Glycocalyx Disintegration Is Associated with Mortality in Chronic Heart Failure
Abstract
:1. Introduction
2. Methods
2.1. Microscope Imaging
2.2. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Strain, W.D.; Paldanius, P.M. Diabetes, cardiovascular disease and the microcirculation. Cardiovasc. Diabetol. 2018, 17, 57. [Google Scholar] [CrossRef] [PubMed]
- Gutterman, D.D.; Chabowski, D.S.; Kadlec, A.O.; Durand, M.J.; Freed, J.K.; Ait-Aissa, K.; Beyer, A.M. The Human Microcirculation: Regulation of Flow and Beyond. Circ. Res. 2016, 118, 157–172. [Google Scholar] [CrossRef]
- Reitsma, S.; Slaaf, D.W.; Vink, H.; van Zandvoort, M.A.; oude Egbrink, M.G. The endothelial glycocalyx: Composition, functions, and visualization. Pflügers Arch. Eur. J. Physiol. 2007, 454, 345–359. [Google Scholar] [CrossRef]
- Poledniczek, M.; Neumayer, C.; Kopp, C.W.; Schlager, O.; Gremmel, T.; Jozkowicz, A.; Gschwandtner, M.E.; Koppensteiner, R.; Wadowski, P.P. Micro- and Macrovascular Effects of Inflammation in Peripheral Artery Disease-Pathophysiology and Translational Therapeutic Approaches. Biomedicines 2023, 11, 2284. [Google Scholar] [CrossRef]
- Song, J.W.; Zullo, J.A.; Liveris, D.; Dragovich, M.; Zhang, X.F.; Goligorsky, M.S. Therapeutic Restoration of Endothelial Glycocalyx in Sepsis. J. Pharmacol. Exp. Ther. 2017, 361, 115–121. [Google Scholar] [CrossRef]
- van den Berg, B.M.; Vink, H.; Spaan, J.A. The endothelial glycocalyx protects against myocardial edema. Circ. Res. 2003, 92, 592–594. [Google Scholar] [CrossRef]
- Mehlhorn, U.; Geissler, H.J.; Laine, G.A.; Allen, S.J. Myocardial fluid balance. Eur. J. Cardio-Thorac. Surg. 2001, 20, 1220–1230. [Google Scholar] [CrossRef]
- Becker, B.F.; Chappell, D.; Jacob, M. Endothelial glycocalyx and coronary vascular permeability: The fringe benefit. Basic Res. Cardiol. 2010, 105, 687–701. [Google Scholar] [CrossRef]
- Panagiotides, N.G.; Poledniczek, M.; Andreas, M.; Hulsmann, M.; Kocher, A.A.; Kopp, C.W.; Piechota-Polanczyk, A.; Weidenhammer, A.; Pavo, N.; Wadowski, P.P. Myocardial Oedema as a Consequence of Viral Infection and Persistence-A Narrative Review with Focus on COVID-19 and Post COVID Sequelae. Viruses 2024, 16, 121. [Google Scholar] [CrossRef]
- Laine, G.A.; Allen, S.J. Left ventricular myocardial edema. Lymph flow, interstitial fibrosis, and cardiac function. Circ. Res. 1991, 68, 1713–1721. [Google Scholar] [CrossRef]
- Davis, K.L.; Mehlhorn, U.; Laine, G.A.; Allen, S.J. Myocardial edema, left ventricular function, and pulmonary hypertension. J. Appl. Physiol. 1995, 78, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Targoński, R.; Kowacz, M.; Oraczewski, R.; Thoene, M.; Targoński, R. The emerging concept of glycocalyx damage as the trigger of heart failure onset and progression. Med. Hypotheses 2024, 182, 111234. [Google Scholar] [CrossRef]
- Kim, Y.H.; Nijst, P.; Kiefer, K.; Tang, W.H. Endothelial Glycocalyx as Biomarker for Cardiovascular Diseases: Mechanistic and Clinical Implications. Curr. Heart Fail. Rep. 2017, 14, 117–126. [Google Scholar] [CrossRef]
