Routine Extubation in the Operating Room After Minimally Invasive Aortic Valve Replacement †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Study Population
2.3. Surgical Techniques
2.4. Anesthesia Strategy for Routine On-Table Extubation
2.5. On-Table Extubation Criteria
2.6. Postoperative Pain Management
2.7. ERCAS
2.8. Study Endpoint
2.9. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Early Clinical Outcomes
3.3. Prognostic Index Based on Successful On-Table Extubation
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACC | Aortic cross-clamp |
AVR | Aortic valve replacement |
BNP | B-type natriuretic peptide |
CPB | Cardiopulmonary bypass |
CABG | Coronary artery bypass graft |
ERCAS | Enhanced Recovery After Cardiac Surgery |
ICU | Intensive care unit |
OPCAB | Off pump coronary artery bypass |
OR | Operating room |
RAMT | Right anterior mini-thoracotomy |
SURD | Sutureless and rapid deployment |
References
- Lim, J.H.; Lee, C.H.; Je, H.G. Routine Extubation in the Operating Room After Minimally Invasive Aortic Valve Replacement. In Proceedings of the 105th Annual Meeting of the American Association for Thoracic Surgery (AATS), Seattle, WA, USA, 2–5 May 2025. [Google Scholar]
- Iribarne, A.; Easterwood, R.; Chan, E.Y.; Yang, J.; Soni, L.; Russo, M.J.; Smith, C.R.; Argenziano, M. The golden age of minimally invasive cardiothoracic surgery: Current and future perspectives. Future Cardiol. 2011, 7, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Ilcheva, L.; Risteski, P.; Tudorache, I.; Häussler, A.; Papadopoulos, N.; Odavic, D.; Rodriguez Cetina Biefer, H.; Dzemali, O. Beyond conventional operations: Embracing the era of contemporary minimally invasive cardiac surgery. J. Clin. Med. 2023, 12, 7210. [Google Scholar] [CrossRef] [PubMed]
- Bonatti, J.; Crailsheim, I.; Grabenwöger, M.; Winkler, B. Minimally invasive and robotic mitral valve surgery: Methods and outcomes in a 20-year review. Innovations 2021, 16, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Kubitz, J.C.; Schulte-Uentrop, L.; Zoellner, C.; Lemke, M.; Messner-Schmitt, A.; Kalbacher, D.; Sill, B.; Reichenspurner, H.; Koell, B.; Girdauskas, E. Establishment of an enhanced recovery after surgery protocol in minimally invasive heart valve surgery. PLoS ONE 2020, 15, e0231378. [Google Scholar] [CrossRef]
- Maj, G.; Regesta, T.; Campanella, A.; Cavozza, C.; Parodi, G.; Audo, A. Optimal management of patients treated with minimally invasive cardiac surgery in the era of enhanced recovery after surgery and fast-track protocols: A narrative review. J. Cardiothor. Vasc. Anesth. 2022, 36, 766–775. [Google Scholar] [CrossRef]
- Li, M.; Zhang, J.; Gan, T.J.; Qin, G.; Wang, L.; Zhu, M.; Zhang, Z.; Pan, Y.; Ye, Z.; Zhang, F.; et al. Enhanced recovery after surgery pathway for patients undergoing cardiac surgery: A randomized clinical trial. Eur. J. Cardiothorac. Surg. 2018, 54, 491–497. [Google Scholar] [CrossRef]
- Lima, C.A.; Ritchrmoc, M.K.; Leite, W.S.; Silva, D.A.R.G.; Lima, W.A.; Campos, S.L.; Andrade, A.D. Impact of fast-track management on adult cardiac surgery: Clinical and hospital outcomes. Rev. Bras. Ter. Intensiv. 2020, 32, 332. [Google Scholar]
