tibetans: A Population-Based Study in China. Clin. Exp. Ophthalmol. 2007, 35, 828–833. [Google Scholar] [CrossRef]
- Yam, J.C.S.; Kwok, A.K.H. Ultraviolet Light and Ocular Diseases. Int. Ophthalmol. 2014, 34, 383–400. [Google Scholar] [CrossRef]
- Shahraki, T.; Arabi, A.; Feizi, S. Pterygium: An Update on Pathophysiology, Clinical Features, and Management. Ther. Adv. Vaccines 2021, 13, 1–21. [Google Scholar] [CrossRef]
- Kilic-Toprak, E.; Toprak, I.; Caliskan, S.; Ozdemir, Y.; Demirtas, O.; Altintas, F.; Kucukatay, V. Oxidative Stress and Genotoxicity in Pterygium: A Systemic Investigation. Eye Contact Lens 2019, 45, 399–404. [Google Scholar] [CrossRef]
- Di Girolamo, N.; Chui, J.; Coroneo, M.T.; Wakefield, D. Pathogenesis of Pterygia: Role of Cytokines, Growth Factors, and Matrix Metalloproteinases. Prog. Retin. Eye Res. 2004, 23, 195–228. [Google Scholar] [CrossRef]
- Chène, P. Inhibiting the P53-MDM2 Interaction: An Important Target for Cancer Therapy. Nat. Rev. Cancer 2003, 3, 102–109. [Google Scholar] [CrossRef]
- Cao, D.; Ng, T.K.; Yip, Y.W.Y.; Young, A.L.; Pang, C.P.; Chu, W.K.; Jhanji, V. P53 Inhibition by MDM2 in Human Pterygium. Exp. Eye Res. 2018, 175, 142–147. [Google Scholar] [CrossRef]
- Turan, M.; Turan, G. Bcl-2, P53, and Ki-67 Expression in Pterygium and Normal Conjunctiva and Their Relationship with Pterygium Recurrence. Eur. J. Ophthalmol. 2020, 30, 1232–1237. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, C.A.; Pérez-Martinot, M.; Gil-Huayanay, D.; Urrunaga-Pastor, D.; Benites-Zapata, V.A. Ocular Exposure to Particulate Matter and Development of Pterygium: A Case-Control Study. Int. J. Occup. Env. Med. 2018, 9, 163–169. [Google Scholar] [CrossRef]
- Chalkia, A.K.; Spandidos, D.A.; Detorakis, E.T. Viral Involvement in the Pathogenesis and Clinical Features of Ophthalmic Pterygium (Review). Int. J. Mol. Med. 2013, 32, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Uthaithammarat, L.; Kasetsuwan, N.; Chongpison, Y.; Kasetsuwan, P.; Reinprayoon, U.; Nilyanimit, P.; Pooworawan, Y. Lack of HPV in Pterygium with No Evidence of Autoinoculation and the Role of Cytokines in Pterygium with Dry Eye. Sci. Rep. 2021, 11, 2842. [Google Scholar] [CrossRef]
- Tsai, Y.-Y.; Chang, C.-C.; Chiang, C.-C.; Yeh, K.-T.; Chen, P.-L.; Chang, C.-H.; Chou, M.-C.; Lee, H.; Cheng, Y.-W. HPV Infection and P53 Inactivation in Pterygium. Mol. Vis. 2009, 15, 1092–1097. [Google Scholar] [PubMed]
- Paradzik Simunovic, M.; Degoricija, M.; Korac-Prlic, J.; Lesin, M.; Stanic, R.; Puljak, L.; Olujic, I.; Marin Lovric, J.; Vucinovic, A.; Ljubic, Z.; et al. Potential Role of Malassezia Restricta in Pterygium Development. Int. J. Mol. Sci. 2025, 26, 2976. [Google Scholar] [CrossRef]
- Wanzeler, A.C.V.; Barbosa, I.A.F.; Duarte, B.; Borges, D.; Barbosa, E.B.; Kamiji, D.; Huarachi, D.R.G.; de Melo, M.B.; Alves, M. Mechanisms and Biomarker Candidates in Pterygium Development. Arq. Bras. Oftalmol. 2019, 82, 528–536. [Google Scholar] [CrossRef]
