Exploring the Emerging Association Between Immune Checkpoint Inhibitors and Thrombosis
Abstract
:1. Introduction
2. Pathophysiology of Thrombosis
3. Potential Mechanisms of ICI-Associated Thrombosis
3.1. Disruption of Immune Homeostasis
3.2. T Cell Activation
3.3. Increased Tissue Factor Expression
3.4. Myeloid-Derived Suppressor Cell Activity
3.5. Endothelial and Platelet Activation
3.6. Impaired Fibrinolysis
3.7. Cardiac Dysfunction
3.8. Exacerbating Factors
4. Reported ICI-Associated Thrombosis in the Literature
5. Management of ICI-Associated Thrombosis
6. Prevention of ICI-Associated Thrombosis
7. Future Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muñoz Martín, A.J.; Ramírez, S.P.; Morán, L.O.; Zamorano, M.R.; Benéitez, M.C.V.; Salcedo, I.A.; Escobar, I.G.; Fernández, J.M.S. Pharmacological cancer treatment and venous thromboembolism risk. Eur. Heart J. Suppl. 2020, 22, C2–C14. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Kuderer, N.M.; Lyman, G.H. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J. Thromb. Haemost. 2007, 5, 632–634. [Google Scholar] [CrossRef]
- Mulder, F.I.; Horváth-Puhó, E.; van Es, N.; van Laarhoven, H.W.M.; Pedersen, L.; Moik, F.; Ay, C.; Büller, H.R.; Sørensen, H.T. Venous thromboembolism in cancer patients: A population-based cohort study. Blood 2021, 137, 1959–1969. [Google Scholar] [CrossRef]
- Navi, B.B.; Reiner, A.S.; Kamel, H.; Iadecola, C.; Okin, P.M.; Elkind, M.S.V.; Panageas, K.S.; DeAngelis, L.M. Risk of Arterial Thromboembolism in Patients With Cancer. J. Am. Coll. Cardiol. 2017, 70, 926–938. [Google Scholar] [CrossRef]
- Angelini, D.E.; Radivoyevitch, T.; McCrae, K.R.; Khorana, A.A. Bleeding incidence and risk factors among cancer patients treated with anticoagulation. Am. J. Hematol. 2019, 94, 780–785. [Google Scholar] [CrossRef]
- Englisch, C.; Moik, F.; Steiner, D.; Starzer, A.M.; Berghoff, A.S.; Preusser, M.; Pabinger, I.; Ay, C. Bleeding events in patients with cancer: Incidence, risk factors, and impact on prognosis in a prospective cohort study. Blood 2024, 144, 2349–2359. [Google Scholar] [CrossRef] [PubMed]
- Sanfilippo, K.M.; Yan, Y.; Luo, S.; Chang, S.-H.; Schoen, M.W.; Afzal, A.; Carson, K.R.; Gage, B.F. Elimination of Modifiable Risk Factors for Anticoagulant-Related Bleeding in Patients with Cancer Reduces the Probability of Bleeding. Blood 2024, 144, 814. [Google Scholar] [CrossRef]
- Sharma, P.; Allison, J.P. The future of immune checkpoint therapy. Science 2015, 348, 56–61. [Google Scholar] [CrossRef]
- Wang, T.-F.; Khorana, A.A.; Carrier, M. Thrombotic Complications Associated with Immune Checkpoint Inhibitors. Cancers 2021, 13, 4606. [Google Scholar] [CrossRef]
- Turpie, A.G.; Chin, B.S.; Lip, G.Y. Venous thromboembolism: Pathophysiology, clinical features, and prevention. BMJ 2002, 325, 887–890. [Google Scholar] [CrossRef]
- Stone, J.; Hangge, P.; Albadawi, H.; Wallace, A.; Shamoun, F.; Knuttien, M.G.; Naidu, S.; Oklu, R. Deep vein thrombosis: Pathogenesis, diagnosis, and medical management. Cardiovasc. Diagn. Ther. 2017, 7 (Suppl. S3), S276–S284. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A. Cancer and thrombosis: Implications of published guidelines for clinical practice. Ann. Oncol. 2009, 20, 1619–1630. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, S.; Ruan, Z.; Wang, K.; Xi, X.; Mao, J. Thrombotic events associated with immune checkpoint inhibitors and novel antithrombotic strategies to mitigate bleeding risk. Blood Rev. 2024, 67, 101220. [Google Scholar] [CrossRef] [PubMed]
- Morelli, T.; Fujita, K.; Redelman-Sidi, G.; Elkington, P.T. Infections due to dysregulated immunity: An emerging complication of cancer immunotherapy. Thorax 2022, 77, 304–311. [Google Scholar] [CrossRef]
- Zöller, B.; Li, X.; Sundquist, J.; Sundquist, K. Autoimmune diseases and venous thromboembolism: A review of the literature. Am. J. Cardiovasc. Dis. 2012, 2, 171–183. [Google Scholar]
- de Moel, E.C.; Rozeman, E.A.; Kapiteijn, E.H.; Verdegaal, E.M.E.; Grummels, A.; Bakker, J.A.; Huizinga, T.W.J.; Haanen, J.B.; Toes, R.E.M.; van der Woude, D. Autoantibody Development under Treatment with Immune-Checkpoint Inhibitors. Cancer Immunol. Res. 2019, 7, 6–11. [Google Scholar] [CrossRef]
- Genta, S.; Keshavarzi, S.; Yee, N.; Heirali, A.; Hansen, A.R.; Siu, L.L.; Saibil, S.; Stayner, L.-A.; Yanekina, M.; Sauder, M.; et al. Customized autoantibodies (autoAbs) profiling to predict and monitor immune-related adverse events (irAEs) in patients receiving immune checkpoint inhibitors (ICI). J. Clin. Oncol. 2022, 40, 2528. [Google Scholar] [CrossRef]
- Hata, A.; Sato, Y.; Fujiwara, S.; Kida, Y.; Masuda, T.; Amimoto, H.; Matsumoto, H.; Miyoshi, K.; Otsuka, K.; Tomii, K. MO2-7 A multicenter prospective observational study of pre-existing autoantibodies in patients with small-cell lung cancer treated with ICI. Ann. Oncol. 2023, 34, S1396. [Google Scholar] [CrossRef]
- Zamani, M.R.; Aslani, S.; Salmaninejad, A.; Javan, M.R.; Rezaei, N. PD-1/PD-L and autoimmunity: A growing relationship. Cell. Immunol. 2016, 310, 27–41. [Google Scholar] [CrossRef]
- Sparks, J.A. Pre-existing Autoimmune Diseases and Immune Checkpoint Inhibitors for Cancer Treatment: Considerations About Initiation, Flares, Immune-Related Adverse Events, and Cancer Progression. Rheum. Dis. Clin. N. Am. 2024, 50, 147–159. [Google Scholar] [CrossRef]
