Porcine Peripheral Blood Mononuclear Cells (PBMCs): Methods of Isolation, Cryopreservation, and Translational Applications in Human Studies
Abstract
:1. Introduction
2. Isolation of pPBMCs
3. Cryopreservation of pPBMCs
3.1. Preparation for Cryopreservation
3.2. Control of the Freezing Rate
3.3. Thawing Process
4. Key Differences Between Human and Porcine PBMCs: Immunological Characteristics and Methodological Considerations
4.1. Immunological and Phenotypic Differences
4.2. Methodological Considerations in pPBMC Isolation and Handling
Species | Ref. | Anti- Coagulant | Ratio and Diluent | Density Gradient | Cell Separation Parameters | Number of Washes and Washing Solution | Washing Parameters |
---|---|---|---|---|---|---|---|
swine | [61] | EDTA | 1:2 PBS | Histopaque®-1077 | 400× g 30 min; RT | 2 washes, PBS | 250× g 10 min; RT |
[62] | heparin | 1:1 RPMI 1640 | Histopaque®-1077 | 1100× g 25 min; RT | 2 washes, n.p. | n.p. | |
[63] | heparin | n.p. | BD Vacutainer® CPT™ | 500× g 30 min | 3 washes, PBS | n.p. | |
[64] | heparin | 1:2 RPMI 1640 | Histopaque®-1077 | 1100× g 25 min | 2 washes, RPMI 1640 | n.p. | |
[65] | n.p. | 1:1 PBS | Histopaque®-1077 | 2200 rpm RT | 3 washes, PBS | 2500 rpm 15 min; 4 °C | |
[66] | heparin | n.p. | BD Vacutainer® CPT™ | 1500× g 30 min; RT | 2 washes, PBS | 700× g 10 min | |
[67] | EDTA | 1:1 PBS + 20% CD + 2% FBS | SepMate™-50 tube with Lymphoprep™ | 1100× g 10 min | until PLT removal, PBS + 20% ACD + 2% FBS | n.p. | |
[68] | EDTA | 1:1 PBS | Ficoll-Paque™ | 400× g 30 min; 25 °C | 3 washes, n.p. | 1. 300× g 10 min; 4 °C; 2. 250× g 10 min; 4 °C | |
[69] | heparin | 1:1 HBSS | Ficoll-Hypaque | 472× g 30 min; RT | 1 wash, HBSS | n.p. | |
[70] | heparin | 2:1 PBS | Ficoll-Paque™ PLUS | 1455× g 30 min; RT | 3 washes, PBS | 930× g 5 min; 4 °C | |
human | [71] | n.p. | 1:1 HBSS | Ficoll-Hypaque | 2000 r/min 20 min | 2 washes, HBSS | n.p. |
[72] | EDTA | 1:1 PBS | Ficoll-Paque™ PLUS | 400× g 30 min; 20 °C | 1 wash, PBS | 300× g 10 min; 20 °C | |
[73] | EDTA | 1:1 PBS | LSM™ | 400× g 30 min | 2 washes, PBS | n.p. | |
[74] | heparin | n.p. | Histopaque®-1077 | 2000 r/min 20 min; 4 °C | 2 washes, PBS | 1500 r/min 10 min; 4 °C | |
[75] | n.p. | 1:1 PBS + 2% FBS | Lymphoprep™ | 800× g 20 min; RT | n.p. | n.p. | |
[76] | n.p. | PBS | Lympholyte® | 1500 r/min 30 min; RT | n.p. PBS | n.p. | |
[77] | EDTA | 1:1 PBS | Histopaque®-1077 | 800× g 30 min; 22 °C | 1 wash, PBS | 300× g 3 min; 22 °C | |
[78] | EDTA | 1:1 PBS | Ficoll-Paque™ PLUS | 400× g 30 min; 25 °C | 2 washes, PBS | 300× g 10 min; 25 °C | |
[79] | EDTA | 1:1 PBS + 2% FBS | Lymphoprep™ | 800× g 20 min; RT | until the supernatant is clear, PBS | n.p. | |
[80] | sodium citrate | 1:1 PBS | Lymphoprep™ | 1. 160× g 20 min; RT; 2. 800× g 20 min | 3 washes, RPMI | n.p. |
5. Utilization of Porcine PBMCs
5.1. Immunological and Translational Applications of pPBMCs
5.2. Pathogen-Specific Infectious Disease Research Using pPBMCs
5.3. Xenotransplantation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
α-Gal | alpha-galactosidase |
γδ T | gamma–delta T cell |
ASFV | African Swine Fever Virus |
B | B lymphocyte |
CD | cluster of differentiation |
DC | dendritic cell |
DEX | dexamethasone |
DMSO | dimethyl sulfoxide |
EDTA | ethylenediaminetetraacetic acid |
ELISpot | enzyme-linked ImmunoSpot |
FBS | fetal bovine serum |
GGTA1 | gene encoding alpha1,3-galactosyltransferase |
HANC-SOP | HIV/AIDS Network Coordination standard operating procedures |
HBSS | Hank’s balanced salt solution |
hPBMC | human peripheral blood mononuclear cell |
IFN-γ | interferon gamma |
IL | interleukin |
LN2 | liquid nitrogen |
LPS | lipopolysaccharide |
mRNA | messenger RNA |
MHC | major histocompatibility complex class |
NK | natural killer cell |
NKp | natural killer protein |
n.p. | not provided |
PBMC | peripheral blood mononuclear cell |
PBS | phosphate-buffered saline |
PCV2 | porcine circovirus type 2 |
PolyI:C | polyinosinic:polycytidylic acid |
pPBMC | porcine peripheral blood mononuclear cell |
PRRSV | porcine reproductive and respiratory syndrome virus |
RBC | red blood cell |
RPMI 1640 | Roswell Park Memorial Institute 1640 (cell culture medium) |
RT | room temperature |
Tc | cytotoxic T cell |
Th | T helper cell |
TLR | toll-like receptor |
TNF-α | tumor necrosis factor alpha |
Treg | regulatory T cells |
References
- Gerner, W.; Käser, T.; Saalmüller, A. Porcine T lymphocytes and NK cells—An update. Dev. Comp. Immunol. 2009, 33, 310–320. [Google Scholar] [CrossRef]