- Pries, A.R.; Secomb, T.W.; Gaehtgens, P. The endothelial surface layer. Pflug. Arch. Eur. J. Physiol. 2000, 440, 653–666. [Google Scholar] [CrossRef]
- Nelson, A.; Berkestedt, I.; Bodelsson, M. Circulating glycosaminoglycan species in septic shock. Acta Anaesthesiol. Scand. 2014, 58, 36–43. [Google Scholar] [CrossRef]
- Henrich, M.; Gruss, M.; Weigand, M.A. Sepsis-induced degradation of endothelial glycocalix. Sci. World J. 2010, 10, 917–923. [Google Scholar] [CrossRef]
- Neves, F.M.; Meneses, G.C.; Sousa, N.E.; Menezes, R.R.; Parahyba, M.C.; Martins, A.M.; Liborio, A.B. Syndecan-1 in Acute Decompensated Heart Failure—Association With Renal Function and Mortality. Circ. J. 2015, 79, 1511–1519. [Google Scholar] [CrossRef]
- Johansson, P.I.; Stensballe, J.; Rasmussen, L.S.; Ostrowski, S.R. A high admission syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. Ann. Surg. 2011, 254, 194–200. [Google Scholar] [CrossRef]
- Wang, J.; Ma, L.; Fang, Y.; Ye, T.; Li, H.; Lan, P. Factors influencing glycocalyx degradation: A narrative review. Front. Immunol. 2024, 15, 1490395. [Google Scholar] [CrossRef]
- Wadowski, P.P.; Panzer, B.; Jozkowicz, A.; Kopp, C.W.; Gremmel, T.; Panzer, S.; Koppensteiner, R. Microvascular Thrombosis as a Critical Factor in Severe COVID-19. Int. J. Mol. Sci. 2023, 24, 2492. [Google Scholar] [CrossRef]
- Iba, T.; Maier, C.L.; Helms, J.; Ferrer, R.; Thachil, J.; Levy, J.H. Managing sepsis and septic shock in an endothelial glycocalyx-friendly way: From the viewpoint of surviving sepsis campaign guidelines. Ann. Intensive Care 2024, 14, 64. [Google Scholar] [CrossRef] [PubMed]
- Maneta, E.; Aivalioti, E.; Tual-Chalot, S.; Emini Veseli, B.; Gatsiou, A.; Stamatelopoulos, K.; Stellos, K. Endothelial dysfunction and immunothrombosis in sepsis. Front. Immunol. 2023, 14, 1144229. [Google Scholar] [CrossRef]
- Ahn, S.J.; Le Master, E.; Granados, S.T.; Levitan, I. Impairment of endothelial glycocalyx in atherosclerosis and obesity. Curr. Top. Membr. 2023, 91, 1–19. [Google Scholar] [CrossRef]
- Montezano, A.C.; Touyz, R.M. Reactive oxygen species and endothelial function—Role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin. Pharmacol. Toxicol. 2012, 110, 87–94. [Google Scholar] [CrossRef]
- Yu, H.; Kalogeris, T.; Korthuis, R.J. Reactive species-induced microvascular dysfunction in ischemia/reperfusion. Free Radic. Biol. Med. 2019, 135, 182–197. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, W.; Zhou, R. NLRP3 inflammasome activation and cell death. Cell Mol. Immunol. 2021, 18, 2114–2127. [Google Scholar] [CrossRef]
- Folco, E.J.; Mawson, T.L.; Vromman, A.; Bernardes-Souza, B.; Franck, G.; Persson, O.; Nakamura, M.; Newton, G.; Luscinskas, F.W.; Libby, P. Neutrophil Extracellular Traps Induce Endothelial Cell Activation and Tissue Factor Production Through Interleukin-1alpha and Cathepsin G. Arter. Thromb. Vasc. Biol. 2018, 38, 1901–1912. [Google Scholar] [CrossRef]
- Meuwese, M.C.; Mooij, H.L.; Nieuwdorp, M.; van Lith, B.; Marck, R.; Vink, H.; Kastelein, J.J.; Stroes, E.S. Partial recovery of the endothelial glycocalyx upon rosuvastatin therapy in patients with heterozygous familial hypercholesterolemia. J. Lipid Res. 2009, 50, 148–153. [Google Scholar] [CrossRef]