- Pizuorno Machado, A.; Shatila, M.; Liu, C.; Wang, J.; Altan, M.; Zhang, H.C.; Thomas, A.; Wang, Y. Immune-related adverse events after immune checkpoint inhibitor exposure in adult cancer patients with pre-existing autoimmune diseases. J. Cancer Res. Clin. Oncol. 2023, 149, 6341–6350. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Olivo, M.A.; Kachira, J.J.; Abdel-Wahab, N.; Pundole, X.; Aldrich, J.D.; Carey, P.; Khan, M.; Geng, Y.; Pratt, G.; Suarez-Almazor, M.E. A systematic review and meta-analysis of observational studies and uncontrolled trials reporting on the use of checkpoint blockers in patients with cancer and pre-existing autoimmune disease. Eur. J. Cancer 2024, 207, 114148. [Google Scholar] [CrossRef]
- Tison, A.; Quéré, G.; Misery, L.; Funck-Brentano, E.; Danlos, F.X.; Routier, E.; Robert, C.; Loriot, Y.; Lambotte, O.; Bonniaud, B.; et al. Safety and Efficacy of Immune Checkpoint Inhibitors in Patients With Cancer and Preexisting Autoimmune Disease: A Nationwide, Multicenter Cohort Study. Arthritis Rheumatol. 2019, 71, 2100–2111. [Google Scholar] [CrossRef] [PubMed]
- Sagrero-Fabela, N.; Chávez-Mireles, R.; Salazar-Camarena, D.C.; Palafox-Sánchez, C.A. Exploring the Role of PD-1 in the Autoimmune Response: Insights into Its Implication in Systemic Lupus Erythematosus. Int. J. Mol. Sci. 2024, 25, 7726. [Google Scholar] [CrossRef] [PubMed]
- Miyakoshi, J.; Murata, K.; Takeuchi, T.; Kitazono, M.; Wada, A.; Takamori, M. A case of catastrophic antiphospholipid syndrome during nivolumab treatment for gastric cancer. Ann. Jpn. Respir. Soc. 2019, 8, 425–429. [Google Scholar]
- Mintjens-Jager, E.M.W.; Vos, M.E.; Kats-Ugurlu, G.; Hospers, G.A.P.; Rutgers, A.; van Meurs, M. Severe mesenteric ischemia with multiple organ failure in a patient previously treated with a humanized monoclonal antibody against programmed death receptor-1 (pembrolizumab), a case of pembrolizumab associated catastrophic antiphospholipid syndrome? SAGE Open Med. Case Rep. 2020, 8, 2050313x20972225. [Google Scholar] [CrossRef]
- Gotsman, I.; Grabie, N.; Dacosta, R.; Sukhova, G.; Sharpe, A.; Lichtman, A.H. Proatherogenic immune responses are regulated by the PD-1/PD-L pathway in mice. J. Clin. Investig. 2007, 117, 2974–2982. [Google Scholar] [CrossRef]
- Bu, D.X.; Tarrio, M.; Maganto-Garcia, E.; Stavrakis, G.; Tajima, G.; Lederer, J.; Jarolim, P.; Freeman, G.J.; Sharpe, A.H.; Lichtman, A.H. Impairment of the programmed cell death-1 pathway increases atherosclerotic lesion development and inflammation. Arter. Thromb. Vasc. Biol. 2011, 31, 1100–1107. [Google Scholar] [CrossRef]
- Cochain, C.; Chaudhari, S.M.; Koch, M.; Wiendl, H.; Eckstein, H.H.; Zernecke, A. Programmed cell death-1 deficiency exacerbates T cell activation and atherogenesis despite expansion of regulatory T cells in atherosclerosis-prone mice. PLoS ONE 2014, 9, e93280. [Google Scholar] [CrossRef]
- Francisco, L.M.; Sage, P.T.; Sharpe, A.H. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev. 2010, 236, 219–242. [Google Scholar] [CrossRef]
- Grievink, H.W.; Smit, V.; Verwilligen, R.A.F.; Bernabé Kleijn, M.N.A.; Smeets, D.; Binder, C.J.; Yagita, H.; Moerland, M.; Kuiper, J.; Bot, I.; et al. Stimulation of the PD-1 Pathway Decreases Atherosclerotic Lesion Development in Ldlr Deficient Mice. Front. Cardiovasc. Med. 2021, 8, 740531. [Google Scholar] [CrossRef]
- Wilhelm, G.; Mertowska, P.; Mertowski, S.; Przysucha, A.; Strużyna, J.; Grywalska, E.; Torres, K. The Crossroads of the Coagulation System and the Immune System: Interactions and Connections. Int. J. Mol. Sci. 2023, 24, 12563. [Google Scholar] [CrossRef]
- Shim, Y.J.; Sharma, B.K.; Hisada, Y.; Mackman, N.; Palumbo, J.S.; Diaz-Montero, C.; Khorana, A.A.; McCrae, K.R. Immune Checkpoint Blockade Promotes Thrombosis Via T-Cell and Neutrophil Activation, and Tumor-Cell Associated Tissue Factor (TF) in a Murine Model of Colorectal Cancer. Blood 2023, 142 (Suppl. S1), 1192. [Google Scholar] [CrossRef]
- Sato, R.; Imamura, K.; Sakata, S.; Ikeda, T.; Horio, Y.; Iyama, S.; Akaike, K.; Hamada, S.; Jodai, T.; Nakashima, K.; et al. Disorder of Coagulation-Fibrinolysis System: An Emerging Toxicity of Anti-PD-1/PD-L1 Monoclonal Antibodies. J. Clin. Med. 2019, 8, 762. [Google Scholar] [CrossRef]
- Leon, G.; Klavina, P.A.; Rehill, A.M.; Basavarajappa, S.C.; O’Donnell, J.S.; Hussey, S.; Walsh, P.T.; Preston, R.J.S. Tissue factor-dependent colitogenic CD4+ T cell thrombogenicity is regulated by activated protein C signalling. Nat. Commun. 2024, 16, 1677. [Google Scholar] [CrossRef] [PubMed]
- Tormoen, G.W.; Rugonyi, S.; Gruber, A.; McCarty, O.J. The role of carrier number on the procoagulant activity of tissue factor in blood and plasma. Phys. Biol. 2011, 8, 66005. [Google Scholar] [CrossRef] [PubMed]
- Möller, M.; Orth, V.; Umansky, V.; Hetjens, S.; Braun, V.; Reißfelder, C.; Hardt, J.; Seyfried, S. Myeloid-derived suppressor cells in peripheral blood as predictive biomarkers in patients with solid tumors undergoing immune checkpoint therapy: Systematic review and meta-analysis. Front. Immunol. 2024, 15, 1403771. [Google Scholar] [CrossRef]
- Park, S.M.; Youn, J.I. Role of myeloid-derived suppressor cells in immune checkpoint inhibitor therapy in cancer. Arch. Pharm. Res. 2019, 42, 560–566. [Google Scholar] [CrossRef]
