Association Between Electronic Cigarette Use and Risk of Obstructive Sleep Apnea Among Korean Adults: A Cross-Sectional Nationwide Population-Based Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Study Population
2.2. Independent Variables
2.3. Dependent Variable
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Comparison with Prior Literature
4.2. Biological Mechanisms
4.3. Strengths and Limitations
4.4. Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, C.; Oh, J.; Kim, Y.-C.; Um, Y.-H.; Kim, T.-W.; Seo, H.-J.; Jeong, J.-H.; Hong, S.-C. Obstructive Sleep Apnea and α-Synucleinopathies: Nationwide Analysis From South Korea’s Healthcare Database. Sleep Med. Res. 2024, 15, 124–129. [Google Scholar] [CrossRef]
- Marin, J.M.; Carrizo, S.J.; Vicente, E.; Agusti, A.G. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: An observational study. Lancet 2005, 365, 1046–1053. [Google Scholar] [CrossRef]
- Yaggi, H.K.; Concato, J.; Kernan, W.N.; Lichtman, J.H.; Brass, L.M.; Mohsenin, V. Obstructive sleep apnea as a risk factor for stroke and death. N. Engl. J. Med. 2005, 353, 2034–2041. [Google Scholar] [CrossRef]
- Maniaci, A.; Lavalle, S.; Parisi, F.M.; Barbanti, M.; Cocuzza, S.; Iannella, G.; Magliulo, G.; Pace, A.; Lentini, M.; Masiello, E. Impact of obstructive sleep apnea and sympathetic nervous system on cardiac health: A comprehensive review. J. Cardiovasc. Dev. Dis. 2024, 11, 204. [Google Scholar] [CrossRef]
- Lam, B.; Lam, D.; Ip, M. Obstructive sleep apnoea in Asia. Int. J. Tuberc. Lung Dis. 2007, 11, 2–11. [Google Scholar]
- Sunwoo, J.-S.; Hwangbo, Y.; Kim, W.-J.; Chu, M.K.; Yun, C.-H.; Yang, K.I. Prevalence, sleep characteristics, and comorbidities in a population at high risk for obstructive sleep apnea: A nationwide questionnaire study in South Korea. PLoS ONE 2018, 13, e0193549. [Google Scholar] [CrossRef]
- Lee, Y.-J.G.; Lee, Y.J.; Jeong, D.-U. Differential effects of obesity on obstructive sleep apnea syndrome according to age. Psychiatry Investig. 2017, 14, 656. [Google Scholar] [CrossRef]
- Lee, H.; Oh, S.-H.; Cho, H.; Cho, H.-J.; Kang, H.-Y. Prevalence and socio-economic burden of heart failure in an aging society of South Korea. BMC Cardiovasc. Disord. 2016, 16, 215. [Google Scholar] [CrossRef]
- Lee, M. Research trends in obesity & obesogenic environments in Korea. Nutr. Res. Pract. 2019, 13, 461–472. [Google Scholar]
- Kim, C.-Y.; Paek, Y.-J.; Seo, H.G.; Cheong, Y.S.; Lee, C.M.; Park, S.M.; Park, D.W.; Lee, K. Dual use of electronic and conventional cigarettes is associated with higher cardiovascular risk factors in Korean men. Sci. Rep. 2020, 10, 5612. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kimm, H.; Yun, J.E.; Jee, S.H. Public health challenges of electronic cigarettes in South Korea. J. Prev. Med. Public Health 2011, 44, 235. [Google Scholar] [CrossRef] [PubMed]
- Mouhamed, D.H.; Ezzaher, A.; Neffati, F.; Gaha, L.; Douki, W.; Najjar, M. Association between cigarette smoking and dyslipidemia. Immuno-Anal. Biol. Spéc. 2013, 28, 195–200. [Google Scholar] [CrossRef]