- Triantafyllidi, H.; Benas, D.; Vlachos, S.; Vlastos, D.; Pavlidis, G.; Schoinas, A.; Varoudi, M.; Birmpa, D.; Moutsatsou, P.; Lekakis, J.; et al. HDL cholesterol levels and endothelial glycocalyx integrity in treated hypertensive patients. J. Clin. Hypertens. 2018, 20, 1615–1623. [Google Scholar] [CrossRef]
- Murphy, L.S.; Wickersham, N.; McNeil, J.B.; Shaver, C.M.; May, A.K.; Bastarache, J.A.; Ware, L.B. Endothelial glycocalyx degradation is more severe in patients with non-pulmonary sepsis compared to pulmonary sepsis and associates with risk of ARDS and other organ dysfunction. Ann. Intensive Care 2017, 7, 102. [Google Scholar] [CrossRef]
- Patterson, E.K.; Cepinskas, G.; Fraser, D.D. Endothelial Glycocalyx Degradation in Critical Illness and Injury. Front. Med. 2022, 9, 898592. [Google Scholar] [CrossRef] [PubMed]
- Ajaero, C.N.; Procter, N.E.K.; Chirkov, Y.Y.; Heresztyn, T.; Arstall, M.A.; McGavigan, A.D.; Frenneaux, M.P.; Horowitz, J.D. Endothelial dysfunction and glycocalyx shedding in heart failure: Insights from patients receiving cardiac resynchronisation therapy. Heart Vessel. 2020, 35, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Kitai, T.; Morales, R.; Kiefer, K.; Chaikijurajai, T.; Tang, W.H.W. Usefulness of Serum Biomarkers of Endothelial Glycocalyx Damage in Prognosis of Decompensated Patients with Heart Failure with Reduced Ejection Fraction. Am. J. Cardiol. 2022, 176, 73–78. [Google Scholar] [CrossRef]
- Wadowski, P.P.; Hulsmann, M.; Schorgenhofer, C.; Lang, I.M.; Wurm, R.; Gremmel, T.; Koppensteiner, R.; Steinlechner, B.; Schwameis, M.; Jilma, B. Sublingual functional capillary rarefaction in chronic heart failure. Eur. J. Clin. Investig. 2018, 48, e12869. [Google Scholar] [CrossRef]
- Wadowski, P.P.; Jilma, B.; Kopp, C.W.; Ertl, S.; Gremmel, T.; Koppensteiner, R. Glycocalyx as Possible Limiting Factor in COVID-19. Front. Immunol. 2021, 12, 607306. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.; Coats, A.J.; Falk, V.; Gonzalez-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. J. Heart Fail. 2016, 18, 891–975. [Google Scholar] [CrossRef]
- Koscielny, J.K.; Latza, R.; Mursdorf, S.; Mrowietz, C.; Kiesewetter, H.; Wenzel, E.; Jung, F. Capillary microscopic and rheological dimensions for the diagnosis of von Willebrand disease in comparison to other haemorrhagic diatheses. Thromb. Haemost. 2000, 84, 981–988. [Google Scholar]
- Wadowski, P.P.; Steinlechner, B.; Zimpfer, D.; Schloglhofer, T.; Schima, H.; Hulsmann, M.; Lang, I.M.; Gremmel, T.; Koppensteiner, R.; Zehetmayer, S.; et al. Functional capillary impairment in patients with ventricular assist devices. Sci. Rep. 2019, 9, 5909. [Google Scholar] [CrossRef]
- Wadowski, P.P.; Kautzky-Willer, A.; Gremmel, T.; Koppensteiner, R.; Wolf, P.; Ertl, S.; Weikert, C.; Schorgenhofer, C.; Jilma, B. Sublingual microvasculature in diabetic patients. Microvasc. Res. 2020, 129, 103971. [Google Scholar] [CrossRef]