- Olivares-Hernández, A.; Figuero-Pérez, L.; Terán-Brage, E.; López-Gutiérrez, Á.; Velasco, Á.T.; Sarmiento, R.G.; Cruz-Hernández, J.J.; Miramontes-González, J.P. Resistance to Immune Checkpoint Inhibitors Secondary to Myeloid-Derived Suppressor Cells: A New Therapeutic Targeting of Haematological Malignancies. J. Clin. Med. 2021, 10, 1919. [Google Scholar] [CrossRef]
- Ozbay Kurt, F.G.; Lasser, S.; Arkhypov, I.; Utikal, J.; Umansky, V. Enhancing immunotherapy response in melanoma: Myeloid-derived suppressor cells as a therapeutic target. J. Clin. Investig. 2023, 133, e170762. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, L.; Liu, Y.; Li, Y.; Liu, Y.; Zhang, Z. Targeted modulation of myeloid-derived suppressor cells in the tumor microenvironment: Implications for cancer therapy. Biomed. Pharmacother. 2024, 180, 117590. [Google Scholar] [CrossRef]
- Rolling, C.; Regenhardt, J.; Lehr, C.; Beckmann, L.; Bokemeyer, C.; Langer, F. Immune checkpoints are upregulated on activated platelets and monocytes. In Proceedings of the GTH Congress 2024—68th Annual Meeting of the Society of Thrombosis and Haemostasis Research—Building Bridges in Coagulation, Vienna, Austria, 27 February–1 March 2024. [Google Scholar]
- Hou, A.; Hou, K.; Huang, Q.; Lei, Y.; Chen, W. Targeting Myeloid-Derived Suppressor Cell, a Promising Strategy to Overcome Resistance to Immune Checkpoint Inhibitors. Front. Immunol. 2020, 11, 783. [Google Scholar] [CrossRef] [PubMed]
- Roopkumar, J.; Swaidani, S.; Kim, A.S.; Thapa, B.; Gervaso, L.; Hobbs, B.P.; Wei, W.; Alban, T.J.; Funchain, P.; Kundu, S.; et al. Increased Incidence of Venous Thromboembolism with Cancer Immunotherapy. Med 2021, 2, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Cánovas, M.S.; Garay, D.F.; Moran, L.O.; Pérez, J.R.; Rubio, C.M.G.; de Mena, M.L.; Portero, B.O.; Castro, J.B.; Lage, Y.; Lavin, D.C.; et al. Immune checkpoint inhibitors-associated thrombosis in patients with lung cancer and melanoma: A study of the Spanish society of medical oncology (SEOM) thrombosis and cancer group. Clin. Transl. Oncol. 2022, 24, 2010–2020. [Google Scholar] [CrossRef] [PubMed]
- Charpidou, A.; Gerotziafas, G.; Popat, S.; Araujo, A.; Scherpereel, A.; Kopp, H.G.; Bironzo, P.; Massard, G.; Jiménez, D.; Falanga, A.; et al. Lung Cancer Related Thrombosis (LCART): Focus on Immune Checkpoint Blockade. Cancers 2024, 16, 450. [Google Scholar] [CrossRef]
- Goel, A.; Khorana, A.; Kartika, T.; Gowda, S.; Tao, D.L.; Thawani, R.; Shatzel, J.J. Assessing the risk of thromboembolism in cancer patients receiving immunotherapy. Eur. J. Haematol. 2022, 108, 271–277. [Google Scholar] [CrossRef]
- McCrae, K.R.; Swaidani, S.; Diaz-Montero, C.M.; Khorana, A.A. Old is new again: Emergence of thromboembolic complications in cancer patients on immunotherapy. Thromb. Res. 2022, 213 (Suppl. S1), S51–S57. [Google Scholar] [CrossRef]
- Apostoli, A.; Bianchi, V.; Bono, N.; Dimasi, A.; Ammann, K.R.; Moiia, Y.R.; Montisci, A.; Sheriff, J.; Bluestein, D.; Fiore, G.B.; et al. Prothrombotic activity of cytokine-activated endothelial cells and shear-activated platelets in the setting of ventricular assist device support. J. Heart Lung Transpl. 2019, 38, 658–667. [Google Scholar] [CrossRef]
- Horaguchi, S.; Nakahara, Y.; Igarashi, Y.; Kouro, T.; Wei, F.; Murotani, K.; Udagawa, S.; Higashijima, N.; Matsuo, N.; Murakami, S.; et al. Prognostic Significance of Plasma Neutrophil Extracellular Trap Levels in Patients with Non-Small Cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Biomedicines 2024, 12, 1831. [Google Scholar] [CrossRef]
- Patalakh, I.; Wandersee, A.; Schlüter, J.; Erdmann, M.; Hackstein, H.; Cunningham, S. Influence of the Immune Checkpoint Inhibitors on the Hemostatic Potential of Blood Plasma. Transfus. Med. Hemother. 2024, 52, 120–131. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Fujimura, T.; Uno, T.; Terada, T.; Hirano, K.I.; Hosokawa, H.; Ohta, A.; Miyata, T.; Ando, K.; Yahata, T. Plasminogen activator inhibitor-1 promotes immune evasion in tumors by facilitating the expression of programmed cell death-ligand 1. Front. Immunol. 2024, 15, 1365894. [Google Scholar] [CrossRef] [PubMed]
- Gergely, T.G.; Drobni, Z.D.; Sayour, N.V.; Ferdinandy, P.; Varga, Z.V. Molecular fingerprints of cardiovascular toxicities of immune checkpoint inhibitors. Basic Res. Cardiol. 2024, 120, 187–205. [Google Scholar] [CrossRef]
- Khunger, A.; Battel, L.; Wadhawan, A.; More, A.; Kapoor, A.; Agrawal, N. New Insights into Mechanisms of Immune Checkpoint Inhibitor-Induced Cardiovascular Toxicity. Curr. Oncol. Rep. 2020, 22, 65. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Infante, N.; Ramírez-Flores, Y.A.; Castillo, E.C.; Lozano, O.; García-Rivas, G.; Torre-Amione, G. A Systematic Review of the Mechanisms Involved in Immune Checkpoint Inhibitors Cardiotoxicity and Challenges to Improve Clinical Safety. Front. Cell Dev. Biol. 2022, 10, 851032. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Caceres Lessa, A.Y.; Lee, P.-L.; Chowdhury, I.; Chang, Y.; Chang, Y.-C.; Schwartz, R.; Chi, K.-Y.; Kumar, A. Risk factors for thrombotic events among patients taking immune checkpoint inhibitors: A systematic review and meta-analysis. J. Clin. Oncol. 2024, 42, e14610. [Google Scholar] [CrossRef]