- Kim, Y.H.; Jung, J.C.; Gum, S.I.; Park, S.-B.; Ma, J.Y.; Kim, Y.I.; Lee, K.W.; Park, Y.J. Inhibition of Pterygium Fibroblast Migration and Outgrowth by Bevacizumab and Cyclosporine A Involves Down-Regulation of Matrix Metalloproteinases-3 and -13. PLoS ONE 2017, 12, e0169675. [Google Scholar] [CrossRef]
- Kilic, D.; Guven, S. Does Systemic Inflammation Play a Role in Patients with Pterygium? Int. Ophthalmol. 2020, 40, 2307–2314. [Google Scholar] [CrossRef]
- Örnek, N.; Oğurel, T.; Kısa, Ü. Tear Fluid and Serum Vitamin D Concentrations in Unilateral Pterygium. Optom. Vis. Sci. 2021, 98, 170–174. [Google Scholar] [CrossRef]
- Bilak, Ş.; Yılmaz, S.; Bilgin, B. Comparison of Vitamin D Levels between Patients with Pterygium and Healthy Subjects. Int. Ophthalmol. 2021, 41, 3057–3064. [Google Scholar] [CrossRef] [PubMed]
- Chun, Y.H.; Paik, J.S.; Oh, J.H.; Kim, H.S.; Na, K.S. Association between Pterygium, Sun Exposure, and Serum 25-Hydroxyvitamin in a Nationally Representative Sample of Korean Adults. Lipids Health Dis. 2018, 17, 260. [Google Scholar] [CrossRef] [PubMed]
- Kara, N.; Ceri, S. Vitamin D Level in Patients with Pterygium. Arq. Bras. Oftalmol. 2017, 80, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Maxia, C.; Murtas, D.; Corrias, M.; Zucca, I.; Minerba, L.; Piras, F.; Marinelli, C.; Perra, M.T. Vitamin D and Vitamin D Receptor in Patients with Ophthalmic Pterygium. Eur. J. Histochem. 2017, 61, 257–263. [Google Scholar] [CrossRef]
- Jee, D.; Kim, E.C.; Cho, E.; Arroyo, J.G. Positive Association between Blood 25-Hydroxyvitamin D Levels and Pterygium after Control for Sunlight Exposure. PLoS ONE 2016, 11, e0157501. [Google Scholar] [CrossRef]
- Bilak, Ş.; Çevik, M.Ö.; Erdoğdu, G.İ.H.; Bağış, H. Expression of Vitamin D Receptor and Vitamin D Receptor Gene Polymorphisms (BsmI, FokI, and TaqI) in Patients with Pterygium. Arq. Bras. Oftalmol. 2021, 84, 241–248. [Google Scholar] [CrossRef]
- Sumer, F.; Kizilkaya, B.; Yildiz, E.; Satilmaz, M.F.; Suveys, A. Evaluation of the Role of Thyroid Hormones, Vitamin B12, Vitamin D3, Folic Acid and Ferritin Serum Levels in Pterygium Development. Sci. Rep. 2025, 15, 8786. [Google Scholar] [CrossRef]
- Kweon, S.; Kim, Y.; Jang, M.J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.H.; Oh, K. Data Resource Profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef]
- Serdar, M.A.; Arslan, F.D.; Saral, N.Y.; Yücel, D. Correlation between Serum 1,25-Dihydroxyvitamin D and 25-Hydroxyvitamin D in Response to Analytical Procedures; a Systematic Review and Meta-Analysis. Turk. J. Biochem. 2024, 49, 306–324. [Google Scholar] [CrossRef]
- Lai, Y.T.; Cerquinho, R.G.; Perez, M.M.; da Costa Aguiar Alves, B.; Pereira, E.C.; Azzalis, L.A.; Junqueira, V.B.C.; Soares, L.R.; Fonseca, F.L.A. Determination of Vitamin D in Tears of Healthy Individuals by the Electrochemiluminescence Method. J. Clin. Lab. Anal. 2019, 33, e22830. [Google Scholar] [CrossRef]