- Lee, D.H.; Dane, M.J.; van den Berg, B.M.; Boels, M.G.; van Teeffelen, J.W.; de Mutsert, R.; den Heijer, M.; Rosendaal, F.R.; van der Vlag, J.; van Zonneveld, A.J.; et al. Deeper penetration of erythrocytes into the endothelial glycocalyx is associated with impaired microvascular perfusion. PLoS ONE 2014, 9, e96477. [Google Scholar] [CrossRef]
- Martens, R.J.; Vink, H.; van Oostenbrugge, R.J.; Staals, J. Sublingual microvascular glycocalyx dimensions in lacunar stroke patients. Cerebrovasc. Dis. 2013, 35, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Dane, M.J.; Khairoun, M.; Lee, D.H.; van den Berg, B.M.; Eskens, B.J.; Boels, M.G.; van Teeffelen, J.W.; Rops, A.L.; van der Vlag, J.; van Zonneveld, A.J.; et al. Association of kidney function with changes in the endothelial surface layer. Clin. J. Am. Soc. Nephrol. CJASN 2014, 9, 698–704. [Google Scholar] [CrossRef]
- Machin, D.R.; Gates, P.E.; Vink, H.; Frech, T.M.; Donato, A.J. Automated Measurement of Microvascular Function Reveals Dysfunction in Systemic Sclerosis: A Cross-sectional Study. J. Rheumatol. 2017, 44, 1603–1611. [Google Scholar] [CrossRef]
- Donati, A.; Damiani, E.; Domizi, R.; Romano, R.; Adrario, E.; Pelaia, P.; Ince, C.; Singer, M. Alteration of the sublingual microvascular glycocalyx in critically ill patients. Microvasc. Res. 2013, 90, 86–89. [Google Scholar] [CrossRef]
- Groen, B.B.; Hamer, H.M.; Snijders, T.; van Kranenburg, J.; Frijns, D.; Vink, H.; van Loon, L.J. Skeletal muscle capillary density and microvascular function are compromised with aging and type 2 diabetes. J. Appl. Physiol. 2014, 116, 998–1005. [Google Scholar] [CrossRef]
- Koning, N.J.; Vonk, A.B.; Vink, H.; Boer, C. Side-by-Side Alterations in Glycocalyx Thickness and Perfused Microvascular Density During Acute Microcirculatory Alterations in Cardiac Surgery. Microcirculation 2016, 23, 69–74. [Google Scholar] [CrossRef]
- Vlahu, C.A.; Lemkes, B.A.; Struijk, D.G.; Koopman, M.G.; Krediet, R.T.; Vink, H. Damage of the endothelial glycocalyx in dialysis patients. J. Am. Soc. Nephrol. 2012, 23, 1900–1908. [Google Scholar] [CrossRef]
- Wadowski, P.P.; Schorgenhofer, C.; Rieder, T.; Ertl, S.; Pultar, J.; Serles, W.; Sycha, T.; Mayer, F.; Koppensteiner, R.; Gremmel, T.; et al. Microvascular rarefaction in patients with cerebrovascular events. Microvasc. Res. 2022, 140, 104300. [Google Scholar] [CrossRef]
- Nieuwdorp, M.; Meuwese, M.C.; Vink, H.; Hoekstra, J.B.; Kastelein, J.J.; Stroes, E.S. The endothelial glycocalyx: A potential barrier between health and vascular disease. Curr. Opin. Lipidol. 2005, 16, 507–511. [Google Scholar] [CrossRef]
- Panzer, B.; Kopp, C.W.; Neumayer, C.; Koppensteiner, R.; Jozkowicz, A.; Poledniczek, M.; Gremmel, T.; Jilma, B.; Wadowski, P.P. Toll-like Receptors as Pro-Thrombotic Drivers in Viral Infections: A Narrative Review. Cells 2023, 12, 1865. [Google Scholar] [CrossRef]
- Wadowski, P.P.; Piechota-Polanczyk, A.; Andreas, M.; Kopp, C.W. Cardiovascular Disease Management in the Context of Global Crisis. Int. J. Environ. Res. Public Health 2022, 20, 689. [Google Scholar] [CrossRef] [PubMed]