- Cunha, P.; Gilbert, F.B.; Bodin, J.; Godry, L.; Germon, P.; Holbert, S.; Martins, R.P. Simplified Approaches for the Production of Monocyte-Derived Dendritic Cells and Study of Antigen Presentation in Bovine. Front. Vet. Sci. 2022, 9, 891893. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowska-Durczynska, K.; Wieczorek-Szukala, K.; Stefanski, B.; Zygmunt, A.; Stepniak, J.; Karbownik-Lewinska, M.; Lewinski, A. Percentage of Myeloid Dendritic Cells in Peripheral Venous Blood Is Negatively Related to Incidence of Graves’ Orbitopathy. Mediat. Inflamm. 2021, 2021, 8896055. [Google Scholar] [CrossRef]
- Larsson, A.M.; Nordström, O.; Johansson, A.; Rydén, L.; Leandersson, K.; Bergenfelz, C. Peripheral Blood Mononuclear Cell Populations Correlate with Outcome in Patients with Metastatic Breast Cancer. Cells 2022, 11, 1639. [Google Scholar] [CrossRef] [PubMed]
- Le Page, L.; Baldwin, C.L.; Telfer, J.C. γδ T cells in artiodactyls: Focus on swine. Dev. Comp. Immunol. 2022, 128, 104334. [Google Scholar] [CrossRef]
- Pabst, R. The pig as a model for immunology research. Cell Tissue Res. 2020, 380, 287–304. [Google Scholar] [CrossRef] [PubMed]
- Lunney, J.K.; Van Goor, A.; Walker, K.E.; Hailstock, T.; Franklin, J.; Dai, C. Importance of the pig as a human biomedical model. Sci. Transl. Med. 2021, 13, eabd5758. [Google Scholar] [CrossRef]
- Mair, K.H.; Sedlak, C.; Käser, T.; Pasternak, A.; Levast, B.; Gerner, W.; Saalmüller, A.; Summerfield, A.; Gerdts, V.; Wilson, H.L.; et al. The porcine innate immune system: An update. Dev. Comp. Immunol. 2014, 45, 321–343. [Google Scholar] [CrossRef]
- Sipos, W. Shifts in porcine PBMC populations from adolescence to adulthood. Vet. Immunol. Immunopathol. 2019, 211, 35–37. [Google Scholar] [CrossRef]
- Mattoo Sul, S.; Aganja, R.P.; Kim, S.C.; Jeong, C.G.; Nazki, S.; Khatun, A.; Kim, W.I.; Lee, S.M. A standardized method to study immune responses using porcine whole blood. J. Vet. Sci. 2023, 24, 1–14. [Google Scholar] [CrossRef]
- Overgaard, N.H.; Frøsig, T.M.; Welner, S.; Rasmussen, M.; Ilsøe, M.; Sørensen, M.R.; Andersen, M.H.; Buus, S.; Jungersen, G. Establishing the pig as a large animal model for vaccine development against human cancer. Front. Genet. 2015, 6, 286. [Google Scholar] [CrossRef] [PubMed]
- Díaz, I. Rules of thumb to obtain, isolate, and preserve porcine peripheral blood mononuclear cells. Vet. Immunol. Immunopathol. 2022, 251, 110461. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Mateu, E.; Díaz, I. Impact of Cryopreservation on Viability, Phenotype, and Functionality of Porcine PBMC. Front. Immunol. 2021, 12, 765667. [Google Scholar] [CrossRef]
- Cao, Q.M.; Ni, Y.Y.; Cao, D.; Tian, D.; Yugo, D.M.; Heffron, C.L.; Overend, C. Recombinant Porcine Reproductive and Respiratory Syndrome Virus Expressing Membrane-Bound Interleukin-15 as an Immunomodulatory Adjuvant Enhances NK and γδ T Cell Responses and Confers Heterologous Protection. J. Virol. 2018, 92, 10–1128. [Google Scholar] [CrossRef]
- Yang, J.; Chen, S.; Ma, F.; Ding, N.; Mi, S.; Zhao, Q.; Xing, Y.; Yang, T.; Xing, K.; Yu, Y.; et al. Pathogen stimulations and immune cells synergistically affect the gene expression profile characteristics of porcine peripheral blood mononuclear cells. BMC Genom. 2024, 25, 719. [Google Scholar] [CrossRef]
- Mu, S.; Chen, L.; Dong, H.; Li, S.; Zhang, Y.; Yin, S.; Tian, Y.; Ding, Y.; Sun, S.; Shang, S.; et al. Enhanced antigen-specific CD8 T cells contribute to early protection against FMDV through swine DC vaccination. J. Virol. 2024, 98, e02002-23. [Google Scholar] [CrossRef]
- Hernandez-Franco, J.F.; Xie, S.; Thimmapuram, J.; Ragland, D.; HogenEsch, H. Mechanism of activation of porcine dendritic cells by an α-D-glucan nanoparticle adjuvant and a nanoparticle/poly(I:C) combination adjuvant. Front. Immunol. 2022, 13, 990900. [Google Scholar] [CrossRef] [PubMed]
- Khatri, M.; O’Brien, T.D.; Chattha, K.S.; Saif, L.J. Porcine lung mesenchymal stromal cells possess differentiation and immunoregulatory properties. Stem Cell Res. Ther. 2015, 6, 1–11. [Google Scholar] [CrossRef]
- Kapetanovic, R.; Fairbairn, L.; Beraldi, D.; Sester, D.P.; Archibald, A.L.; Tuggle, C.K.; Hume, D.A. Pig Bone Marrow-Derived Macrophages Resemble Human Macrophages in Their Response to Bacterial Lipopolysaccharide. J. Immunol. 2012, 188, 3382–3394. [Google Scholar] [CrossRef]