- van Dorst, D.; Hofman, M.M.; de Waal, R.M.; Oomen-de Hoop, E.; Joode, K.D.; Bins, S.; Koolen, S.L.; Joosse, A.; Versmissen, J.; Van der Veldt, A.A.M.; et al. 1154P Thromboembolic events in patients with melanoma receiving immune checkpoint inhibitors: Incidence and risk factors. Ann. Oncol. 2023, 34, S689. [Google Scholar] [CrossRef]
- Connors, J.M.; Sussman, T.A.; Dryg, I.D.; Giobbe-Hurder, A.; Manos, M.P.; Weirather, J.L.; Hodi, S. Risks for Venous Thromboembolism with Immune Checkpoint Inhibitor Therapy. Blood 2023, 142, 2640. [Google Scholar] [CrossRef]
- Wang, T.F.; Carrier, M. Immune Checkpoint Inhibitors-Associated Thrombosis: Incidence, Risk Factors and Management. Curr. Oncol. 2023, 30, 3032–3046. [Google Scholar] [CrossRef]
- Gong, J.; Drobni, Z.D.; Alvi, R.M.; Murphy, S.P.; Sullivan, R.J.; Hartmann, S.E.; Gilman, H.K.; Lee, H.; Zubiri, L.; Raghu, V.K.; et al. Immune checkpoint inhibitors for cancer and venous thromboembolic events. Eur. J. Cancer 2021, 158, 99–110. [Google Scholar] [CrossRef]
- Ide, T.; Araki, T.; Koizumi, T. Thromboembolism during immune checkpoint inhibitor therapy: Frequency and risk factors. Discov. Oncol. 2024, 15, 527. [Google Scholar] [CrossRef]
- le Sève, J.D.; Guédon, A.F.; Bordenave, S.; Agard, C.; Connault, J.; Pistorius, M.A.; Quéreux, G.; Espitia, O. Risk Factors of Venous Thromboembolic Disease in Cancer Patients Treated with Immune Checkpoint Inhibitor. Thromb. Haemost. 2023, 123, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, Y.; Zhang, Y.; Wang, W.; Wang, Y.; Lu, Z.; Zhang, Y.; Lei, H.; Li, D.; Long, B.; et al. Association of immune checkpoint inhibitors therapy with arterial thromboembolic events in cancer patients: A retrospective cohort study. Cancer Med. 2023, 12, 18531–18541. [Google Scholar] [CrossRef]
- He, X.; Wei, S.N.; Qin, W.W.; Geng, N.; Li, B.; Song, S.; Wang, P. Evaluating the effect of immune checkpoint inhibitors on venous thromboembolism in non-small cell lung cancer patients. Expert Rev. Hematol. 2023, 16, 1135–1142. [Google Scholar] [CrossRef]
- Alghamdi, E.A.; Aljohani, H.; Alghamdi, W.; Alharbi, F. Immune checkpoint inhibitors and potential risk of thromboembolic events: Analysis of the WHO global database of individual case safety reports. Saudi Pharm. J. 2022, 30, 1193–1199. [Google Scholar] [CrossRef]
- Li, A.; May, S.B.; La, J.; Martens, K.L.; Amos, C.I.; Flowers, C.R.; Do, N.V.; Brophy, M.T.; Chitalia, V.; Ravid, K.; et al. Venous thromboembolism risk in cancer patients receiving first-line immune checkpoint inhibitor versus chemotherapy. Am. J. Hematol. 2023, 98, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Cánovas, M.S.; Hernández, M.M.; Adoamnei, E.; Lavin, D.C.; Garay, D.F.; Verdúguez, T.Q.; Revuelta, J.R.; Verdejo, F.J.G.; Adrián, S.G.; Pérez, A.I.F.; et al. Immune checkpoint inhibitors-associated thrombosis in patients with head and neck cancer: A study of the Spanish society of medical oncology (SEOM) thrombosis and cancer group. Clin. Transl. Oncol. 2024, 27, 175–181. [Google Scholar] [CrossRef]
- Drobni, Z.D.; Alvi, R.M.; Taron, J.; Zafar, A.; Murphy, S.P.; Rambarat, P.K.; Mosarla, R.C.; Lee, C.; Zlotoff, D.A.; Raghu, V.K.; et al. Association Between Immune Checkpoint Inhibitors with Cardiovascular Events and Atherosclerotic Plaque. Circulation 2020, 142, 2299–2311. [Google Scholar] [CrossRef]
- Lyman, G.H.; Carrier, M.; Ay, C.; Di Nisio, M.; Hicks, L.K.; Khorana, A.A.; Leavitt, A.D.; Lee, A.Y.Y.; Macbeth, F.; Morgan, R.L.; et al. American Society of Hematology 2021 guidelines for management of venous thromboembolism: Prevention and treatment in patients with cancer. Blood Adv. 2021, 5, 927–974. [Google Scholar] [CrossRef] [PubMed]
- Carrier, M.; Blais, N.; Crowther, M.; Kavan, P.; Le Gal, G.; Moodley, O.; Shivakumar, S.; Suryanarayan, D.; Tagalakis, V.; Wu, C.; et al. Treatment Algorithm in Cancer-Associated Thrombosis: Updated Canadian Expert Consensus. Curr. Oncol. 2021, 28, 5434–5451. [Google Scholar] [CrossRef]
- Lee, A.Y.; Bauersachs, R.; Janas, M.S.; Jarner, M.F.; Kamphuisen, P.W.; Meyer, G.; Khorana, A.A. CATCH: A randomised clinical trial comparing long-term tinzaparin versus warfarin for treatment of acute venous thromboembolism in cancer patients. BMC Cancer 2013, 13, 284. [Google Scholar] [CrossRef]
- Kahale, L.A.; Hakoum, M.B.; Tsolakian, I.G.; Matar, C.F.; Terrenato, I.; Sperati, F.; Barba, M.; Yosuico, V.E.; Schünemann, H.; Akl, E.A. Anticoagulation for the long-term treatment of venous thromboembolism in people with cancer. Cochrane Database Syst. Rev. 2018, 6, CD006650. [Google Scholar] [CrossRef]
- Enden, T.; Haig, Y.; Kløw, N.E.; Slagsvold, C.E.; Sandvik, L.; Ghanima, W.; Hafsahl, G.; Holme, P.A.; Holmen, L.O.; Njaastad, A.M.; et al. Long-term outcome after additional catheter-directed thrombolysis versus standard treatment for acute iliofemoral deep vein thrombosis (the CaVenT study): A randomised controlled trial. Lancet 2012, 379, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Raskob, G.E.; van Es, N.; Verhamme, P.; Carrier, M.; Di Nisio, M.; Garcia, D.; Grosso, M.A.; Kakkar, A.K.; Kovacs, M.J.; Mercuri, M.F.; et al. Edoxaban for the Treatment of Cancer-Associated Venous Thromboembolism. N. Engl. J. Med. 2018, 378, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Young, A.M.; Marshall, A.; Thirlwall, J.; Chapman, O.; Lokare, A.; Hill, C.; Hale, D.; Dunn, J.A.; Lyman, G.H.; Hutchinson, C.; et al. Comparison of an Oral Factor Xa Inhibitor with Low Molecular Weight Heparin in Patients With Cancer With Venous Thromboembolism: Results of a Randomized Trial (SELECT-D). J. Clin. Oncol. 2018, 36, 2017–2023. [Google Scholar] [CrossRef]