- Chamchad, D.; Horrow, J.C.; Nachamchik, L.; Sutter, F.P.; Samuels, L.E.; Trace, C.L.; Ferdinand, F.; Goldman, S.M. The impact of immediate extubation in the operating room after cardiac surgery on intensive care and hospital lengths of stay. J. Cardiothorac. Vasc. Anesth. 2010, 24, 780–784. [Google Scholar] [CrossRef]
- Hawkins, A.D.; Strobel, R.J.; Mehaffey, J.H.; Hawkins, R.B.; Rotar, E.P.; Young, A.M.; Yarboro, L.T.; Yount, K.; Ailawadi, G.; Joseph, M.; et al. Operating room versus intensive care unit extubation within 6 hours after on-pump cardiac surgery: Early results and hospital costs. Semin. Thorac. Cardiovasc. Surg. 2024, 36, 195–208. [Google Scholar] [CrossRef]
- Ge, Y.; Chen, Y.; Hu, Z.; Mao, H.; Xu, Q.; Wu, Q. Clinical evaluation of on-table extubation in patients aged over 60 years undergoing minimally invasive mitral or aortic valve replacement surgery. Front. Surg. 2022, 9, 934044. [Google Scholar] [CrossRef]
- Yoon, M.H.; Kim, W. Seizure after cardiopulmonary bypass surgery: A Retrospective Study. J. Clin. Med. 2024, 13, 1234. [Google Scholar]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Mehta, H.B.; Mehta, V.; Girman, C.J.; Adhikari, D.; Johnson, M.L. Regression coefficient-based scoring system should be used to assign weights to the risk index. J. Clin. Epidemiol. 2016, 79, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.T.; Lai, V.K.; Chee, Y.E.; Lee, A. Fast-track cardiac care for adult cardiac surgical patients. Cochrane Database Syst. Rev. 2016, 9, CD003587. [Google Scholar] [CrossRef]
- Nagre, A.S.; Jambures, N.P. Comparison of immediate extubation versus ultrafast tracking strategy in the management of off-pump coronary artery bypass surgery. Ann. Card. Anaesth. 2018, 21, 129–133. [Google Scholar] [CrossRef]
- Malvindi, P.G.; Bifulco, O.; Berretta, P.; Galeazzi, M.; Zingaro, C.; D’Alfonso, A.; Zahedi, H.M.; Munch, C.; Di Eusanio, M. On-table extubation is associated with reduced intensive care unit stay and hospitalization after trans-axillary minimally invasive mitral valve surgery. Eur. J. Cardiothorac. Surg. 2024, 65, ezae010. [Google Scholar] [CrossRef]
- Rezaianzadeh, A.; Maghsoudi, B.; Tabatabaee, H.; Keshavarzi, S.; Bagheri, Z.; Sajedianfard, J.; Gerami, H.; Rasouli, J. Factors associated with extubation time in coronary artery bypass grafting patients. PeerJ 2015, 3, e1414. [Google Scholar] [CrossRef]
- Bakhtiary, F.; Salamate, S.; Amer, M.; Sirat, S.; Bayram, A.; Doss, M.; El-Sayed Ahmad, A. Comparison of right anterior mini-thoracotomy versus partial upper sternotomy in aortic valve replacement. Adv. Ther. 2022, 39, 4266–4284. [Google Scholar] [CrossRef]
- Phan, K.; Xie, A.; Di Eusanio, M.; Yan, T.D. A meta-analysis of minimally invasive versus conventional sternotomy for aortic valve replacement. Ann. Thorac. Surg. 2014, 98, 1499–1511. [Google Scholar] [CrossRef]
- Phan, K.; Xie, A.; Tsai, Y.C.; Black, D.; Di Eusanio, M.; Yan, T.D. Ministernotomy or minithoracotomy for minimally invasive aortic valve replacement: A Bayesian network meta-analysis. Ann. Cardiothorac. Surg. 2015, 4, 3–14. [Google Scholar] [CrossRef]