- Duvigneau, J.C.; Sipos, W.; Hartl, R.T.; Bayer, M.; Moldzio, R.; Stevenson, L.; Adair, B.; Gemeiner, M. Heparin and EDTA as anticoagulant differentially affect cytokine mRNA level of cultured porcine blood cells. J. Immunol. Methods 2007, 324, 38–47. [Google Scholar] [CrossRef]
- Talker, S.C.; Käser, T.; Reutner, K.; Sedlak, C.; Mair, K.H.; Koinig, H.; Graage, R.; Viehmann, M.; Klingler, E.; Ladinig, A.; et al. Phenotypic maturation of porcine NK- and T-cell subsets. Dev. Comp. Immunol. 2013, 40, 51–68. [Google Scholar] [CrossRef] [PubMed]
- Berg, C.; Wilker, S.; Roider, J.; Klettner, A. Isolation of porcine monocyte population: A simple and efficient method. Vet. Res. Commun. 2013, 37, 239–241. [Google Scholar] [CrossRef]
- Stabel, J.R.; Wherry, T.L.T. Comparison of methods to isolate peripheral blood mononuclear cells from cattle blood. J. Immunol. Methods 2023, 512, 113407. [Google Scholar] [CrossRef]
- Grievink, H.W.; Luisman, T.; Kluft, C.; Moerland, M.; Malone, K.E. Comparison of Three Isolation Techniques for Human Peripheral Blood Mononuclear Cells: Cell Recovery and Viability, Population Composition, and Cell Functionality. Biopreserv. Biobank. 2016, 14, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Ruitenberg, J.J.; Mulder, C.B.; Maino, V.C.; Landay, A.L.; Ghanekar, S.A. VACUTAINER® CPTTM and Ficoll density gradient separation perform equivalently in maintaining the quality and function of PBMC from HIV seropositive blood samples. BMC Immunol. 2006, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, D.; Otto, N.M.; McCallion, O.; Hoffmann, H.; Zarrinrad, G.; Stein, M.; Beier, C.; Matz, I.; Herschel, M.; Hester, J.; et al. Freezing Medium Containing 5% DMSO Enhances the Cell Viability and Recovery Rate After Cryopreservation of Regulatory T Cell Products ex vivo and in vivo. Front. Cell Dev. Biol. 2021, 9, 750286. [Google Scholar] [CrossRef]
- Betsou, F.; Gaignaux, A.; Ammerlaan, W.; Norris, P.J.; Stone, M. Biospecimen Science of Blood for Peripheral Blood Mononuclear Cell (PBMC) Functional Applications. Curr. Pathobiol. Rep. 2019, 7, 17–27. [Google Scholar] [CrossRef]
- Browne, D.J.; Miller, C.M.; Doolan, D.L. Technical pitfalls when collecting, cryopreserving, thawing, and stimulating human T-cells. Front. Immunol. 2024, 15, 1382192. [Google Scholar] [CrossRef]
- Hope, C.M.; Huynh, D.; Wong, Y.Y.; Oakey, H.; Perkins, G.B.; Nguyen, T.; Binkowski, S.; Bui, M.; Choo, A.Y.L.; Gibson, E.; et al. Optimization of blood handling and peripheral blood mononuclear cell cryopreservation of low cell number samples. Int. J. Mol. Sci. 2021, 22, 9129. [Google Scholar] [CrossRef]
- Weinberg, A.; Song, L.Y.; Wilkening, C.L.; Fenton, T.; Hural, J.; Louzao, R.; Ferrari, G.; Etter, P.E.; Berrong, M.; Canniff, J.D.; et al. Optimization of storage and shipment of cryopreserved peripheral blood mononuclear cells from HIV-infected and uninfected individuals for ELISPOT assays. J. Immunol. Methods 2010, 363, 42–50. [Google Scholar] [CrossRef]
- Cross-Network PBMC Processing SOP. Available online: https://www.hanc.info/resources/sops-guidelines-resources/laboratory/cross-network-pbmc-processing-sop.html (accessed on 10 May 2025).
- Hønge, B.L.; Petersen, M.S.; Olesen, R.; Møller, B.K.; Erikstrup, C. Optimizing recovery of frozen human peripheral blood mononuclear cells for flow cytometry. PLoS ONE 2017, 12, e0187440. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, A.; Song, L.Y.; Wilkening, C.; Sevin, A.; Blais, B.; Louzao, R.; Stein, D. Optimization and limitations of use of cryopreserved peripheral blood mononuclear cells for functional and phenotypic T-cell characterization. CVI 2009, 16, 1176–1186. [Google Scholar] [CrossRef]
- Yang, J.; Diaz, N.; Adelsberger, J.; Zhou, X.; Stevens, R.; Rupert, A.; Metcalf, J.A.; Baseler, M.; Barbon, C.; Imamichi, T.; et al. The effects of storage temperature on PBMC gene expression. BMC Immunol. 2016, 17, 6. [Google Scholar] [CrossRef] [PubMed]
- Koch, E.; Larak, M.; Ellendorff, F. Comparative studies on in vitro reactivity of fresh and cryopreserved pig lymphocytes. Cryobiology 1991, 28, 405–412. [Google Scholar] [CrossRef]
- Cryopreserved PBMCs Retain Phenotype and Function. Available online: https://www.sigmaaldrich.com/PL/en/technical-documents/technical-article/cell-culture-and-cell-culture-analysis/primary-cell-culture/cryopreserved-pbmcs-retain-phenotype-and-function (accessed on 10 May 2025).
- Thawing Cells—Cell Culture Protocols. Available online: https://www.thermofisher.com/pl/en/home/references/gibco-cell-culture-basics/cell-culture-protocols/thawing-cells.html (accessed on 10 May 2025).