- Sethu, S.; Shetty, R.; Deshpande, K.; Pahuja, N.; Chinnappaiah, N.; Agarwal, A.; Sharma, A.; Ghosh, A. Correlation between Tear Fluid and Serum Vitamin D Levels. Eye Vis. 2016, 3, 22. [Google Scholar] [CrossRef] [PubMed]
- Goksugur, S.B.; Erdurmus, M.; Bekdas, M.; Erkocoglu, M.; Agca, S.; Tosun, M.; Goksugur, N.; Demircioglu, F. Tear and Serum Vitamin D Levels in Children with Allergic Rhinoconjunctivitis. Allergol. Immunopathol. 2015, 43, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Kongsbak, M.; Levring, T.B.; Geisler, C.; von Essen, M.R. The Vitamin D Receptor and T Cell Function. Front. Immunol. 2013, 4, 148. [Google Scholar] [CrossRef]
- Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol. Rev. 2015, 96, 365–408. [Google Scholar] [CrossRef]
- Xue, M.L.; Zhu, H.; Thakur, A.; Willcox, M. 1α,25-Dihydroxyvitamin D3 Inhibits pro-Inflammatory Cytokine and Chemokine Expression in Human Corneal Epithelial Cells Colonized with Pseudomonas Aeruginosa. Immunol. Cell Biol. 2002, 80, 340–345. [Google Scholar] [CrossRef]
- Suzuki, T.; Sano, Y.; Sotozono, C.; Kinoshita, S. Regulatory Effects of 1α,25-Dihydroxyvitamin D3 on Cytokine Production by Human Corneal Epithelial Cells. Curr. Eye Res. 2000, 20, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Chen, Z.; Mylarapu, N.; Watsky, M.A. Effects of 1,25 and 24,25 Vitamin D on Corneal Epithelial Proliferation, Migration and Vitamin D Metabolizing and Catabolizing Enzymes. Sci. Rep. 2017, 7, 16951. [Google Scholar] [CrossRef]
- Yin, Z.; Pintea, V.; Lin, Y.; Hammock, B.D.; Watsky, M.A. Vitamin D Enhances Corneal Epithelial Barrier Function. Investig. Ophthalmol. Vis. Sci. 2011, 52, 7359–7364. [Google Scholar] [CrossRef]
- Lu, X.; Chen, Z.; Vick, S.; Watsky, M.A. Vitamin D Receptor and Metabolite Effects on Corneal Epithelial Cell Gap Junction Proteins. Exp. Eye Res. 2019, 187, 107776. [Google Scholar] [CrossRef]
- Fogagnolo, P.; De Cilla’, S.; Alkabes, M.; Sabella, P.; Rossetti, L. A Review of Topical and Systemic Vitamin Supplementation in Ocular Surface Diseases. Nutrients 2021, 13, 1998. [Google Scholar] [CrossRef]
- Jin, K.; Kawashima, M.; Ito, M.; Arita, R.; Sano, K.; Tsubota, K. A New Modified Experimental Meibomian Gland Injury Model: Partial Loss of Gland Due to Orifice Cauterization and the Alleviating Potential of 22-oxacalcitriol. J. Clin. Med. 2021, 10, 6. [Google Scholar] [CrossRef]
- Reins, R.Y.; Hanlon, S.D.; Magadi, S.; McDermott, A.M. Effects of Topically Applied Vitamin D during Corneal Wound Healing. PLoS ONE 2016, 11, e0152889. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Sano, Y.; Kinoshita, S. Effects of 1α,25-Dihydroxyvitamin D3 on Langerhans Cell Migration and Corneal Neovascularization in Mice. Investig. Ophthalmol. Vis. Sci. 2000, 41, 154–158. [Google Scholar]
- Cankaya, C.; Cumurcu, T.; Gunduz, A. Corneal Endothelial Changes in Patients with Vitamin D Deficiency. Indian J. Ophthalmol. 2018, 66, 1256–1261. [Google Scholar] [CrossRef] [PubMed]