- Key, N.S.; Khorana, A.A.; Kuderer, N.M.; Bohlke, K.; Lee, A.Y.Y.; Arcelus, J.I.; Wong, S.L.; Balaban, E.P.; Flowers, C.R.; Gates, L.E.; et al. Venous Thromboembolism Prophylaxis and Treatment in Patients with Cancer: ASCO Guideline Update. J. Clin. Oncol. 2023, 41, 3063–3071. [Google Scholar] [CrossRef]
- Simes, J.; Becattini, C.; Agnelli, G.; Eikelboom, J.W.; Kirby, A.C.; Mister, R.; Prandoni, P.; Brighton, T.A. Aspirin for the Prevention of Recurrent Venous Thromboembolism. Circulation 2014, 130, 1062–1071. [Google Scholar] [CrossRef]
- Castellucci, L.A.; Cameron, C.; Le Gal, G.; Rodger, M.A.; Coyle, D.; Wells, P.S.; Clifford, T.; Gandara, E.; Wells, G.; Carrier, M. Efficacy and safety outcomes of oral anticoagulants and antiplatelet drugs in the secondary prevention of venous thromboembolism: Systematic review and network meta-analysis. BMJ Br. Med. J. 2013, 347, f5133. [Google Scholar] [CrossRef] [PubMed]
- Patrono, C.; Morais, J.; Baigent, C.; Collet, J.-P.; Fitzgerald, D.; Halvorsen, S.; Rocca, B.; Siegbahn, A.; Storey, R.F.; Vilahur, G. Antiplatelet Agents for the Treatment and Prevention of Coronary Atherothrombosis. J. Am. Coll. Cardiol. 2017, 70, 1760–1776. [Google Scholar] [CrossRef]
- Swan, D.; Loughran, N.; Makris, M.; Thachil, J. Management of bleeding and procedures in patients on antiplatelet therapy. Blood Rev. 2020, 39, 100619. [Google Scholar] [CrossRef]
- Buccheri, S.; Capodanno, D.; James, S.; Angiolillo, D.J. Bleeding after antiplatelet therapy for the treatment of acute coronary syndromes: A review of the evidence and evolving paradigms. Expert Opin. Drug Saf. 2019, 18, 1171–1189. [Google Scholar] [CrossRef]
- Halvorsen, S.; Andreotti, F.; ten Berg, J.M.; Cattaneo, M.; Coccheri, S.; Marchioli, R.; Morais, J.; Verheugt, F.W.A.; De Caterina, R. Aspirin Therapy in Primary Cardiovascular Disease Prevention: A Position Paper of the European Society of Cardiology Working Group on Thrombosis. J. Am. Coll. Cardiol. 2014, 64, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Bowman, L.; Mafham, M.; Wallendszus, K.; Stevens, W.; Buck, G.; Barton, J.; Murphy, K.; Aung, T.; Haynes, R.; Cox, J.; et al. Effects of Aspirin for Primary Prevention in Persons with Diabetes Mellitus. N. Engl. J. Med. 2018, 379, 1529–1539. [Google Scholar] [CrossRef]
- Schaff, M.; Tang, C.; Maurer, E.; Bourdon, C.; Receveur, N.; Eckly, A.; Hechler, B.; Arnold, C.; de Arcangelis, A.; Nieswandt, B.; et al. Integrin α6β1 Is the Main Receptor for Vascular Laminins and Plays a Role in Platelet Adhesion, Activation, and Arterial Thrombosis. Circulation 2013, 128, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, J.D.; Wang, X.; Krajewski, S.; Selan, C.; Haller, C.A.; Straub, A.; Chaikof, E.L.; Nandurkar, H.H.; Hagemeyer, C.E.; Peter, K. Delayed targeting of CD39 to activated platelet GPIIb/IIIa via a single-chain antibody: Breaking the link between antithrombotic potency and bleeding? Blood 2013, 121, 3067–3075. [Google Scholar] [CrossRef]
- Guntupalli, S.R.; Spinosa, D.; Wethington, S.; Eskander, R.; Khorana, A.A. Prevention of venous thromboembolism in patients with cancer. BMJ 2023, 381, e072715. [Google Scholar] [CrossRef] [PubMed]
- Le Gal, G.; Agnelli, G.; Darius, H.; Kahn, S.R.; Owaidah, T.; Rocha, A.T.; Zhai, Z.; Khan, I.; Djoudi, Y.; Ponomareva, E.; et al. Event rates and risk factors for venous thromboembolism and major bleeding in a population of hospitalized adult patients with acute medical illness receiving enoxaparin thromboprophylaxis. Eur. J. Intern. Med. 2024, 121, 48–55. [Google Scholar] [CrossRef]
- Carrier, M.; Khorana, A.A.; Moretto, P.; Le Gal, G.; Karp, R.; Zwicker, J.I. Lack of evidence to support thromboprophylaxis in hospitalized medical patients with cancer. Am. J. Med. 2014, 127, 82–86. [Google Scholar] [CrossRef]
- Falanga, A.; Ay, C.; Di Nisio, M.; Gerotziafas, G.; Jara-Palomares, L.; Langer, F.; Lecumberri, R.; Mandala, M.; Maraveyas, A.; Pabinger, I.; et al. Venous thromboembolism in cancer patients: ESMO Clinical Practice Guideline. Ann. Oncol. 2023, 34, 452–467. [Google Scholar] [CrossRef]
- Schulman, S. How I treat recurrent venous thromboembolism in patients receiving anticoagulant therapy. Blood 2017, 129, 3285–3293. [Google Scholar] [CrossRef]
- Costa, J.; Araújo, A. The Contribution of Inherited Thrombophilia to Venous Thromboembolism in Cancer Patients. Clin. Appl. Thromb./Hemost. 2024, 30, 10760296241232864. [Google Scholar] [CrossRef]
- Dicks, A.B.; Moussallem, E.; Stanbro, M.; Walls, J.; Gandhi, S.; Gray, B.H. A Comprehensive Review of Risk Factors and Thrombophilia Evaluation in Venous Thromboembolism. J. Clin. Med. 2024, 13, 362. [Google Scholar] [CrossRef]
- Roy, D.C.; Wang, T.F.; Lun, R.; Zahrai, A.; Mallick, R.; Burger, D.; Zitikyte, G.; Hawken, S.; Wells, P. Inherited thrombophilia gene mutations and risk of venous thromboembolism in patients with cancer: A systematic review and meta-analysis. Am. J. Hematol. 2024, 99, 577–585. [Google Scholar] [CrossRef]