- New CD Molecules. Available online: https://www.hcdm.org/index.php/hlda10-workshop/new-cd-molecules (accessed on 10 May 2025).
- Dawson, H.D.; Lunney, J.K. Porcine cluster of differentiation (CD) markers 2018 update. Res. Vet. Sci. 2018, 118, 199–246. [Google Scholar] [CrossRef]
- Corbett, R.J.; Luttman, A.M.; Herrera-Uribe, J.; Liu, H.; Raney, N.E.; Grabowski, J.M.; Loving, C.L.; Tuggle, C.K.; Ernst, C.W. Assessment of DNA methylation in porcine immune cells reveals novel regulatory elements associated with cell-specific gene expression and immune capacity traits. BMC Genom. 2022, 23, 575. [Google Scholar] [CrossRef]
- Loving, C.L.; Wiarda, J.E.; Sivasankaran, S.K.; Daharsh, L.; Liu, H.; Byrne, K.A.; Tuggle, C.K. Characterization of circulating porcine immune cells using single-cell RNA-sequencing and comparison to human datasets. J. Immunol. 2021, 206, 19.17. [Google Scholar] [CrossRef]
- Pernold, C.P.S.; Lagumdzic, E.; Stadler, M.; Dolezal, M.; Jäckel, S.; Schmitt, M.W.; Mair, K.H.; Saalmüller, A. Species comparison: Human and minipig PBMC reactivity under the influence of immunomodulating compounds in vitro. Front. Immunol. 2024, 14, 1327776. [Google Scholar] [CrossRef] [PubMed]
- Mair, K.H.; Crossman, A.J.; Wagner, B.; Babasyan, S.; Noronha, L.; Boyd, P.; Zarlenga, D.; Stadler, M.; van Dongen, K.A.; Gerner, W.; et al. The Natural Cytotoxicity Receptor NKp44 (NCR2, CD336) Is Expressed on the Majority of Porcine NK Cells Ex Vivo Without Stimulation. Front. Immunol. 2022, 13, 767530. [Google Scholar] [CrossRef]
- Mair, K.H.; Essler, S.E.; Patzl, M.; Storset, A.K.; Saalmüller, A.; Gerner, W. NKp46 expression discriminates porcine NK cells with different functional properties. Eur. J. Immunol. 2012, 42, 1261–1271. [Google Scholar] [CrossRef]
- Fairbairn, L.; Kapetanovic, R.; Beraldi, D.; Sester, D.P.; Tuggle, C.K.; Archibald, A.L.; Hume, D.A. Comparative Analysis of Monocyte Subsets in the Pig. J. Immunol. 2013, 190, 6389–6396. [Google Scholar] [CrossRef] [PubMed]
- Yancy, H.; Ayers, S.L.; Farrell, D.E.; Day, A.; Myers, M.J. Differential cytokine mRNA expression in swine whole blood and peripheral blood mononuclear cell cultures. Vet. Immunol. Immunopathol. 2001, 79, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Trakooljul, N.; Hadlich, F.; Ponsuksili, S.; Wimmers, K.; Murani, E. Transcriptome analysis of porcine PBMCs reveals lipopolysaccharide-induced immunomodulatory responses and crosstalk of immune and glucocorticoid receptor signaling. Virulence 2021, 12, 1808–1824. [Google Scholar] [CrossRef]
- Herrera-Uribe, J.; Wiarda, J.E.; Sivasankaran, S.K.; Daharsh, L.; Liu, H.; Byrne, K.A.; Smith, T.P.L.; Lunney, J.K.; Loving, C.L.; Tuggle, C.K. Reference Transcriptomes of Porcine Peripheral Immune Cells Created Through Bulk and Single-Cell RNA Sequencing. Front. Genet. 2021, 12, 689406. [Google Scholar] [CrossRef] [PubMed]
- Tedder, T.F. CD19: A promising B cell target for rheumatoid arthritis. Nat. Rev. Rheumatol. 2009, 5, 572–577. [Google Scholar] [CrossRef]
- Mycko, M.P. The mechanism of action of anti-CD20 monoclonal antibodies used in the treatment of multiple sclerosis. Curr. Neurol. 2023, 23, 72–78. [Google Scholar] [CrossRef]
- Cooper, M.A.; Fehniger, T.A.; Caligiuri, M.A. The biology of human natural killer-cell subsets. Trends Immunol. 2001, 22, 633–640. [Google Scholar] [CrossRef]
- Ebner, F.; Schwiertz, P.; Steinfelder, S.; Pieper, R.; Zentek, J.; Schütze, N.; Baums, C.G.; Alber, G.; Geldhof, P.; Hartmann, S. Pathogen-Reactive T Helper Cell Analysis in the Pig. Front. Immunol. 2017, 8, 565. [Google Scholar] [CrossRef]
- Hoog, A.; Villanueva-Hernández, S.; Razavi, M.A.; van Dongen, K.; Eder, T.; Piney, L.; Chapat, L.; de Luca, K.; Grebien, F.; Mair, K.H.; et al. Identification of CD4+ T cells with T follicular helper cell characteristics in the pig. Dev. Comp. Immunol. 2022, 134, 104462. [Google Scholar] [CrossRef]
- Käser, T.; Gerner, W.; Hammer, S.E.; Patzl, M.; Saalmüller, A. Phenotypic and functional characterisation of porcine CD4+CD25high regulatory T cells. Vet. Immunol. Immunopathol. 2008, 122, 153–158. [Google Scholar] [CrossRef]
- Auray, G.; Keller, I.; Python, S.; Gerber, M.; Bruggmann, R.; Ruggli, N.; Summerfield, A. Characterization and Transcriptomic Analysis of Porcine Blood Conventional and Plasmacytoid Dendritic Cells Reveals Striking Species-Specific Differences. J. Immunol. 2016, 197, 4791–4806. [Google Scholar] [CrossRef] [PubMed]
- Feng, F.; Li, Z.; Xie, Q.; Song, W. Phenotypic and functional differences of dendritic cells in tumor. J. Cancer Res. Ther. 2023, 19, 1509–1516. [Google Scholar] [CrossRef]
- Summerfield, A.; McCullough, K.C. The porcine dendritic cell family. Dev. Comp. Immunol. 2009, 33, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Porcine Antibodies—Innate Immunity. Available online: https://www.bio-rad-antibodies.com/porcine-antibodies-innate-immunity.html (accessed on 10 May 2025).