- Fogagnolo, P.; Favuzza, E.; Marchina, D.; Cennamo, M.; Vignapiano, R.; Quisisana, C.; Rossetti, L.; Mencucci, R. New Therapeutic Strategy and Innovative Lubricating Ophthalmic Solution in Minimizing Dry Eye Disease Associated with Cataract Surgery: A Randomized, Prospective Study. Adv. Ther. 2020, 37, 1664–1674. [Google Scholar] [CrossRef]
- Jia, S.; Chen, F.; Wang, H.; Kesavamoorthy, G.; Lai, J.S.M.; Wong, I.Y.H.; Chiu, K.; Chan, J.C.H. Effect of Vitamin D3 on Regulating Human Tenonfibroblasts Activity. Transl. Vis. Sci. Technol. 2021, 10, 7. [Google Scholar] [CrossRef]
- Lopez, D.V.; Al-Jaberi, F.A.H.; Woetmann, A.; Ødum, N.; Bonefeld, C.M.; Kongsbak-Wismann, M.; Geisler, C. Macrophages Control the Bioavailability of Vitamin D and Vitamin D-Regulated T Cell Responses. Front. Immunol. 2021, 12, 722806. [Google Scholar] [CrossRef]
- Small, A.G.; Harvey, S.; Kaur, J.; Putty, T.; Quach, A.; Munawara, U.; Perveen, K.; McPhee, A.; Hii, C.S.; Ferrante, A. Vitamin D Upregulates the Macrophage Complement Receptor Immunoglobulin in Innate Immunity to Microbial Pathogens. Commun. Biol. 2021, 4, 401. [Google Scholar] [CrossRef]
- Rao Muvva, J.; Parasa, V.R.; Lerm, M.; Svensson, M.; Brighenti, S. Polarization of Human Monocyte-Derived Cells with Vitamin D Promotes Control of Mycobacterium Tuberculosis Infection. Front. Immunol. 2020, 10, 3157. [Google Scholar] [CrossRef]
- Zhu, X.; Zhu, Y.; Li, C.; Yu, J.; Ren, D.D.; Qiu, S.; Nie, Y.; Yu, X.; Xu, X.; Zhu, W. 1,25 Dihydroxyvitamin D Regulates Macrophage Polarization and Ameliorates Experimental Inflammatory Bowel Disease by Suppressing MiR-125b. Int. Immunopharmacol. 2019, 67, 106–118. [Google Scholar] [CrossRef]
- Rode, A.K.O.; Kongsbak, M.; Hansen, M.M.; Lopez, D.V.; Levring, T.B.; Woetmann, A.; Ødum, N.; Bonefeld, C.M.; Geisler, C. Vitamin D Counteracts Mycobacterium Tuberculosis-Induced Cathelicidin Downregulation in Dendritic Cells and Allows Th1 Differentiation and IFNγ Secretion. Front. Immunol. 2017, 8, 656. [Google Scholar] [CrossRef] [PubMed]
- Cippitelli, M.; Santoni, A. Vitamin D3: A Transcriptional Modulator of the Interferon-γ Gene. Eur. J. Immunol. 1998, 28, 3017–3030. [Google Scholar] [CrossRef]
- Reichel, H.; Koeffler, H.P.; Tobler, A.; Norman, A.W. 1α,25-Dihydroxyvitamin D3 Inhibits γ-Interferon Synthesis by Normal Human Peripheral Blood Lymphocytes. Proc. Natl. Acad. Sci. USA 1987, 84, 3385–3389. [Google Scholar] [CrossRef] [PubMed]
Study | Sample Size * | Gender Female/Male * | Mean Age (yrs) * | 25-OHD Levels (ng/mL) * | Additional Findings | Conclusion |
---|---|---|---|---|---|---|
Sumer et al. (2025) [67] | 100 vs. 60 | 41/59 vs. 33/27 | 53.37 ± 5.79 vs. 52.37 ± 5.92 | 16.25 ± 2.4 vs. 21.1 ± 1.68; p < 0.001 | Significantly lower levels of vitamin B12, folic acid, and ferritin in the pterygium group. | 25-OHD plays a role in the anti-inflammatory effect in pterygium development. |
Ornek et al. (2021) [60] | 35 vs. 25 | 14/21 vs. 7/18 | 51.7 ± 16.7 vs. 50.6 ± 18.7 | 30.49 ± 8.85 vs. 31.22 ± 9.34; p = 0.76 | Significantly higher levels of 25-OHD in tear fluid in the pterygium group. | Without a significant difference in levels of 25-OHD. |