- Kim, Y. The Korea National Health and nutrition examination survey (KNHANES): Current status and challenges. Epidemiol. Health 2014, 36, e2014002. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Ren, Y.; Wu, K.; Yang, Q.; Zhang, S.; Wang, D.; Luo, Y.; Zhang, N. Association between smoking behavior and obstructive sleep apnea: A systematic review and meta-analysis. Nicotine Tob. Res. 2023, 25, 364–371. [Google Scholar] [CrossRef]
- Jang, Y.S.; Nerobkova, N.; Hurh, K.; Park, E.-C.; Shin, J. Association between smoking and obstructive sleep apnea based on the STOP-Bang index. Sci. Rep. 2023, 13, 9085. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, V.; Dixon-Williams, S.; Thornton, J.D. Where there is smoke… there is sleep apnea: Exploring the relationship between smoking and sleep apnea. Chest 2014, 146, 1673–1680. [Google Scholar] [CrossRef]
- Grigoriou, I.; Kotoulas, S.-C.; Porpodis, K.; Spyratos, D.; Papagiouvanni, I.; Tsantos, A.; Michailidou, A.; Mourelatos, C.; Mouratidou, C.; Alevroudis, I. The interactions between smoking and sleep. Biomedicines 2024, 12, 1765. [Google Scholar] [CrossRef]
- Ioannidou, D.; Kalamaras, G.; Kotoulas, S.-C.; Pataka, A. Smoking and obstructive sleep apnea: Is there an association between these cardiometabolic risk factors?—Gender analysis. Medicina 2021, 57, 1137. [Google Scholar] [CrossRef]
- Lim, D.; Choi, J.I.; Kwon, R.J.; Lee, S.Y.; Cho, Y.H.; Park, E.J.; Lee, Y.; Lee, S.R.; Son, S.M.; Kim, Y.J. Association between E-Cigarette Smoking and Insulin Resistance Using the Triglyceride-Glucose Index in Korean Adults: Korea National Health and Nutrition Examination Survey. Korean. J. Fam. Med. 2024; ahead-of-print. [Google Scholar] [CrossRef]
- Jeong, W. Association between dual smoking and dyslipidemia in South Korean adults. PLoS ONE 2022, 17, e0270577. [Google Scholar] [CrossRef]
- Jeong, W.; Kim, S. Impact of electronic cigarette use on the increased risk of diabetes: The Korean Community Health Survey. Epidemiol. Health 2024, 46, e2024029. [Google Scholar] [CrossRef]
- Kim, S.Y.; Jeong, S.H.; Joo, H.J.; Park, M.; Park, E.-C.; Kim, J.H.; Lee, J.; Shin, J. High prevalence of hypertension among smokers of conventional and e-cigarette: Using the nationally representative community dwelling survey. Front. Public Health 2022, 10, 919585. [Google Scholar] [CrossRef]
- Tsai, M.; Byun, M.K.; Shin, J.; Crotty Alexander, L.E. Effects of e-cigarettes and vaping devices on cardiac and pulmonary physiology. J. Physiol. 2020, 598, 5039–5062. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kim, S.H. Association of dual use of cigarettes with obstructive sleep apnea assessed by the STOP-Bang score. Tob. Induc. Dis. 2023, 21, 114. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Shin, S.Y.; Kim, H.; Kim, M.; Byeon, K.; Jung, M.; Kang, K.-W.; Lee, W.-S.; Kim, S.-W.; Lip, G.Y. Smoking Cessation and Incident Cardiovascular Disease. JAMA Netw. Open 2024, 7, e2442639. [Google Scholar] [CrossRef]
- Lee, D.W.; Kim, K.; Baek, J.; Oh, S.S.; Jang, S.-I.; Park, E.-C. Association of habitual alcohol use on risk-taking behaviors while using a car: The Korean National Health and Nutrition Examination Survey 2009–2013. Accid. Anal. Prev. 2020, 144, 105651. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.Y.; Kim, J.; Cho, K.H.; Choi, Y.; Choi, J.; Shin, J.; Park, E.-C. Associations of sitting time and occupation with metabolic syndrome in South Korean adults: A cross-sectional study. BMC Public Health 2016, 16, 1–10. [Google Scholar] [CrossRef]