- Mallone, R.; Mannering, S.I.; Brooks-Worrell, B.M.; Durinovic-Belló, I.; Cilio, C.M.; Wong, F.S.; Schloot, N.C. Isolation and preservation of peripheral blood mononuclear cells for analysis of islet antigen-reactive T cell responses: Position statement of the T-Cell Workshop Committee of the Immunology of Diabetes Society. Clin. Exp. Immunol. 2010, 163, 33–49. [Google Scholar] [CrossRef]
- Scheible, K.; Secor-Socha, S.; Wightman, T.; Wang, H.; Mariani, T.J.; Topham, D.J.; Pryhuber, G.; Quataert, S. Stability of T cell phenotype and functional assays following heparinized umbilical cord blood collection. Cytom. Part A 2012, 81, 937–949. [Google Scholar] [CrossRef] [PubMed]
- Dozois, C.M.; Oswald, E.; Gautier, N.; Serthelon, J.P.; Fairbrother, J.M.; Oswald, I.P. A reverse transcription-polymerase chain reaction method to analyze porcine cytokine gene expression. Vet. Immunol. Immunopathol. 1997, 58, 287–300. [Google Scholar] [CrossRef]
- Begni, B.; Amadori, M.; Ritelli, M.; Podavini, D. Effects of IFN-α on the Inflammatory Response of Swine Leukocytes to Bacterial Endotoxin. JICR 2005, 25, 202–208. [Google Scholar] [CrossRef]
- Wikström, F.H.; Meehan, B.M.; Berg, M.; Timmusk, S.; Elving, J.; Fuxler, L.; Magnusson, M.; Allan, G.M.; McNeilly, F.; Fossum, C. Structure-Dependent Modulation of Alpha Interferon Production by Porcine Circovirus 2 Oligodeoxyribonucleotide and CpG DNAs in Porcine Peripheral Blood Mononuclear Cells. J. Virol. 2007, 81, 4919–4927. [Google Scholar] [CrossRef]
- Amadori, M.; Cristiano, A.; Ferrari, M. Constitutive expression of interferons in swine leukocytes. Res. Vet. Sci. 2010, 88, 64–71. [Google Scholar] [CrossRef]
- Sah, V.; Kumar, A.; Dhar, P.; Upmanyu, V.; Tiwari, A.K.; Wani, S.A.; Sahu, A.R.; Kumar, A.; Badasara, S.K.; Pandey, A.; et al. Signature of genome wide gene expression in classical swine fever virus infected macrophages and PBMCs of indigenous vis-a-vis crossbred pigs. Gene 2020, 731, 144356. [Google Scholar] [CrossRef]
- Platt, R.; Vincent, A.L.; Gauger, P.C.; Loving, C.L.; Zanella, E.L.; Lager, K.M.; Kehrli, M.E., Jr.; Kimura, K.; Roth, J.A. Comparison of humoral and cellular immune responses to inactivated swine influenza virus vaccine in weaned pigs. Vet. Immunol. Immunopathol. 2011, 142, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.J.; Cha, S.H.; Grimm, A.L.; Ajithdoss, D.; Rzepka, J.; Chung, G.; Yu, J.; Davis, W.C.; Ho, C.S. Pigs that recover from porcine reproduction and respiratory syndrome virus infection develop cytotoxic CD4+CD8+ and CD4+CD8- T-cells that kill virus infected cells. PLoS ONE 2018, 13, e0203482. [Google Scholar] [CrossRef] [PubMed]
- McCullough, K.C.; Schaffner, R.; Fraefel, W.; Kihm, U. The relative density of CD44-positive porcine monocytic cell populations varies between isolations and upon culture and influences susceptibility to infection by African swine fever virus. Immunol. Lett. 1993, 37, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, X.; Huang, X.; Zhu, H.; Chen, H.; Wang, W.; Liu, Y. Analysis of microRNA expression profiles in porcine PBMCs after LPS stimulation. Innate Immunol. 2020, 26, 435–446. [Google Scholar] [CrossRef]
- Franzoni, G.; Kurkure, N.V.; Essler, S.E.; Pedrera, M.; Everett, H.E.; Bodman-Smith, K.B.; Crooke, H.R.; Graham, S.P. Proteome-Wide Screening Reveals Immunodominance in the CD8 T Cell Response against Classical Swine Fever Virus with Antigen-Specificity Dependent on MHC Class I Haplotype Expression. PLoS ONE 2013, 8, 84246. [Google Scholar] [CrossRef]
- Shui, X.; Chen, S.; Lin, J.; Kong, J.; Zhou, C.; Wu, J. Knockdown of lncRNA NEAT1 inhibits Th17/CD4 + T cell differentiation through reducing the STAT3 protein level. J. Cell Physiol. 2019, 234, 22477–22484. [Google Scholar] [CrossRef]
- Costa, A.; Reynés, B.; Konieczna, J.; Martín, M.; Fiol, M.; Palou, A.; Romaguera, D.; Oliver, P. Use of human PBMC to analyse the impact of obesity on lipid metabolism and metabolic status: A proof-of-concept pilot study. Sci. Rep. 2021, 11, 18329. [Google Scholar] [CrossRef]
- Madden, L.A.; Vince, R.V.; Laden, G. The effect of acute hyperoxia in vivo on NF kappa B expression in human PBMC. Cell Biochem. Funct. 2011, 29, 71–73. [Google Scholar] [CrossRef]
- Chen, R.; Curran, J.; Pu, F.; Zhuola, Z.; Bayon, Y.; Hunt, J. In Vitro Response of Human Peripheral Blood Mononuclear Cells (PBMC) to Collagen Films Treated with Cold Plasma. Polymers 2017, 9, 254. [Google Scholar] [CrossRef]