Bilak et al. (2021) [61] | 108 vs. 77 | 57/51 vs. 47/47 | 43.31 ± 13.57 vs. 42.28 ± 13.52 | 12.06 ± 7.07 vs. 20.04 ± 7.96; p < 0.001 | PTH 42.78 ± 14.18 vs. 29.68 ± 12.31 pg/mL, p < 0.001 | 25-OHD deficiency is possibly a new link in the pathophysiological mechanism of pterygium. |
Bilak et al. (2021) [66] | 50 vs. 50 | 29/21 vs. 26/24 | 51.26 ± 13.27 vs. 51.2 ± 13.9 | 11.66 ± 5.63 vs. 10.4 ± 6.3; p = 0.29 | Significantly higher expression of vitamin D receptor in the pterygium group. | Without a significant difference in levels of 25-OHD. |
Chun et al. (2019) [62] | 869 vs. 11389 | 461/408 vs. 5776/5613 | 63.2 ± 0.6 vs. 44.3 ± 0.3 | 19.7 ± 0.3 vs. 17.4 ± 0.2; p < 0.001 | Diabetes, MS, hypertension, smoking, and sun exposure are significantly higher in the pterygium group. | Odds for pterygium increase significantly with an increase of 25-OHD and sun exposure. |
Kara et al. (2017) [63] | 63 vs. 58 | 33/30 vs. 22/36 | 58 ± 12 vs. 61 ± 11 | 15.02 ± 6.73 vs. 14.54 ± 3.57; p = 0.731 | Male subjects with pterygium had statistically significantly higher levels of 25-OHD. | Without a significant difference in levels of 25-OHD. |
Maxia et al. (2017) [64] | 41 vs. 47 | 11/30 vs. 34/13 | 58.34 ± 15.09 vs. 43.74 ± 11.74 | 19.47 ± 7.37 vs. 18.22 ± 8.01; p > 0.05 | Immunohistochemical vitamin D receptor location was different between the pterygium group and healthy controls. | Without a significant difference in levels of 25-OHD. |
Jee et al. (2016) [65] | 1548 vs. 17630 | 745/803 vs. 8868/8762 | 61.7 ± 0.4 vs. 48.9 ± 0.1 | 20.04 ± 0.2 vs. 18.5 ± 01; p < 0.001 | Sun exposure is significantly higher in the pterygium group. | Odds for pterygium increase significantly with an increase of 25-OHD even after exclusion of potential confounders. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paradzik Simunovic, M.; Degoricija, M.; Stanic, R.; Terzic, J.; Simunovic, M. The Potential Role of Vitamin D in the Pterygium Pathophysiology—A Possible New Therapeutic Perspective and Narrative Review. J. Clin. Med. 2025, 14, 3640. https://doi.org/10.3390/jcm14113640
Paradzik Simunovic M, Degoricija M, Stanic R, Terzic J, Simunovic M. The Potential Role of Vitamin D in the Pterygium Pathophysiology—A Possible New Therapeutic Perspective and Narrative Review. Journal of Clinical Medicine. 2025; 14(11):3640. https://doi.org/10.3390/jcm14113640
Chicago/Turabian StyleParadzik Simunovic, Martina, Marina Degoricija, Robert Stanic, Janos Terzic, and Marko Simunovic. 2025. "The Potential Role of Vitamin D in the Pterygium Pathophysiology—A Possible New Therapeutic Perspective and Narrative Review" Journal of Clinical Medicine 14, no. 11: 3640. https://doi.org/10.3390/jcm14113640
APA StyleParadzik Simunovic, M., Degoricija, M., Stanic, R., Terzic, J., & Simunovic, M. (2025). The Potential Role of Vitamin D in the Pterygium Pathophysiology—A Possible New Therapeutic Perspective and Narrative Review. Journal of Clinical Medicine, 14(11), 3640. https://doi.org/10.3390/jcm14113640