- Perin, G.; Shaw, M.; Pingle, V.; Palmer, K.; Al-Rawi, O.; Ridgway, T.; Pousios, D.; Modi, P. Use of an automated knot fastener shortens operative times in minimally invasive mitral valve repair. Ann. R. Coll. Surg. Engl. 2019, 101, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Flynn, C.D.; Williams, M.L.; Chakos, A.; Hirst, L.; Muston, B.; Tian, D.H. Sutureless valve and rapid deployment valves: A systematic review and meta-analysis of comparative studies. Ann. Cardiothorac. Surg. 2020, 9, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Souza Leite, W.; Novaes, A.; Bandeira, M.; Olympia Ribeiro, E.; Dos Santos, A.M.; de Moura, P.H.; Morais, C.C.; Rattes, C.; Richtrmoc, M.K.; Souza, J.; et al. Patient-ventilator asynchrony in conventional ventilation modes during short-term mechanical ventilation after cardiac surgery: Randomized clinical trial. Multidiscip. Respir. Med. 2020, 15, 650. [Google Scholar] [CrossRef] [PubMed]
- Blanch, L.; Villagra, A.; Sales, B.; Montanya, J.; Lucangelo, U.; Luján, M.; García-Esquirol, O.; Chacón, E.; Estruga, A.; Oliva, J.C.; et al. Asynchronies during mechanical ventilation are associated with mortality. Intens. Care Med. 2015, 41, 633–641. [Google Scholar] [CrossRef]
Extubation | |||||
---|---|---|---|---|---|
Variable | Overall (n = 423) | Yes (n = 310) | No (n = 113) | p | SMD |
Age, years | 66.9 ± 10.8 | 65.5 ± 10.9 | 70.8 ± 9.5 | <0.001 | −0.52 |
Female | 162 (38.3) | 109 (35.2) | 53 (46.9) | 0.028 | 0.24 |
BSA | 1.7 [1.5–1.8] | 1.7 [1.6–1.9] | 1.6 [1.5–1.8] | <0.001 | 0.44 |
HTN | 310 (73.3) | 228 (73.5) | 82 (72.6) | 0.840 | 0.02 |
DM | 109 (25.8) | 84 (27.1) | 25 (22.1) | 0.301 | 0.12 |
CLD | 24 (5.7) | 17 (5.5) | 7 (6.2) | 0.780 | −0.03 |
CKD | |||||
1 | 98 (23.2) | 83 (26.8) | 15 (13.3) | 0.001 | 0.34 |
2 | 159 (37.6) | 121 (39.0) | 38 (33.6) | 0.11 | |
3 | 134 (31.7) | 89 (28.7) | 45 (39.8) | −0.24 | |
4 | 20 (4.7) | 11 (3.5) | 9 (8.0) | −0.19 | |
5 | 12 (2.8) | 6 (1.9) | 6 (5.3) | −0.18 | |
Dyslipidemia | 330 (78.0) | 245 (79.0) | 85 (75.2) | 0.402 | 0.09 |
Hemoglobin | 12.7 [11.1–14.0] | 13.0 [11.3–14.1] | 12.3 [10.6–13.5] | 0.007 | 0.32 |
Platelet | 206.0 [164.0–245.0] | 206.0 [168.8–242.0] | 203.0 [157.5–248.5] | 0.277 | 0.05 |
Albumin | 4.2 [3.9–4.4] | 4.2 [4.0–4.5] | 4.0 [3.7–4.3] | <0.001 | 0.60 |
BNP | 184.0 [65.0–525.0] | 149.0 [51.0–413.3] | 410.0 [135.5–1130.5] | <0.001 | −0.47 |
CVA | 43 (10.2) | 26 (8.4) | 17 (15.0) | 0.135 | −0.21 |
NYHA 3/4 | 174 (41.1) | 118 (38.1) | 56 (49.6) | 0.034 | −0.23 |
Urgent | 60 (14.2) | 32 (10.3) | 28 (24.8) | <0.001 | 0.39 |
EuroSCORE II | 1.6 [1.0–3.0] | 1.4 [0.9–2.3] | 2.3 [1.2–5.0] | <0.001 | −0.41 |
AF | 21 (5.0) | 16 (5.2) | 5 (4.4) | 0.758 | 0.03 |
EF | 62.0 [56.0–66.0] | 62.0 [56.0–67.0] | 60.0 [54.0–66.0] | 0.072 | 0.17 |
Operative profile | |||||
Isolated AVR | 397 (93.9) | 295 (95.2) | 102 (90.3) | 0.064 | 0.19 |
Sternotomy conversion | 7 (1.7) | 1 (0.3) | 6 (5.8) | 0.002 | −0.32 |
SURD valve | 115 (27.2) | 79 (25.5) | 36 (31.9) | 0.192 | −0.14 |
Ablation | 15 (3.5) | 10 (3.2) | 5 (4.4) | 0.558 | −0.06 |
CPB time | |||||
median [IQR] | 90.0 [72.0–111.0] | 84.0 [68.0–104.0] | 104.0 [85.0–131.5] | <0.001 | −0.77 |
Cross clamp time | |||||
median [IQR] | 65.0 [53.0–84.0] | 63.0 [51.0–78.0] | 79.0 [57.5–98.0] | <0.001 | −0.63 |
Extubation | ||||
---|---|---|---|---|
Variable | Overall (n = 423) | Yes (n = 310) | No (n = 113) | p |
Hospital stay (days) | 5.0 [4.0–7.0] | 5.0 [4.0–6.0] | 6.0 [5.0–8.0] | <0.001 |