- Netuka, I.; Litzler, P.Y.; Berchtold-Herz, M.; Flecher, E.; Zimpfer, D.; Damme, L.; Sundareswaran, K.S.; Farrar, D.J.; Schmitto, J.D.; Investigators, E.T. Outcomes in HeartMate II Patients With No Antiplatelet Therapy: 2-Year Results From the European TRACE Study. Ann. Thorac. Surg. 2017, 103, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.; Taylor, A.; Mensah, S.A. Deciphering the triad of endothelial glycocalyx, von Willebrand Factor, and P-selectin in inflammation-induced coagulation. Front. Cell Dev. Biol. 2024, 12, 1372355. [Google Scholar] [CrossRef]
- Reina-Couto, M.; Pereira-Terra, P.; Quelhas-Santos, J.; Silva-Pereira, C.; Albino-Teixeira, A.; Sousa, T. Inflammation in Human Heart Failure: Major Mediators and Therapeutic Targets. Front. Physiol. 2021, 12, 746494. [Google Scholar] [CrossRef]
- Michelucci, A.; Ricciardi, G.; Sofi, F.; Gori, A.M.; Pirolo, F.; Pieragnoli, P.; Giaccardi, M.; Colella, A.; Porciani, M.C.; Di Biase, L.; et al. Relation of inflammatory status to major adverse cardiac events and reverse remodeling in patients undergoing cardiac resynchronization therapy. J. Card. Fail. 2007, 13, 207–210. [Google Scholar] [CrossRef]
- Lourenco, P.; Paulo Araujo, J.; Paulo, C.; Mascarenhas, J.; Frioes, F.; Azevedo, A.; Bettencourt, P. Higher C-reactive protein predicts worse prognosis in acute heart failure only in noninfected patients. Clin. Cardiol. 2010, 33, 708–714. [Google Scholar] [CrossRef]
- Maeda, K.; Tsutamoto, T.; Wada, A.; Mabuchi, N.; Hayashi, M.; Tsutsui, T.; Ohnishi, M.; Sawaki, M.; Fujii, M.; Matsumoto, T.; et al. High levels of plasma brain natriuretic peptide and interleukin-6 after optimized treatment for heart failure are independent risk factors for morbidity and mortality in patients with congestive heart failure. J. Am. Coll. Cardiol. 2000, 36, 1587–1593. [Google Scholar] [CrossRef]
- Buckley, L.F.; Abbate, A. Interleukin-1 blockade in cardiovascular diseases: A clinical update. Eur. Heart J. 2018, 39, 2063–2069. [Google Scholar] [CrossRef]
- O’Brien, L.C.; Mezzaroma, E.; Van Tassell, B.W.; Marchetti, C.; Carbone, S.; Abbate, A.; Toldo, S. Interleukin-18 as a therapeutic target in acute myocardial infarction and heart failure. Mol. Med. 2014, 20, 221–229. [Google Scholar] [CrossRef]
- Wang, M.; Markel, T.A.; Meldrum, D.R. Interleukin 18 in the heart. Shock 2008, 30, 3–10. [Google Scholar] [CrossRef]
- Segiet, O.A.; Piecuch, A.; Mielanczyk, L.; Michalski, M.; Nowalany-Kozielska, E. Role of interleukins in heart failure with reduced ejection fraction. Anatol. J. Cardiol. 2019, 22, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.R. Chapter 3-Inflammation and Healing1. In Pathologic Basis of Veterinary Disease, 6th ed.; Zachary, J.F., Ed.; Mosby: Maryland Heights, MO, USA, 2017; pp. 73–131.e132. [Google Scholar]
- Yan, R.T.; Fernandes, V.; Yan, A.T.; Cushman, M.; Redheuil, A.; Tracy, R.; Vogel-Claussen, J.; Bahrami, H.; Nasir, K.; Bluemke, D.A.; et al. Fibrinogen and left ventricular myocardial systolic function: The Multi-Ethnic Study of Atherosclerosis (MESA). Am. Heart J. 2010, 160, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Gopal, D.M.; Kalogeropoulos, A.P.; Georgiopoulou, V.V.; Tang, W.W.; Methvin, A.; Smith, A.L.; Bauer, D.C.; Newman, A.B.; Kim, L.; Harris, T.B.; et al. Serum albumin concentration and heart failure risk The Health, Aging, and Body Composition Study. Am. Heart J. 2010, 160, 279–285. [Google Scholar] [CrossRef]