- Seo, M.H.; Lee, W.-Y.; Kim, S.S.; Kang, J.-H.; Kang, J.-H.; Kim, K.K.; Kim, B.-Y.; Kim, Y.-H.; Kim, W.-J.; Kim, E.M. 2018 Korean society for the study of obesity guideline for the management of obesity in Korea. J. Obes. Metab. Syndr. 2019, 28, 40. [Google Scholar] [CrossRef]
- Zhu, H.; Wu, M. A cross-sectional study on the relationship between electronic cigarette and combustible cigarette use with obstructive sleep apnea among US adults: Result from NHANES 2015–2018. Arch. Public Health 2023, 81, 54. [Google Scholar] [CrossRef]
- Flemons, W.W.; Douglas, N.J.; Kuna, S.T.; Rodenstein, D.O.; Wheatley, J. Access to diagnosis and treatment of patients with suspected sleep apnea. Am. J. Respir. Crit. Care Med. 2004, 169, 668–672. [Google Scholar] [CrossRef]
- Nagappa, M.; Liao, P.; Wong, J.; Auckley, D.; Ramachandran, S.K.; Memtsoudis, S.; Mokhlesi, B.; Chung, F. Validation of the STOP-Bang questionnaire as a screening tool for obstructive sleep apnea among different populations: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0143697. [Google Scholar] [CrossRef] [PubMed]
- Chung, F.; Abdullah, H.R.; Liao, P. STOP-Bang questionnaire: A practical approach to screen for obstructive sleep apnea. Chest 2016, 149, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.G.; Kwon, K.H.; Lee, I.W.; Jung, B.; Park, E.-C.; Jang, S.-I. Biochemically-verified smoking rate trends and factors associated with inaccurate self-reporting of smoking habits in Korean women. Asian Pac. J. Cancer Prev. 2013, 14, 6807–6812. [Google Scholar] [CrossRef] [PubMed]
- Mirrakhimov, A.E.; Sooronbaev, T.; Mirrakhimov, E.M. Prevalence of obstructive sleep apnea in Asian adults: A systematic review of the literature. BMC Pulm. Med. 2013, 13, 1–10. [Google Scholar] [CrossRef]
- Gunter, R.; Szeto, E.; Jeong, S.-H.; Suh, S.A.; Waters, A.J. Cigarette smoking in South Korea: A narrative review. Korean J. Fam. Med. 2019, 41, 3. [Google Scholar] [CrossRef]
- Bertholon, J.; Becquemin, M.; Annesi-Maesano, I.; Dautzenberg, B. Electronic cigarettes: A short review. Respiration 2013, 86, 433–438. [Google Scholar] [CrossRef]
- McNeill, A.; Brose, L.S.; Calder, R.; Hitchman, S.C.; Hajek, P.; McRobbie, H. E-cigarettes: An evidence update. Public Health Engl. 2015, 3, 14–15. [Google Scholar]
- Nutt, D.J.; Phillips, L.D.; Balfour, D.; Curran, H.V.; Dockrell, M.; Foulds, J.; Fagerstrom, K.; Letlape, K.; Milton, A.; Polosa, R. Estimating the harms of nicotine-containing products using the MCDA approach. Eur. Addict. Res. 2014, 20, 218–225. [Google Scholar] [CrossRef]
- Curry, S.J.; Grothaus, L.; McBride, C. Reasons for quitting: Intrinsic and extrinsic motivation for smoking cessation in a population-based sample of smokers. Addict. Behav. 1997, 22, 727–739. [Google Scholar] [CrossRef]
- Jaehne, A.; Loessl, B.; Bárkai, Z.; Riemann, D.; Hornyak, M. Effects of nicotine on sleep during consumption, withdrawal and replacement therapy. Sleep Med. Rev. 2009, 13, 363–377. [Google Scholar] [CrossRef]
- Brett, E.I.; Miller, M.B.; Leavens, E.L.; Lopez, S.V.; Wagener, T.L.; Leffingwell, T.R. Electronic cigarette use and sleep health in young adults. J. Sleep Res. 2020, 29, e12902. [Google Scholar] [CrossRef] [PubMed]