- Robert, J.; Button, E.B.; Stukas, S.; Boyce, G.K.; Gibbs, E.; Cowan, C.M.; Gilmour, M.; Cheng, W.H.; Soo, S.K.; Yuen, B.; et al. High-density lipoproteins suppress Aβ-induced PBMC adhesion to human endothelial cells in bioengineered vessels and in monoculture. Mol. Neurodegener. 2017, 12, 1–19. [Google Scholar] [CrossRef]
- Steller, D.; Scheibert, A.; Sturmheit, T.; Hakim, S.G. Establishment and validation of an in vitro co-culture model for oral cell lines using human PBMC-derived osteoclasts, osteoblasts, fibroblasts and keratinocytes. Sci. Rep. 2020, 10, 16861. [Google Scholar] [CrossRef] [PubMed]
- Salustri, A.; De Maio, F.; Palmieri, V.; Santarelli, G.; Palucci, I.; Mercedes Bianco, D.; Marchionni, F.; Bellesi, S.; Ciasca, G.; Perini, G.; et al. Evaluation of the Toxic Activity of the Graphene Oxide in the Ex Vivo Model of Human PBMC Infection with Mycobacterium tuberculosis. Microorganisms 2023, 11, 554. [Google Scholar] [CrossRef] [PubMed]
- Cifre, M.; Díaz-Rúa, R.; Varela-Calviño, R.; Reynés, B.; Pericás-Beltrán, J.; Palou, A.; Oliver, P. Human peripheral blood mononuclear cell in vitro system to test the efficacy of food bioactive compounds: Effects of polyunsaturated fatty acids and their relation with BMI. Mol. Nutr. Food. Res. 2017, 61, 1600353. [Google Scholar] [CrossRef]
- Luukkainen, A.; Puan, K.J.; Yusof, N.; Lee, B.; Tan, K.S.; Liu, J.; Yan, Y.; Toppila-Salmi, S.; Renkonen, R.; Chow, V.T.; et al. A Co-culture Model of PBMC and Stem Cell Derived Human Nasal Epithelium Reveals Rapid Activation of NK and Innate T Cells Upon Influenza A Virus Infection of the Nasal Epithelium. Front. Immunol. 2018, 9, 2514. [Google Scholar] [CrossRef]
- Kaya, E.; Grassi, L.; Benedetti, A.; Maisetta, G.; Pileggi, C.; Di Luca, M.; Batoni, G.; Esin, S. In vitro Interaction of Pseudomonas aeruginosa Biofilms with Human Peripheral Blood Mononuclear Cells. Front. Cell Infect. Microbiol. 2020, 10, 187. [Google Scholar] [CrossRef]
- Bode, G.; Clausing, P.; Gervais, F.; Loegsted, J.; Luft, J.; Nogues, V.; Sims, J. The utility of the minipig as an animal model in regulatory toxicology. J. Pharmacol. Toxicol. Methods 2010, 62, 196–220. [Google Scholar] [CrossRef]
- Lunney, J.K. Advances in Swine Biomedical Model Genomics. Int. J. Biol. Sci. 2007, 3, 179–184. [Google Scholar] [CrossRef]
- Vodička, P.; Smetana, K.; Dvořánková, B.; Emerick, T.; Xu, Y.; Ourednik, J.; Ourednik, V.; Motlík, J. The Miniature Pig as an Animal Model in Biomedical Research. Ann. N. Y. Acad. Sci. 2005, 1049, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Helke, K.L.; Swindle, M.M. Animal models of toxicology testing: The role of pigs. Expert Opin. Drug. Metab. Toxicol. 2013, 9, 127–139. [Google Scholar] [CrossRef]
- Swindle, M.M.; Makin, A.; Herron, A.J.; Clubb, F.J.; Frazier, K.S. Swine as Models in Biomedical Research and Toxicology Testing. Vet. Pathol. 2012, 49, 344–356. [Google Scholar] [CrossRef]
- Aigner, B.; Renner, S.; Kessler, B.; Klymiuk, N.; Kurome, M.; Wünsch, A.; Wolf, E. Transgenic pigs as models for translational biomedical research. J. Mol. Med. 2010, 88, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Prather, R.S.; Lorson, M.; Ross, J.W.; Whyte, J.J.; Walters, E. Genetically Engineered Pig Models for Human Diseases. Annu. Rev. Anim. Biosci. 2013, 1, 203–219. [Google Scholar] [CrossRef]
- Wolf, E.; Braun-Reichhart, C.; Streckel, E.; Renner, S. Genetically engineered pig models for diabetes research. Transgenic Res. 2014, 23, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Kyrova, K.; Stepanova, H.; Rychlik, I.; Polansky, O.; Leva, L.; Sekelova, Z.; Faldyna, M.; Volf, J. The response of porcine monocyte derived macrophages and dendritic cells to SalmonellaTyphimurium and lipopolysaccharide. BMC Vet. Res. 2014, 10, 244. [Google Scholar] [CrossRef] [PubMed]
- Pomorska-Mól, M.; Czyżewska-Dors, E.; Kwit, K.; Pejsak, Z. Enrofloxacin in therapeutic doses alters cytokine production by porcine PBMCs induced by lipopolysaccharide. Drug Chem. Toxicol. 2017, 40, 295–299. [Google Scholar] [CrossRef]
- Adler, M.; Murani, E.; Brunner, R.; Ponsuksili, S.; Wimmers, K. Transcriptomic Response of Porcine PBMCs to Vaccination with Tetanus Toxoid as a Model Antigen. PLoS ONE 2013, 8, e58306. [Google Scholar] [CrossRef]
- Blome, S.; Gabriel, C.; Beer, M. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus. Res. 2013, 173, 122–130. [Google Scholar] [CrossRef]