- Filippatos, G.S.; Desai, R.V.; Ahmed, M.I.; Fonarow, G.C.; Love, T.E.; Aban, I.B.; Iskandrian, A.E.; Konstam, M.A.; Ahmed, A. Hypoalbuminaemia and incident heart failure in older adults. Eur. J. Heart Fail. 2011, 13, 1078–1086. [Google Scholar] [CrossRef]
- Horwich, T.B.; Kalantar-Zadeh, K.; MacLellan, R.W.; Fonarow, G.C. Albumin levels predict survival in patients with systolic heart failure. Am. Heart J. 2008, 155, 883–889. [Google Scholar] [CrossRef]
- Li, Z.; Ling, Y.; Yuan, X.; Liu, X.; Huang, W.; Chen, Q.; Wang, J.; Chen, Y.; Xu, M.; Wu, B. Impact of albumin infusion on prognosis of intensive care unit patients with congestive heart failure-hypoalbuminemia overlap: A retrospective cohort study. J. Thorac. Dis. 2022, 14, 2235–2246. [Google Scholar] [CrossRef]
- Yang, S.; Pi, J.; Ma, W.; Gu, W.; Zhang, H.; Xu, A.; Liu, Y.; Shi, T.; Yang, F.; Chen, L. Prognostic value of the fibrinogen-to-albumin ratio (FAR) in patients with chronic heart failure across the different ejection fraction spectrum. Libyan J. Med. 2024, 19, 2309757. [Google Scholar] [CrossRef]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef]
- Veraldi, N.; Vivès, R.R.; Blanchard-Rohner, G.; L’Huillier, A.G.; Wagner, N.; Rohr, M.; Beghetti, M.; De Agostini, A.; Grazioli, S. Endothelial glycocalyx degradation in multisystem inflammatory syndrome in children related to COVID-19. J. Mol. Med. 2022, 100, 735–746. [Google Scholar] [CrossRef]
- Targosz-Korecka, M.; Kubisiak, A.; Kloska, D.; Kopacz, A.; Grochot-Przeczek, A.; Szymonski, M. Endothelial glycocalyx shields the interaction of SARS-CoV-2 spike protein with ACE2 receptors. Sci. Rep. 2021, 11, 12157. [Google Scholar] [CrossRef]
- Illibauer, J.; Clodi-Seitz, T.; Zoufaly, A.; Aberle, J.H.; Weninger, W.J.; Foedinger, M.; Elsayad, K. Diagnostic potential of blood plasma longitudinal viscosity measured using Brillouin light scattering. Proc. Natl. Acad. Sci. USA 2024, 121, e2323016121. [Google Scholar] [CrossRef] [PubMed]
- Pretorius, E.; Vlok, M.; Venter, C.; Bezuidenhout, J.A.; Laubscher, G.J.; Steenkamp, J.; Kell, D.B. Persistent clotting protein pathology in Long COVID/Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc. Diabetol. 2021, 20, 172. [Google Scholar] [CrossRef] [PubMed]
- Panagiotides, N.G.; Zimprich, F.; Machold, K.; Schlager, O.; Muller, M.; Ertl, S.; Loffler-Stastka, H.; Koppensteiner, R.; Wadowski, P.P. A Case of Autoimmune Small Fiber Neuropathy as Possible Post COVID Sequelae. Int. J. Environ. Res. Public Health 2023, 20, 4918. [Google Scholar] [CrossRef]
- Tromp, J.; van der Pol, A.; Klip, I.T.; de Boer, R.A.; Jaarsma, T.; van Gilst, W.H.; Voors, A.A.; van Veldhuisen, D.J.; van der Meer, P. Fibrosis marker syndecan-1 and outcome in patients with heart failure with reduced and preserved ejection fraction. Circ. Heart Fail. 2014, 7, 457–462. [Google Scholar] [CrossRef]
- Curry, F.E.; Michel, C.C. The Colloid Osmotic Pressure Across the Glycocalyx: Role of Interstitial Fluid Sub-Compartments in Trans-Vascular Fluid Exchange in Skeletal Muscle. Front. Cell Dev. Biol. 2021, 9, 729873. [Google Scholar] [CrossRef]