Intensive care unit stay (h) | 24.0 [22.0–26.0] | 24.0 [22.0–26.0] | 25.0 [23.0–30.0] | <0.001 |
LCOS | 43 (10.2) | 25 (8.1) | 18 (15.9) | 0.018 |
Atrial fibrillation | 98 (23.2) | 62 (20.0) | 36 (31.9) | 0.011 |
Atrioventricular block | 16 (3.8) | 4 (1.3) | 12 (10.6) | <0.001 |
Pacemaker insertion | 5 (1.2) | 3 (1.0) | 2 (1.8) | 0.613 |
Mechanical ventilation time (h) | 0.0 [0.0–2.0] | 0.0 [0.0–0.0] | 5.0 [3.0–10.0] | <0.001 |
Prolonged vent (≥72 h) | 4 (0.9) | 1 (0.3) | 3 (2.7) | 0.060 |
Pneumonia | 3 (0.7) | 1 (0.3) | 2 (1.8) | 0.175 |
Reintubation | 4 (0.9) | 1 (0.3) | 3 (2.7) | 0.060 |
New onset dialysis | 2 (0.5) | 2 (0.6) | 0 (0.0) | 1.000 |
Stroke | 1 (0.2) | 0 (0.0) | 1 (0.9) | 0.267 |
Delirium | 8 (1.9) | 4 (1.3) | 4 (3.5) | 0.218 |
Bleeding amount | 302.8 ± 254.0 | 273.2 ± 197.5 | 383.8 ± 355.6 | 0.054 |
Bleeding reoperation | 15 (3.5) | 7 (2.3) | 8 (7.1) | 0.032 |
Transfusion | 115 (27.2) | 50 (16.1) | 65 (57.5) | <0.001 |
30-Day mortality | 2 (0.5) | 1 (0.3) | 1 (0.9) | 0.463 |
Readmission (<30 days) | 25 (5.9) | 19 (6.1) | 6 (5.3) | 0.752 |
Univariate Analysis | Multivariate Analysis 1 | |||||
---|---|---|---|---|---|---|
Variables | OR | 95% CI | p-Value | OR | 95% CI | p-Value |
Age, years | 0.95 | (0.92–0.97) | <0.001 | 0.93 | (0.90–0.96) | <0.001 |
CLD (yes vs. no) | 0.72 | (0.30–1.74) | 0.470 | |||
Dialysis (yes vs. no) | 0.36 | (0.11–1.13) | 0.079 | |||
Hemoglobin | 1.18 | (1.06–1.32) | 0.004 | |||
Albumin | 4.19 | (2.43–7.22) | <0.001 | 3.32 | (1.78–6.19) | <0.001 |
NYHA (yes vs. no) | 0.61 | (0.40–0.94) | 0.025 | |||
Urgent (urgent vs. elective) | 0.35 | (0.20–0.62) | <0.001 | |||
Ejection fraction | 1.02 | (0.99–1.04) | 0.146 | |||
CPB time | 0.98 | (0.97–0.98) | <0.001 | 0.97 | (0.96–0.98) | <0.001 |
Cross clamp time | 0.97 | (0.97–0.98) | <0.001 |
Point Contribution | ||||
---|---|---|---|---|
Variables | 0 | 1 | 2 | |
Age, years | ≥70 | <70 | ||
Albumin | <4.0 | ≥4.0 | ||
Cardiopulmonary bypass time | ≥120 | 90~120 | <90 | |
Variable | Cut-point value | On-table extubation | AUC (p) | |
Success | Fail | |||
Scoring system | >2 | 218 | 29 | 0.784 (<0.001) |
≤2 | 91 | 85 | ||
Total | 309 | 114 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, M.; Ju, M.; Lee, C.-H.; Rhee, Y.; Kim, H.-J.; Yoon, J.-P.; Shon, H.-S.; Je, H.G. Routine Extubation in the Operating Room After Minimally Invasive Aortic Valve Replacement. J. Clin. Med. 2025, 14, 3401. https://doi.org/10.3390/jcm14103401
Lim M, Ju M, Lee C-H, Rhee Y, Kim H-J, Yoon J-P, Shon H-S, Je HG. Routine Extubation in the Operating Room After Minimally Invasive Aortic Valve Replacement. Journal of Clinical Medicine. 2025; 14(10):3401. https://doi.org/10.3390/jcm14103401
Chicago/Turabian StyleLim, Mihee, Minho Ju, Chee-Hoon Lee, Younju Rhee, Hye-Jin Kim, Jung-Pil Yoon, Hong-Sik Shon, and Hyung Gon Je. 2025. "Routine Extubation in the Operating Room After Minimally Invasive Aortic Valve Replacement" Journal of Clinical Medicine 14, no. 10: 3401. https://doi.org/10.3390/jcm14103401
APA StyleLim, M., Ju, M., Lee, C.-H., Rhee, Y., Kim, H.-J., Yoon, J.-P., Shon, H.-S., & Je, H. G. (2025). Routine Extubation in the Operating Room After Minimally Invasive Aortic Valve Replacement. Journal of Clinical Medicine, 14(10), 3401. https://doi.org/10.3390/jcm14103401