- Zvolensky, M.J.; D’Souza, J.; Garey, L.; Alfano, C.A.; Mayorga, N.A.; Peraza, N.; Gallagher, M.W. Subjective sleep quality and electronic cigarette dependence, perceived risks of use, and perceptions about quitting electronic cigarettes. Addict. Behav. 2020, 102, 106199. [Google Scholar] [CrossRef] [PubMed]
- Advani, I.; Gunge, D.; Boddu, S.; Mehta, S.; Park, K.; Perera, S.; Pham, J.; Nilaad, S.; Olay, J.; Ma, L. Dual use of e-cigarettes with conventional tobacco is associated with increased sleep latency in cross-sectional Study. Sci. Rep. 2022, 12, 2536. [Google Scholar] [CrossRef]
- Cohrs, S.; Rodenbeck, A.; Riemann, D.; Szagun, B.; Jaehne, A.; Brinkmeyer, J.; Gründer, G.; Wienker, T.; Diaz-Lacava, A.; Mobascher, A. Impaired sleep quality and sleep duration in smokers—Results from the G erman M ulticenter S tudy on N icotine D ependence. Addict. Biol. 2014, 19, 486–496. [Google Scholar] [CrossRef]
- Purani, H.; Friedrichsen, S.; Allen, A.M. Sleep quality in cigarette smokers: Associations with smoking-related outcomes and exercise. Addict. Behav. 2019, 90, 71–76. [Google Scholar] [CrossRef]
- Kim, M.D.; Chung, S.; Dennis, J.S.; Yoshida, M.; Aguiar, C.; Aller, S.P.; Mendes, E.S.; Schmid, A.; Sabater, J.; Baumlin, N. Vegetable glycerin e-cigarette aerosols cause airway inflammation and ion channel dysfunction. Front. Pharmacol. 2022, 13, 1012723. [Google Scholar] [CrossRef]
- Woodall, M.; Jacob, J.; Kalsi, K.; Schroeder, V.; Davis, E.; Kenyon, B.; Khan, I.; Garnett, J.; Tarran, R.; Baines, D. E-cigarette constituents propylene glycol and vegetable glycerin decrease glucose uptake and its metabolism in airway epithelial cells in vitro. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020, 319, L957–L967. [Google Scholar] [CrossRef] [PubMed]
- Palazzolo, D.L. Electronic cigarettes and vaping: A new challenge in clinical medicine and public health. A literature review. Front. Public Health 2013, 1, 56. [Google Scholar] [CrossRef]
- McIntyre, H.D.; Dyer, A.R.; Metzger, B.E. Odds, risks and appropriate diagnosis of gestational diabetes. Med. J. Aust. 2015, 202, 309–311. [Google Scholar] [CrossRef]
Total (n = 13,799) | STOP-Bang Score for OSA | |||||||
---|---|---|---|---|---|---|---|---|
High Risk (n = 520) | Low Risk (n = 13,279) | p-Value | ||||||
n | % | n | % | n | % | |||
Smoking Behavior | Electronic cigarette user | 460 | (3.3) | 28 | (5.4) | 432 | (3.3) | <0.0001 |
Conventional cigarette smoker | 2066 | (15.0) | 141 | (27.1) | 1925 | (14.5) | ||
Ex-smoker | 3674 | (26.6) | 273 | (52.5) | 3401 | (25.6) | ||
Non-smoker | 7599 | (55.1) | 78 | (15.0) | 7521 | (56.6) | ||
Age (years) | 40–49 | 3724 | (27.0) | 45 | (8.7) | 3679 | (27.7) | <0.0001 |
50–59 | 3543 | (25.7) | 182 | (35.0) | 3361 | (25.3) | ||
≥60 | 6532 | (47.3) | 293 | (56.3) | 6239 | (47.0) | ||
Gender | Male | 6591 | (47.8) | 486 | (93.5) | 6105 | (46.0) | <0.0001 |
Female | 7208 | (52.2) | 34 | (6.5) | 7174 | (54.0) | ||
Educational level | Middle school or less | 3882 | (28.1) | 130 | (25.0) | 3752 | (28.3) | 0.1558 |
High school | 4529 | (32.8) | 188 | (36.2) | 4341 | (32.7) | ||