- Vasques-Novoa, F.; Angelico-Goncalves, A.; Alvarenga, J.M.G.; Nobrega, J.; Cerqueira, R.J.; Mancio, J.; Leite-Moreira, A.F.; Roncon-Albuquerque, R., Jr. Myocardial oedema: Pathophysiological basis and implications for the failing heart. ESC Heart Fail. 2022, 9, 958–976. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Bohm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Crompton, M.; Ferguson, J.K.; Ramnath, R.D.; Onions, K.L.; Ogier, A.S.; Gamez, M.; Down, C.J.; Skinner, L.; Wong, K.H.; Dixon, L.K.; et al. Mineralocorticoid receptor antagonism in diabetes reduces albuminuria by preserving the glomerular endothelial glycocalyx. JCI Insight 2023, 8, e154164. [Google Scholar] [CrossRef]
- Pitt, B.; Agarwal, R.; Anker, S.D.; Ruilope, L.M.; Rossing, P.; Ahlers, C.; Brinker, M.; Joseph, A.; Lambelet, M.; Lawatscheck, R.; et al. Association of Finerenone Use With Reduction in Treatment-Emergent Pneumonia and COVID-19 Adverse Events Among Patients With Type 2 Diabetes and Chronic Kidney Disease: A FIDELITY Pooled Secondary Analysis. JAMA Netw. Open 2022, 5, e2236123. [Google Scholar] [CrossRef] [PubMed]
Follow Up Period of One Year | |||
---|---|---|---|
Overall Death n = 10 | Overall Survival n = 40 | p-Value | |
Age | 69 (62–76) | 70 (59–77) | 0.952 |
Sex (m/f) | 8/2 | 36/4 | 0.384 |
BMI | 29 (24–32) | 28 (24–32) | 0.574 |
Fibrinogen (g/L) | 4.2 (3.6–4.7) | 4.0 (3.6–4.6) | 0.700 |
Leukocytes (×109/L) | 7.7 (6.5–9.0) | 7.6 (6.3–9.1) | 0.849 |
Platelets (×109/L) | 215 (162–255) | 200 (180–238) | 0.926 |
C-reactive protein (mg/L) | 4.2 (3.1–7.5) | 5.3 (1.7–8.9) | 0.780 |
Albumin (g/L) | 42.6 (37.3–45.3) | 43.4 (40.4–45.3) | 0.925 |
Fibrinogen-to-albumin ratio | 8.85 (8.33–13.14) | 9.52 (7.93–11.48) | 0.741 |
NT-proBNP (pg/mL) | 4005 (2826–7937) | 2599 (1527–4549) | 0.201 |
Alanine aminotransferase (μmol/s·L) | 0.28 (0.21–0.32) | 0.37 (0.28–0.48) | 0.019 |
Aspartate aminotransferase (μmol/s·L) | 0.35 (0.28–0.45) | 0.43 (0.32–0.50) | 0.138 |
Total bilirubin (μmol/L) | 9.9 (5.9–16.9) | 12.3 (7.2–19.9) | 0.586 |
Serum creatinine (μmol/L) | 115.8 (98.6–333.3) | 120.7 (95.3–176.8) | 0.432 |
Estimated glomerular filtration rate (ml/min) | 50.2 (17.1–62.4) | 51.5 (33.1–73.4) | 0.343 |
Follow Up Period of Two Years | |||
Overall Death n = 16 | Overall Survival n = 34 | p-Value | |
Age | 74 (65–80) | 70 (57–75) | 0.134 |
Sex (m/f) | 14/2 | 30/4 | 0.941 |
BMI | 28.2 (24.6–31.5) | 27.9 (24.1–32.3) | 0.803 |
Fibrinogen (g/L) | 4.2 (3.7–5.0) | 4.0 (3.5–4.5) | 0.174 |
Leukocytes (×109/L) | 7.7 (6.4–9.2) | 7.6 (6.1–8.8) | 0.542 |
Platelets (×109/L) | 215 (176–244) | 196 (178–240) | 0.706 |
C-reactive protein (mg/L) | 7.3 (3.9–1.7) | 3.5 (1.6–7.9) | 0.026 |
Albumin (g/L) | 41.6 (37.4–44.3) | 44.2 (40.9–45.9) | 0.037 |
Fibrinogen-to-albumin ratio | 9.8 (8.34–13.67) | 8.85 (7.7–10.89) | 0.162 |
NT-proBNP (pg/mL) | 4693 (3377–11,425) | 2202 (1483–4243) | 0.004 |
Alanine aminotransferase (μmol/s·L) | 0.28 (0.23–0.35) | 0.37 (0.28–0.49) | 0.033 |