- Canter, J.A.; Aponte, T.; Ramirez-Medina, E.; Pruitt, S.; Gladue, D.P.; Borca, M.V.; Zhu, J.J. Serum Neutralizing and Enhancing Effects on African Swine Fever Virus Infectivity in Adherent Pig PBMC. Viruses 2022, 14, 1249. [Google Scholar] [CrossRef]
- Costers, S.; Lefebvre, D.J.; Goddeeris, B.; Delputte, P.L.; Nauwynck, H.J. Functional impairment of PRRSV-specific peripheral CD3 + CD8 high cells. Vet. Res. 2009, 40, 46. [Google Scholar] [CrossRef]
- Franzoni, G.; Pedrera, M.; Sánchez-Cordón, P.J. African Swine Fever Virus Infection and Cytokine Response In Vivo: An Update. Viruses 2023, 15, 233. [Google Scholar] [CrossRef]
- Islam, M.d.A.; Große-Brinkhaus, C.; Pröll, M.J.; Uddin, M.J.; Aqter Rony, S.; Tesfaye, D.; Tholen, E.; Hoelker, M.; Schellander, K.; Neuhoff, C. PBMC transcriptome profiles identifies potential candidate genes and functional networks controlling the innate and the adaptive immune response to PRRSV vaccine in Pietrain pig. PLoS ONE 2017, 12, e0171828. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Zhang, F.; Zhai, L.; He, W.; Tan, Z.; Sun, Y.; Wang, Y.; Liu, L.; Ning, C.; Zhou, W.; et al. Transcriptome of Porcine PBMCs over Two Generations Reveals Key Genes and Pathways Associated with Variable Antibody Responses post PRRSV Vaccination. Sci. Rep. 2018, 8, 2460. [Google Scholar] [CrossRef] [PubMed]
- Reiske, L.; Schmucker, S.; Steuber, J.; Stefanski, V. Glucocorticoids and Catecholamines Affect In Vitro Functionality of Porcine Blood Immune Cells. Animals 2019, 9, 545. [Google Scholar] [CrossRef]
- Li, Y.; Díaz, I.; Martín-Valls, G.; Beyersdorf, N.; Mateu, E. Systemic CD4 cytotoxic T cells improve protection against PRRSV-1 transplacental infection. Front. Immunol. 2023, 13, 1020227. [Google Scholar] [CrossRef] [PubMed]
- Olesen, A.S.; Kodama, M.; Skovgaard, K.; Møbjerg, A.; Lohse, L.; Limborg, M.T.; Bøtner, A.; Belsham, G.J. Influence of African Swine Fever Virus on Host Gene Transcription within Peripheral Blood Mononuclear Cells from Infected Pigs. Viruses 2022, 14, 2147. [Google Scholar] [CrossRef]
- Fort, M.; Fernandes, L.T.; Nofrarias, M.; Díaz, I.; Sibila, M.; Pujols, J.; Mateu, E.; Segalés, J. Development of cell-mediated immunity to porcine circovirus type 2 (PCV2) in caesarean-derived, colostrum-deprived piglets. Vet. Immunol. Immunopathol. 2009, 129, 101–107. [Google Scholar] [CrossRef]
- Knoetig, S.M.; Summerfield, A.; Spagnuolo-Weaver, M.; McCullough, K.C. Immunopathogenesis of classical swine fever: Role of monocytic cells. Immunology 1999, 97, 359–366. [Google Scholar] [CrossRef]
- Li, J.; Yu, Y.J.; Feng, L.; Cai, X.B.; Tang, H.B.; Sun, S.K.; Zhang, H.Y.; Liang, J.J.; Luo, T.R. Global transcriptional profiles in peripheral blood mononuclear cell during classical swine fever virus infection. Virus. Res. 2010, 148, 60–70. [Google Scholar] [CrossRef]
- Pensaert, M. Viremia and effect of fetal infection with porcine viruses with special reference to porcine circovirus 2 infection. Vet. Microbiol. 2004, 98, 175–183. [Google Scholar] [CrossRef]
- Hohnstein, F.S.; Meurer, M.; de Buhr, N.; von Köckritz-Blickwede, M.; Baums, C.G.; Alber, G.; Schütze, N. Analysis of Porcine Pro- and Anti-Inflammatory Cytokine Induction by S. suis In Vivo and In Vitro. Pathogens 2020, 9, 40. [Google Scholar] [CrossRef]
- Wichgers Schreur, P.J.; Rebel, J.M.J.; Smits, M.A.; van Putten, J.P.M.; Smith, H.E. Lgt Processing Is an Essential Step in Streptococcus suis Lipoprotein Mediated Innate Immune Activation. PLoS ONE 2011, 6, e22299. [Google Scholar] [CrossRef]
- Hara, H.; Long, C.; Lin, Y.J.; Tai, H.C.; Ezzelarab, M.; Ayares, D.; Cooper, D.K.C. In vitro investigation of pig cells for resistance to human antibody-mediated rejection. Transpl. Int. 2008, 21, 1163–1174. [Google Scholar] [CrossRef] [PubMed]
- Petersen, B.; Ramackers, W.; Tiede, A.; Lucas-Hahn, A.; Herrmann, D.; Barg-Kues, B.; Schuettler, W.; Friedrich, L.; Schwinzer, R.; Winkler, M.; et al. Pigs transgenic for human thrombomodulin have elevated production of activated protein C. Xenotransplantation 2009, 16, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Phelps, C.J.; Koike, C.; Vaught, T.D.; Boone, J.; Wells, K.D.; Chen, S.H.; Ball, S.; Specht, S.M.; Polejaeva, I.A.; Monahan, J.A.; et al. Production of α1,3-Galactosyltransferase-Deficient Pigs. Science 2003, 299, 411–414. [Google Scholar] [CrossRef]