College or over | 5388 | (39.0) | 202 | (38.8) | 5186 | (39.1) | ||
Marital status | Married | 10,767 | (78.0) | 442 | (85.0) | 10,325 | (77.8) | 0.0004 |
Separated or divorced | 758 | (5.5) | 57 | (11.0) | 21 | (0.2) | ||
Unmarried | 2274 | (16.5) | 21 | (4.0) | 57 | (0.4) | ||
Region | Urban area | 5724 | (41.5) | 188 | (36.2) | 5536 | (41.7) | 0.012 |
Rural area | 8075 | (58.5) | 332 | (63.8) | 7743 | (58.3) | ||
Household income level | Low | 2592 | (18.8) | 100 | (19.2) | 2492 | (18.8) | 0.5315 |
Lower middle | 3403 | (24.7) | 114 | (21.9) | 3289 | (24.8) | ||
Upper middle | 3754 | (27.2) | 147 | (28.3) | 3607 | (27.2) | ||
High | 4050 | (29.3) | 159 | (30.6) | 3891 | (29.3) | ||
Occupational classification | White-collar | 3103 | (22.5) | 128 | (24.6) | 2975 | (22.4) | 0.0018 |
Pink-collar | 1745 | (12.6) | 55 | (10.6) | 1690 | (12.7) | ||
Blue-collar | 3723 | (27.0) | 171 | (32.9) | 3552 | (26.7) | ||
None | 5228 | (37.9) | 166 | (31.9) | 5062 | (38.1) | ||
Self-Reported Health Status | High | 4145 | (30.0) | 116 | (22.3) | 4029 | (30.3) | <0.0001 |
Middle | 6858 | (49.7) | 229 | (44.0) | 6629 | (49.9) | ||
Low | 2796 | (20.3) | 175 | (33.7) | 2621 | (19.7) | ||
Alcohol Consumption | Heavy | 1001 | (7.3) | 82 | (15.8) | 919 | (6.9) | 0.8436 |
Moderate | 5001 | (36.2) | 240 | (46.2) | 4761 | (35.9) | ||
Light | 7797 | (56.5) | 198 | (38.1) | 7599 | (57.2) | ||
Regular Exercise | Yes | 3573 | (25.9) | 370 | (71.2) | 9856 | (74.2) | 0.1171 |
No | 10,226 | (74.1) | 150 | (28.8) | 3423 | (25.8) | ||
Obesity | Yes | 5108 | (37.0) | 340 | (65.4) | 4768 | (35.9) | <0.0001 |
No | 8691 | (63.0) | 180 | (34.6) | 8511 | (64.1) | ||
Hypertension | Yes | 2741 | (19.9) | 233 | (44.8) | 2508 | (18.9) | <0.0001 |
No | 11,058 | (80.1) | 287 | (55.2) | 10,771 | (81.1) | ||
Diabetes | Yes | 2483 | (18.0) | 173 | (33.3) | 2310 | (17.4) | <0.0001 |
No | 11,316 | (82.0) | 347 | (66.7) | 10,969 | (82.6) |
Variables | High Risk of OSA | p-Value | ||
---|---|---|---|---|
OR | 95% CI | |||
Smoking Behavior | Electronic cigarette user | 2.01 * | (1.21–3.33) | 0.0069 |
Conventional cigarette smoker | 1.84 * | (1.32–2.57) | 0.0003 | |
Ex-smoker | 1.70 * | (1.25–2.30) | 0.0006 | |
Non-smoker | 1.00 | |||
Age (years) | 40–49 | 0.24 * | (0.16–0.35) | <0.0001 |
50–59 | 1.11 * | (0.87–1.42) | 0.3849 | |
≥60 | 1.00 | |||
Gender | Male | 10.06 * | (6.58–15.40) | <0.0001 |
Female | 1.00 | |||
Educational level | Middle school or less | 0.73 * | (0.54–0.99) | 0.0397 |
High school | 0.99 | (0.78–1.26) | 0.9507 | |
College or over | 1.00 | |||
Marital status | Married | 1.51 | (0.93–2.45) | 0.0988 |
Separated or divorced | 1.20 | (0.70–2.08) | 0.5102 | |
Unmarried | 1.00 | |||
Region | Urban area | 0.91 | (0.75–1.10) | 0.3146 |
Rural area | 1.00 | |||
Household income level | Low | 0.95 | (0.68–1.32) | 0.7476 |
Lower middle | 0.85 | (0.64–1.13) | 0.2706 | |
Upper middle | 1.12 | (0.8–1.45) | 0.3682 | |
High | 1.00 | |||
Occupational classification | White-collar | 1.23 | (0.90–1.67) | 0.1963 |
Pink-collar | 0.94 | (0.73–1.20) | 0.6175 | |
Blue-collar | 1.40 | (0.98–2.00) | 0.0656 | |
None | 1.00 | |||
Self-Reported Health Status | High | 0.33 * | (0.25–0.43) | <0.0001 |
Middle | 0.45 * | (0.36–0.57) | <0.0001 | |
Low | 1.00 | |||