Aspartate aminotransferase (μmol/s·L) | 0.35 (0.28–0.48) | 0.43 (0.30–0.50) | 0.275 |
Total bilirubin (μmol/L) | 10.6 (7.4–16.9) | 12.2 (6.8–20.3) | 0.881 |
Serum creatinine (μmol/L) | 165 (108–294) | 113 (95–151) | 0.066 |
Estimated glomerular filtration rate (mL/min) | 38.8 (19.5–56.1) | 56.8 (42.2–75.8) | 0.045 |
Follow Up Period of One Year | |||
---|---|---|---|
Overall Death n = 10 | Overall Survival n = 40 | p-Value | |
PBR (μm) | 2.05 (1.88–2.14) | 1.87 (1.66–2.03) | 0.042 |
RBC filling % | 71 (70–74) | 74 (71–78) | 0.087 |
Functional capillary density (μm/mm2) | 2732 (1820–3141) | 2407 (2085–2736) | 0.369 |
Total capillary density (μm/mm2) | 3525 (2410–6435) | 3538 (3043–4497) | 0.971 |
Ratio (%) | 73 (60–85) | 71 (57–76) | 0.331 |
Follow Up Period of Two Years | |||
Overall Death n = 16 | Overall Survival n = 34 | p-Value | |
PBR (μm) | 2.04 (1.93–2.11) | 1.84 (1.62–1.97) | 0.003 |
RBC filling % | 71 (70–74) | 75 (71–79) | 0.028 |
Functional capillary density (μm/mm2) | 2630 (2028–2974) | 2403 (2068–2688) | 0.298 |
Total capillary density (μm/mm2) | 3568 (2963–5339) | 3538 (3021–4397) | 0.747 |
Ratio (%) | 73 (57–78) | 71 (57–77) | 0.771 |
One Year | Two Years | |||||
---|---|---|---|---|---|---|
B | CI | P | B | CI | P | |
PBR | 4.8 | 0.5–27,684 | 0.087 | 5.5 | 1.4–38,820.5 | 0.036 |
Functional capillary density | 0.03 | 1.0–1.1 | 0.083 | 0.3 | 1.0–1.1 | 0.048 |
Total capillary density | −0.01 | 0.98–1.0 | 0.149 | −0.01 | 0.98–1.0 | 0.064 |
NT-proBNP | 0 | 1.0–1.0 | 0.487 | 0.0 | 1.0–1.0 | 0.489 |
Creatinine | −0.002 | 0.98–1.0 | 0.762 | −0.01 | 0.98–1.0 | 0.224 |
C-reactive protein | −0.05 | 0.4–2.6 | 0.915 | 0.3 | 0.8–2.6 | 0.285 |
Albumin | 0.1 | 0.8–1.6 | 0.448 | −0.03 | 0.8–1.2 | 0.793 |
Alanine aminotransferase | −8.3 | 0.0–5.0 | 0.101 | −4.9 | 0–2.5 | 0.099 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wadowski, P.P.; Hülsmann, M.; Lang, I.M.; Schörgenhofer, C.; Pultar, J.; Weikert, C.; Gremmel, T.; Steiner, S.; Koppensteiner, R.; Kopp, C.W.; et al. Glycocalyx Disintegration Is Associated with Mortality in Chronic Heart Failure. J. Clin. Med. 2025, 14, 3571. https://doi.org/10.3390/jcm14103571
Wadowski PP, Hülsmann M, Lang IM, Schörgenhofer C, Pultar J, Weikert C, Gremmel T, Steiner S, Koppensteiner R, Kopp CW, et al. Glycocalyx Disintegration Is Associated with Mortality in Chronic Heart Failure. Journal of Clinical Medicine. 2025; 14(10):3571. https://doi.org/10.3390/jcm14103571
Chicago/Turabian StyleWadowski, Patricia P., Martin Hülsmann, Irene M. Lang, Christian Schörgenhofer, Joseph Pultar, Constantin Weikert, Thomas Gremmel, Sabine Steiner, Renate Koppensteiner, Christoph W. Kopp, and et al. 2025. "Glycocalyx Disintegration Is Associated with Mortality in Chronic Heart Failure" Journal of Clinical Medicine 14, no. 10: 3571. https://doi.org/10.3390/jcm14103571
APA StyleWadowski, P. P., Hülsmann, M., Lang, I. M., Schörgenhofer, C., Pultar, J., Weikert, C., Gremmel, T., Steiner, S., Koppensteiner, R., Kopp, C. W., & Jilma, B. (2025). Glycocalyx Disintegration Is Associated with Mortality in Chronic Heart Failure. Journal of Clinical Medicine, 14(10), 3571. https://doi.org/10.3390/jcm14103571