- Overvad, T.F.; Ording, A.G.; Nielsen, P.B.; Skjøth, F.; Albertsen, I.E.; Noble, S.; Vistisen, A.K.; Gade, I.L.; Severinsen, M.T.; Piazza, G.; et al. Validation of the Khorana score for predicting venous thromboembolism in 40 218 patients with cancer initiating chemotherapy. Blood Adv. 2022, 6, 2967–2976. [Google Scholar] [CrossRef]
- Sanfilippo, K.M.; Luo, S.; Wang, T.-F.; Fiala, M.; Schoen, M.; Wildes, T.M.; Mikhael, J.; Kuderer, N.M.; Calverley, D.C.; Keller, J.; et al. Predicting venous thromboembolism in multiple myeloma: Development and validation of the IMPEDE VTE score. Am. J. Hematol. 2019, 94, 1176–1184. [Google Scholar] [CrossRef]
- Dima, D.; Li, A.; Granat, L.M.; Dhillon, P.; Chamseddine, F.; Yalamanchali, A.; Mirzai, S.; Wei, W.; Samaras, C.J.; Valent, J.; et al. External validation of the SAVED score for venous thromboembolism risk stratification in patients with multiple myeloma receiving immunomodulatory drugs. Br. J. Haematol. 2023, 201, 280–284. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, Y.; Yang, L.; Yang, M.; Xu, R.; Liu, D. Validation of risk assessment scores in predicting venous thromboembolism in patients with lung cancer receiving immune checkpoint inhibitors. BMC Pulm. Med. 2024, 24, 507. [Google Scholar] [CrossRef]
- Li, A.; La, J.; May, S.B.; Guffey, D.; da Costa, W.L., Jr.; Amos, C.I.; Bandyo, R.; Milner, E.M.; Kurian, K.M.; Chen, D.C.R.; et al. Derivation and Validation of a Clinical Risk Assessment Model for Cancer-Associated Thrombosis in Two Unique US Health Care Systems. J. Clin. Oncol. 2023, 41, 2926–2938. [Google Scholar] [CrossRef]
- Djulbegovic, B.; Boylan, A.; Kolo, S.; Scheurer, D.B.; Anuskiewicz, S.; Khaledi, F.; Youkhana, K.; Madgwick, S.; Maharjan, N.; Hozo, I. Converting IMPROVE bleeding and VTE risk assessment models into a fast-and-frugal decision tree for optimal hospital VTE prophylaxis. Blood Adv. 2024, 8, 3214–3224. [Google Scholar] [CrossRef]
- Kusaba, H.; Moriyama, S.; Hieda, M.; Ito, M.; Ohmura, H.; Isobe, T.; Tsuchihashi, K.; Fukata, M.; Ariyama, H.; Baba, E. IMPROVE bleeding score predicts major bleeding in advanced gastrointestinal cancer patients with venous thromboembolism. Jpn. J. Clin. Oncol. 2022, 52, 1183–1190. [Google Scholar] [CrossRef]
- Connors, J.M. Fine Tuning Venous Thromboembolism Risk Prediction in Patients with Cancer. J. Clin. Oncol. 2023, 41, 2881–2883. [Google Scholar] [CrossRef]
- Overvad, T.F.; Skjøth, F.; Piazza, G.; Noble, S.; Ording, A.G.; Larsen, T.B.; Nielsen, P.B. The Khorana score and venous and arterial thrombosis in patients with cancer treated with immune checkpoint inhibitors: A Danish cohort study. J. Thromb. Haemost. 2022, 20, 2921–2929. [Google Scholar] [CrossRef]
- Spyropoulos, A.C.; Raskob, G.E.; Cohen, A.T.; Ageno, W.; Weitz, J.I.; Spiro, T.E.; Lu, W.; Lipardi, C.; Albers, G.W.; Elliott, C.G.; et al. Association of Bleeding Severity with Mortality in Extended Thromboprophylaxis of Medically Ill Patients in the MAGELLAN and MARINER Trials. Circulation 2022, 145, 1471–1479. [Google Scholar] [CrossRef]
- Key, N.S.; Khorana, A.A.; Kuderer, N.M.; Bohlke, K.; Lee, A.Y.Y.; Arcelus, J.I.; Wong, S.L.; Balaban, E.P.; Flowers, C.R.; Francis, C.W.; et al. Venous Thromboembolism Prophylaxis and Treatment in Patients with Cancer: ASCO Clinical Practice Guideline Update. J. Clin. Oncol. 2020, 38, 496–520. [Google Scholar] [CrossRef]
- Dentali, F.; Douketis, J.D.; Gianni, M.; Lim, W.; Crowther, M.A. Meta-analysis: Anticoagulant prophylaxis to prevent symptomatic venous thromboembolism in hospitalized medical patients. Ann. Intern. Med. 2007, 146, 278–288. [Google Scholar] [CrossRef]
- Neumann, I.; Izcovich, A.; Zhang, Y.; Rada, G.; Kahn, S.R.; Spencer, F.; Rezende, S.; Dentali, F.; Bauer, K.; Morgano, G.P.; et al. DOACs vs LMWHs in hospitalized medical patients: A systematic review and meta-analysis that informed 2018 ASH guidelines. Blood Adv. 2020, 4, 1512–1517. [Google Scholar] [CrossRef]
- Carrier, M.; Abou-Nassar, K.; Mallick, R.; Tagalakis, V.; Shivakumar, S.; Schattner, A.; Kuruvilla, P.; Hill, D.; Spadafora, S.; Marquis, K.; et al. Apixaban to Prevent Venous Thromboembolism in Patients with Cancer. N. Engl. J. Med. 2019, 380, 711–719. [Google Scholar] [CrossRef]
- Khorana, A.A.; Soff, G.A.; Kakkar, A.K.; Vadhan-Raj, S.; Riess, H.; Wun, T.; Streiff, M.B.; Garcia, D.A.; Liebman, H.A.; Belani, C.P.; et al. Rivaroxaban for Thromboprophylaxis in High-Risk Ambulatory Patients with Cancer. N. Engl. J. Med. 2019, 380, 720–728. [Google Scholar] [CrossRef]
- Ruf, W.; Graf, C. Coagulation signaling and cancer immunotherapy. Thromb. Res. 2020, 191 (Suppl. S1), S106–S111. [Google Scholar] [CrossRef]
- Graf, C.; Wilgenbus, P.; Pagel, S.; Pott, J.; Marini, F.; Reyda, S.; Kitano, M.; Macher-Göppinger, S.; Weiler, H.; Ruf, W. Myeloid cell–synthesized coagulation factor X dampens antitumor immunity. Sci. Immunol. 2019, 4, eaaw8405. [Google Scholar] [CrossRef]
- Sharma, A.; Chatterjee, S.; Lichstein, E.; Mukherjee, D. Extended thromboprophylaxis for medically ill patients with decreased mobility: Does it improve outcomes? J. Thromb. Haemost. 2012, 10, 2053–2060. [Google Scholar] [CrossRef]