- Butler, J.R.; Martens, G.R.; Estrada, J.L.; Reyes, L.M.; Ladowski, J.M.; Galli, C.; Perota, A.; Cunningham, C.M.; Tector, M.; Tector, A.J. Silencing porcine genes significantly reduces human-anti-pig cytotoxicity profiles: An alternative to direct complement regulation. Transgenic Res. 2016, 25, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.K.C.; Dorling, A.; Pierson, R.N.; Rees, M.; Seebach, J.; Yazer, M.; Ohdan, H.; Awwad, M.; Ayares, D. α1,3-Galactosyltransferase Gene-Knockout Pigs for Xenotransplantation: Where Do We Go From Here? Transplantation 2007, 84, 1–7. [Google Scholar] [CrossRef]
- Estrada, J.L.; Martens, G.; Li, P.; Adams, A.; Newell, K.A.; Ford, M.L.; Butler, J.R.; Sidner, R.; Tector, M.; Tector, J. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2 genes. Xenotransplantation 2015, 22, 194–202. [Google Scholar] [CrossRef]
- Gock, H.; Nottle, M.; Lew, A.M.; d’Apice, A.J.F.; Cowan, P. Genetic modification of pigs for solid organ xenotransplantation. Transplant. Rev. 2011, 25, 9–20. [Google Scholar] [CrossRef]
- Lai, L.; Kolber-Simonds, D.; Park, K.W.; Cheong, H.T.; Greenstein, J.L.; Im, G.S.; Samuel, M.; Bonk, A.; Rieke, A.; Day, B.N.; et al. Production of α-1,3-Galactosyltransferase Knockout Pigs by Nuclear Transfer Cloning. Science 2002, 295, 1089–1092. [Google Scholar] [CrossRef]
- Sachs, D.H.; Galli, C. Genetic manipulation in pigs. Curr. Opin. Organ Transplant. 2009, 14, 148–153. [Google Scholar] [CrossRef]
- Yamada, K.; Yazawa, K.; Shimizu, A.; Iwanaga, T.; Hisashi, Y.; Nuhn, M.; O’Malley, P.; Nobori, S.; Vagefi, P.A.; Patience, C.; et al. Marked prolongation of porcine renal xenograft survival in baboons through the use of α1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat. Med. 2005, 11, 32–34. [Google Scholar] [CrossRef] [PubMed]
- Paillot, R.; Laval, F.; Audonnet, J.-C.; Andreoni, C.; Juillard, V. Functional and phenotypic characterization of distinct porcine dendritic cells derived from peripheral blood monocytes. Immunology 2001, 102, 396–404. [Google Scholar] [CrossRef]
- Buermann, A.; Petkov, S.; Petersen, B.; Hein, R.; Lucas-Hahn, A.; Baars, W.; Brinkmann, A.; Niemann, H.; Schwinzer, R. Pigs expressing the human inhibitory ligand PD-L1 (CD274) provide a new source of xenogeneic cells and tissues with low immunogenic properties. Xenotransplantation 2018, 25, e12387. [Google Scholar] [CrossRef] [PubMed]
- Golbus, A.L.; Ochoa, B.V.; Hardy, W.A.; Helke, K.L.; Kavarana, M.N.; Kwon, J.H.; Rajab, T.K. Immunosuppressive regimens in porcine transplantation models. Transplant. Rev. 2022, 36, 100725. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, A.N.; Malde, P.; Rogers, N.J.; Jackson, I.M.; Lechler, R.I.; Dorling, A. Porcine CTLA4-Ig Lacks a MYPPPY Motif, Binds Inefficiently to Human B7 and Specifically Suppresses Human CD4+ T Cell Responses Costimulated by Pig But Not Human B7. J. Immunol. 2000, 165, 3175–3181. [Google Scholar] [CrossRef]
- Hara, H.; Witt, W.; Crossley, T.; Long, C.; Isse, K.; Fan, L.; Phelps, C.J.; Ayares, D.; Cooper, D.K.C.; Dai, Y.; et al. Human dominant-negative class II transactivator transgenic pigs—Effect on the human anti-pig T-cell immune response and immune status. Immunology 2013, 140, 39–46. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrzak, M.; Chaszczewska-Markowska, M.; Zemelka-Wiacek, M. Porcine Peripheral Blood Mononuclear Cells (PBMCs): Methods of Isolation, Cryopreservation, and Translational Applications in Human Studies. J. Clin. Med. 2025, 14, 3432. https://doi.org/10.3390/jcm14103432
Pietrzak M, Chaszczewska-Markowska M, Zemelka-Wiacek M. Porcine Peripheral Blood Mononuclear Cells (PBMCs): Methods of Isolation, Cryopreservation, and Translational Applications in Human Studies. Journal of Clinical Medicine. 2025; 14(10):3432. https://doi.org/10.3390/jcm14103432
Chicago/Turabian StylePietrzak, Magdalena, Monika Chaszczewska-Markowska, and Magdalena Zemelka-Wiacek. 2025. "Porcine Peripheral Blood Mononuclear Cells (PBMCs): Methods of Isolation, Cryopreservation, and Translational Applications in Human Studies" Journal of Clinical Medicine 14, no. 10: 3432. https://doi.org/10.3390/jcm14103432
APA StylePietrzak, M., Chaszczewska-Markowska, M., & Zemelka-Wiacek, M. (2025). Porcine Peripheral Blood Mononuclear Cells (PBMCs): Methods of Isolation, Cryopreservation, and Translational Applications in Human Studies. Journal of Clinical Medicine, 14(10), 3432. https://doi.org/10.3390/jcm14103432