Alcohol Consumption | Heavy | 1.52 | (1.00–1.35) | 0.0051 |
Moderate | 1.19 | (1.00–1.35) | 0.1157 | |
Light | 1.00 | |||
Regular Exercise | Yes | 0.89 * | (0.72–1.10) | 0.0153 |
No | 1.00 | |||
Obesity | Yes | 2.86 * | (2.34–3.48) | <0.0001 |
No | 1.00 | |||
Hypertension | Yes | 2.37 * | (1.95–2.87) | <0.0001 |
No | 1.00 | |||
Diabetes | Yes | 1.24 * | (1.01–1.53) | 0.0385 |
No | 1.00 |
Variables | High Risk of OSA | p-Value | ||
---|---|---|---|---|
OR | 95% CI | |||
Smoking Behavior | Electronic cigarette user | 1.92 * | (1.15–3.21) | 0.0124 |
Conventional cigarette smoker | 1.77 * | (1.25–2.51) | 0.0014 | |
Ex-smoker | 1.68 * | (1.22–2.31) | 0.0014 | |
Non-smoker | 1.00 | |||
Age (years) | 40–49 | 0.24 * | (0.16–0.36) | <0.0001 |
50–59 | 1.12 | (0.87–1.44) | 0.3956 | |
≥60 | 1.00 | |||
Educational level | Middle school or less | 0.69 * | (0.50–0.95) | 0.0228 |
High school | 1.02 | (0.80–1.31) | 0.8697 | |
College or over | 1.00 | |||
Marital status | Married | 1.65 | (1.00–2.75) | 0.0524 |
Separated or divorced | 1.24 | (0.70–2.22) | 0.4614 | |
Unmarried | 1.00 | |||
Region | Urban area | 0.89 | (0.73–1.09) | 0.2641 |
Rural area | 1.00 | |||
Household income level | Low | 1.00 | (0.71–1.42) | 0.9884 |
Lower middle | 0.90 | (0.67–1.21) | 0.4937 | |
Upper middle | 1.14 | (0.88–1.48) | 0.3213 | |
High | 1.00 | |||
Occupational classification | White-collar | 1.33 | (0.96–1.84) | 0.0835 |
Pink-collar | 0.98 | (0.75–1.27) | 0.8752 | |
Blue-collar | 1.70 | (1.17–2.49) | 0.0058 | |
None | 1.00 | |||
Self-Reported Health Status | High | 0.34 * | (0.25–0.45) | <0.0001 |
Middle | 0.48 * | (0.38–0.61) | <0.0001 | |
Low | 1.00 | |||
Alcohol Consumption | Heavy | 1.53 * | (1.14–2.05) | 0.0051 |
Moderate | 1.17 | (0.94–1.46) | 0.1586 | |
Light | 1.00 | |||
Regular Exercise | Yes | 0.87 | (0.70–1.08) | 0.2112 |
No | 1.00 | |||
Obesity | Yes | 2.82 * | (2.30–3.47) | <0.0001 |
No | 1.00 | |||
Hypertension | Yes | 2.29 * | (1.87–2.80) | <0.0001 |
No | 1.00 | |||
Diabetes | Yes | 1.22 | (0.98–1.51) | 0.072 |
No | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, W.; Song, M.J.; Shin, J.H.; Kim, J.H. Association Between Electronic Cigarette Use and Risk of Obstructive Sleep Apnea Among Korean Adults: A Cross-Sectional Nationwide Population-Based Study. J. Clin. Med. 2025, 14, 3616. https://doi.org/10.3390/jcm14113616
Jeong W, Song MJ, Shin JH, Kim JH. Association Between Electronic Cigarette Use and Risk of Obstructive Sleep Apnea Among Korean Adults: A Cross-Sectional Nationwide Population-Based Study. Journal of Clinical Medicine. 2025; 14(11):3616. https://doi.org/10.3390/jcm14113616
Chicago/Turabian StyleJeong, Wonseok, Min Ji Song, Ji Hye Shin, and Ji Hyun Kim. 2025. "Association Between Electronic Cigarette Use and Risk of Obstructive Sleep Apnea Among Korean Adults: A Cross-Sectional Nationwide Population-Based Study" Journal of Clinical Medicine 14, no. 11: 3616. https://doi.org/10.3390/jcm14113616
APA StyleJeong, W., Song, M. J., Shin, J. H., & Kim, J. H. (2025). Association Between Electronic Cigarette Use and Risk of Obstructive Sleep Apnea Among Korean Adults: A Cross-Sectional Nationwide Population-Based Study. Journal of Clinical Medicine, 14(11), 3616. https://doi.org/10.3390/jcm14113616