- Moik, F.; Riedl, J.M.; Barth, D.; Berton, F.; Fink, M.; Englisch, C.; Hoeller, C.; Fuereder, T.; Ay, L.; Pabinger, I.; et al. Early Change in C-Reactive Protein and Venous Thromboembolism in Patients Treated With Immune Checkpoint Inhibitors. JACC CardioOncol. 2024, 6, 965–975. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Y.; Lin, H.; Wang, J.; Cao, B. Predictive biomarkers for immune-related adverse events in cancer patients treated with immune-checkpoint inhibitors. BMC Immunol. 2024, 25, 8. [Google Scholar] [CrossRef]
- Lee, J.; Kim, D.; Kong, J.; Ha, D.; Kim, I.; Park, M.; Lee, K.; Im, S.H.; Kim, S. Cell-cell communication network-based interpretable machine learning predicts cancer patient response to immune checkpoint inhibitors. Sci. Adv. 2024, 10, eadj0785. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, K.; Jiang, Y.; Xu, X.; Liu, Y. The role of artificial intelligence in immune checkpoint inhibitor research: A bibliometric analysis. Hum. Vaccin. Immunother. 2024, 20, 2429893. [Google Scholar] [CrossRef]
- Bai, R.; Lv, Z.; Xu, D.; Cui, J. Predictive biomarkers for cancer immunotherapy with immune checkpoint inhibitors. Biomark. Res. 2020, 8, 34. [Google Scholar] [CrossRef]
- Pavelescu, L.A.; Enache, R.M.; Roşu, O.A.; Profir, M.; Creţoiu, S.M.; Gaspar, B.S. Predictive Biomarkers and Resistance Mechanisms of Checkpoint Inhibitors in Malignant Solid Tumors. Int. J. Mol. Sci. 2024, 25, 9659. [Google Scholar] [CrossRef]
- Gibney, G.T.; Weiner, L.M.; Atkins, M.B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016, 17, e542–e551. [Google Scholar] [CrossRef]
- Lin, J.; Li, W.; Zhang, X.; Zhou, K.; Yang, Y.; Cheng, S.; Sun, R.; Dang, C.; Diao, D. Thromboembolic events associated with immune checkpoint inhibitors in cancer patients: A Bayesian network meta-analysis. Thromb. Res. 2025, 246, 109243. [Google Scholar] [CrossRef]
- Li, H.; Li, H.; Tang, L.; Niu, H.; He, L.; Luo, Q. Associations Between Immune-Related Venous Thromboembolism and Efficacy of Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. Clin. Appl. Thromb. Hemost. 2023, 29, 10760296231206799. [Google Scholar] [CrossRef]
- Franco-Moreno, A.; Madroñal-Cerezo, E.; Muñoz-Rivas, N.; Torres-Macho, J.; Ruiz-Giardín, J.M.; Ancos-Aracil, C.L. Prediction of Venous Thromboembolism in Patients with Cancer Using Machine Learning Approaches: A Systematic Review and Meta-Analysis. JCO Clin. Cancer Inf. 2023, 7, e2300060. [Google Scholar] [CrossRef]
- Mantha, S.; Chatterjee, S.; Singh, R.; Cadley, J.; Poon, C.; Chatterjee, A.; Kelly, D.; Sterpi, M.; Soff, G.; Zwicker, J.; et al. Application of Machine Learning to the Prediction of Cancer-Associated Venous Thromboembolism. Res. Sq. 2023, in press. [Google Scholar] [CrossRef]
- Zhou, X.; Ni, Y.; Liang, X.; Lin, Y.; An, B.; He, X.; Zhao, X. Mechanisms of tumor resistance to immune checkpoint blockade and combination strategies to overcome resistance. Front. Immunol. 2022, 13, 915094. [Google Scholar] [CrossRef]
Molecule/Factor | Role in ICI-Associated Thrombosis |
---|---|
PD-1/PD-L1 checkpoint | Checkpoint molecules that normally dampen T cell activation; ICI blockade of PD-1/PD-L1 leads to hyperactive T cells and excessive inflammation, lowering self-tolerance and triggering autoimmunity (creating a thrombosis-prone state) [27,28,29,30,31]. |
Tumor necrosis factor | Proinflammatory cytokine elevated during ICI-induced immune responses; directly activates endothelial cells (upregulating adhesion molecules and tissue factor) and promotes a procoagulant state (also increases PAI-1 release, tipping the hemostatic balance toward thrombosis) [33,48]. |
Interferon-gamma | Th1 cytokine released by activated T cells (enhanced by PD-1 blockade); induces tissue factor expression on tumor cells and monocytes, linking immune activation to coagulation activation and thrombin generation [33,34]. |
Interleukin-8 | Inflammatory chemokine often produced by MDSCs and other myeloid cells; high interleukin-8 levels correlate with increased risk of ICI-associated VTE. Interleukin-8 recruits neutrophils and can stimulate NET formation, providing a bridge between inflammation and thrombosis [44]. |
Tissue factor | Key initiator of the extrinsic coagulation cascade; upregulated on tumor cells and monocytes in ICI therapy via interferon-gamma from activated T cells [33,34]. Elevated TF leads to increased thrombin generation and fibrin clot formation, markedly heightening thrombotic risk [33,34,35]. |
Plasminogen activator inhibitor-1 | Inhibits fibrinolysis by blocking tissue- and urokinase-type plasminogen activators; upregulated by immune activation during ICI therapy. Also promotes PD-L1 expression via JAK/STAT, linking thrombosis and immune evasion [52]. |
Myeloid-derived suppressor cells | Immunosuppressive myeloid cells that expand during cancer and can increase further with ICI therapy. High MDSC levels are associated with higher VTE incidence in ICI-treated patients [44]. MDSCs secrete prothrombotic inflammatory mediators (e.g., interleukin-8) and promote vascular permeability and aberrant angiogenesis [39,40,41], creating a thrombogenic microenvironment despite their immunosuppressive label. |
Neutrophil extracellular traps and neutrophil–platelet aggregates | NETs are web-like DNA/protein networks extruded by activated neutrophils that trap platelets and red cells, promoting coagulation. ICI-induced inflammation (via T cells and cytokines) increases NET formation. Neutrophil–platelet aggregates (complexes indicating platelet activation by neutrophils) are found at higher levels in patients on ICIs, highlighting immune cell–platelet crosstalk in thrombosis [33]. |
Platelet activation/aggregation | Platelets are central to thrombosis; their activation is enhanced by cytokine-activated endothelium and NETs in ICI-treated patients. ICIs can also directly affect platelets: e.g., pembrolizumab increases platelet aggregation, whereas nivolumab and ipilimumab reduce aggregation but paradoxically enhance platelet procoagulant activity [33,51]. Overall, ICIs drive platelets toward a prothrombotic phenotype. |
Antiphospholipid antibodies | Autoantibodies (e.g., anticardiolipin, anti-β2 glycoprotein I) that cause thrombosis in antiphospholipid syndrome. ICI therapy has been linked to the new onset of antiphospholipid antibodies in some patients, including cases of catastrophic antiphospholipid syndrome [25,26]. These antibodies can mediate widespread thromboses, illustrating a direct autoimmune mechanism of ICI-related clotting. |
Soluble VCAM-1 | A soluble form of an endothelial adhesion molecule, released during endothelial activation or damage. Elevated sVCAM-1 was identified as a predictor of thromboembolism in patients receiving ICIs (reflecting endothelial inflammation/activation) [44]. It is a biomarker linking immune activation to thrombosis risk. |
Study | Study Design | Sample Size | Median Age (Years) | Sex (M/F) | Cancer Stage | Cancer Type | VTE Incidence (%) | ATE Incidence (%) | Risk Factors for Thrombosis |
---|---|---|---|---|---|---|---|---|---|
Immune checkpoint inhibitors for cancer and venous thromboembolic events [60] | Single-center retrospective chart review | 2854 | 64 ± 13 years old | Male: 1640 Female: 1214 | - | NSCLC (28.4%) Melanoma (28.2%) | 7.4% at 6 months 13.8% at 1 year | - | Hypertension High Khorana risk score Young age |
Thromboembolism during immune checkpoint inhibitor therapy: frequency and risk factors [61] | Single-center retrospective chart review | 548 | 70.0 | Male: 391 Female: 157 | - | NSCLC (36.1%) Melanoma (19.9%) | 4.0% | 2.9% | Metabolic lipid abnormalities High Khorana risk score |
Evaluating the effect of immune checkpoint inhibitors on venous thromboembolism in patients with non-small cell lung cancer [64] | Single-center retrospective chart review | 730 | 336 (46.0%) ≥ 65 years old 394 (54%) < 65 years old | Male: 475 Female: 255 | - | NSCLC (100%) | 11.4% | - | Advanced stage High Khorana risk score |
Immune checkpoint inhibitors and potential risk of thromboembolic events: analysis of the WHO global database of individual case safety reports [65] | Retrospective chart review of individual safety case reports | 161 | 68 | Male: 102 Female: 59 | - | Lung Cancer (52.8%) RCC (149.9%) Melanoma (12.4%) | PE (51.6%) DVT (9.9%) DVT and PE (6.8%) | MI (24.8%) ACS (5.0%) Embolic Stroke (1.9%) | Age (>65) Male sex |
Venous thromboembolism risk in patients with cancer receiving first-line immune checkpoint inhibitor versus chemotherapy [66] | Single center retrospective chart review | 1823 (ICI group) vs. 6345 (chemo group) | 69.4 (ICI group) vs. 67.8 (chemo group) | Male: 96% | III–IV | Lung cancer Kidney cancer Melanoma | 7.71% | - | - |
Immune checkpoint inhibitors-associated thrombosis in patients with head and neck cancer: a study of the Spanish Society of Medical Oncology (SEOM) thrombosis and cancer group [67] | Multicenter retrospective chart review | 143 | 63 | Male: 125 Female: 18 | - | Head and neck cancer (100%) | 2.8% | 2.8% | Presence of liver metastasis |
Association between immune checkpoints inhibitors with cardiovascular events and atherosclerotic plaque [68] | Single institution 2 study design: matched cohort and case cross-over | 2842 | 64 | Male: 1631 Female: 1211 | - | NSCLC (28.8%) Melanoma (27.9%) Head and Neck (12.1%) | - | 5%/year | ICIs Male sex Hypertension Diabetes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fawaz, H.; Numan, H.; El Charif, M.H.; Charbel, N.; El Khoury, S.; Rizkallah, J.; El Masri, A.; Tfayli, A.; Kreidieh, F. Exploring the Emerging Association Between Immune Checkpoint Inhibitors and Thrombosis. J. Clin. Med. 2025, 14, 3451. https://doi.org/10.3390/jcm14103451
Fawaz H, Numan H, El Charif MH, Charbel N, El Khoury S, Rizkallah J, El Masri A, Tfayli A, Kreidieh F. Exploring the Emerging Association Between Immune Checkpoint Inhibitors and Thrombosis. Journal of Clinical Medicine. 2025; 14(10):3451. https://doi.org/10.3390/jcm14103451
Chicago/Turabian StyleFawaz, Hassan, Hasan Numan, Mohamad Hadi El Charif, Nicole Charbel, Sacha El Khoury, Joe Rizkallah, Amal El Masri, Arafat Tfayli, and Firas Kreidieh. 2025. "Exploring the Emerging Association Between Immune Checkpoint Inhibitors and Thrombosis" Journal of Clinical Medicine 14, no. 10: 3451. https://doi.org/10.3390/jcm14103451
APA StyleFawaz, H., Numan, H., El Charif, M. H., Charbel, N., El Khoury, S., Rizkallah, J., El Masri, A., Tfayli, A., & Kreidieh, F. (2025). Exploring the Emerging Association Between Immune Checkpoint Inhibitors and Thrombosis. Journal of Clinical Medicine, 14(10), 3451. https://doi.org/10.3390/jcm14103451