Effects of Whole-Body and Lower-Body Cold-Water Immersion on Exercise-Induced Pain Score, Muscle Damage Indices, and Maximal Voluntary Isometric Contractions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Setting
2.2. Participants
2.3. Skin Temperature
2.4. MVIC
2.5. Pain Score
2.6. Muscle Damage Indices
2.7. Muscle Mechanical Properties
2.8. Eccentric Exercise Protocol
2.9. Whole-Body and Lower-Body CWI, and Active Recovery Treatment Protocols
2.10. Statistical Analysis
3. Results
3.1. Changes in Average Skin Temperature
3.2. Changes in MVIC
3.3. Changes in Pain Scale
3.4. Changes in Muscle Damage Indices
3.5. Changes in Muscle Mechanical Properties
4. Discussion
Methodological Quality and Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CWI | Cold-Water Immersion |
MVIC | Maximum Voluntary Isometric Contraction |
CK | Creatine Kinase |
LDH | Lactate DeHydrogenase |
TMG | Tensiomyography |
IL-10 | Interleukin-10 |
IL-2 | Interleukin-2 |
IL-8 | Interleukin-8 |
Dm | Muscle’s Maximum Travel Distance |
HRmax | Maximum Heart Rate |
TC | Contraction Time |
TR | Relaxation time |
References
- Tuxtaevich, A.T. Physiological Mechanisms and patterns of recovery process in sports. Frontline Med. Sci. Pharm. J. 2023, 3, 70–76. [Google Scholar]
- Kellmann, M.; Beckmann, J. Sport, Recovery, and Performance; Beckmann, J., Ed.; Routledge: London, UK, 2018. [Google Scholar]
- Dupont, G.; Blondel, N.; Berthoin, S. Performance for short intermittent runs: Active recovery vs. passive recovery. Eur. J. Appl. Physiol. 2003, 89, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.; D’Silva, A.; Bhuva, A.; Lloyd, G.; Manisty, C.; Moon, C.; Hughes, D. Improved exercise-related skeletal muscle oxygen consumption following uptake of endurance training measured using near-infrared spectroscopy. Front. Physiol. 2017, 8, 299464. [Google Scholar] [CrossRef]
- Peng, Y.; Meng, L.; Zhu, H.; Wan, L.; Chen, F. Effect of Normobaric Oxygen Inhalation Intervention on Microcirculatory Blood Flow and Fatigue Elimination of College Students After Exercise. Front. Genet. 2022, 13, 901862. [Google Scholar] [CrossRef]
- Peake, M.; Roberts, A.; Figueiredo, C.; Egner, I.; Krog, S.; Aas, S.N.; Raastad, T. The effects of cold water immersion and active recovery on inflammation and cell stress responses in human skeletal muscle after resistance exercise. J. Physiol. 2017, 595, 695–711. [Google Scholar] [CrossRef]
- Coelho, M.; Nunes, F.; Nakamura, Y.; Duffield, R.; Serpa, C.; da Silva, F.; Guglielmo, G. Post-match recovery in soccer with far-infrared emitting ceramic material or cold-water immersion. J. Sports Sci. Med. 2021, 20, 732. [Google Scholar] [CrossRef]
- Zandvoort, S.; De Zwart, R.; Van Keeken, L.; Viroux, J.; Tiemessen, J. A customised cold-water immersion protocol favours one-size-fits-all protocols in improving acute performance recovery. Eur. J. Sport Sci. 2018, 18, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Bastos, N.; Vanderlei, M.; Nakamura, Y.; Bertollo, M.; Godoy, F.; Hoshi, A. Effects of cold water immersion and active recovery on post-exercise heart rate variability. Int. J. Sports Med. 2012, 33, 873–879. [Google Scholar] [CrossRef]
- Lubkowska, A.; Szygula, Z.; Klimek, A.J.; Torii, M. Do sessions of cryostimulation have influence on white blood cell count, level of IL6 and total oxidative and antioxidative status in healthy men? Eur. J. Appl. Physiol. 2010, 109, 67–72. [Google Scholar] [CrossRef]
- Ziemann, E. Muscle Exercise. In Whole-Body Cryostimulation: Clinical Applications; Springer International Publishing: Cham, Switzerland, 2024; pp. 67–79. [Google Scholar]
- Mcgorm, H.; Roberts, L.; Coombes, J.; Peake, J. Cold water immersion: Practices, trends and avenues of effect. Aspetar Sports Med. J. 2015, 4, 106–111. [Google Scholar]
- White, E.; Wells, D. Cold-water immersion and other forms of cryotherapy: Physiological changes potentially affecting recovery from high-intensity exercise. Extrem. Physiol. Med. 2013, 2, 26. [Google Scholar] [CrossRef] [PubMed]
- Erdoğan, R.; Tizar, E.; Tizar, R. The Effect of Cold-Water Immersion Application on Biochemical Parameters in Athletes. Int. Arch. Med. Res. 2024, 16, 20–27. [Google Scholar] [CrossRef]
- Rech, N.; Bressel, E.; Louder, T. Predictive ability of body fat percentage and thigh anthropometrics on tissue cooling during cold-water immersion. J. Athl. Train. 2021, 56, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Schimpchen, J.; Wagner, M.; Ferrauti, A.; Kellmann, M.; Pfeiffer, M.; Meyer, T. Can cold water immersion enhance recovery in elite Olympic weightlifters? An individualized perspective. J. Strength Cond. Res. 2017, 31, 1569–1576. [Google Scholar] [CrossRef]
- Christophe, H. Conditioning Recovery Strategy to Improve Exercise Performance (Korean Edition); NIH: Seoul, Republic of Korea, 2017; pp. 105–122. [Google Scholar]
- Sarkar, S.; Debnath, M.; Das, M.; Bandyopadhyay, A.; Dey, K.; Datta, G. Effect of high intensity interval training on antioxidant status, inflammatory response and muscle damage indices in endurance team male players. Sports Med. 2021, 56, 100352. [Google Scholar] [CrossRef]
- Pawłowska, M.; Mila-Kierzenkowska, C.; Boraczyński, T.; Boraczyński, M.; Szewczyk-Golec, K.; Sutkowy, P.; Woźniak, A. The influence of ambient temperature changes on the indicators of inflammation and oxidative damage in blood after submaximal exercise. Antioxidants 2022, 11, 2445. [Google Scholar] [CrossRef]
- Bassit, A.; Pinheiro, J.; Vitzel, F.; Sproesser, J.; Silveira, R.; Curi, R. Effect of short-term creatine supplementation on markers of skeletal muscle damage after strenuous contractile activity. Eur. J. Appl. Physiol. 2010, 108, 945–955. [Google Scholar] [CrossRef] [PubMed]
- Brancaccio, P.; Lippi, G.; Maffulli, N. Biochemical markers of muscular damage. Clin. Chem. Lab. Med. 2010, 48, 757–767. [Google Scholar] [CrossRef]
- García-Manso, M.; Rodríguez-Ruiz, D.; Rodríguez-Matoso, D.; de Saa, Y.; Sarmiento, S.; Quiroga, M. Assessment of muscle fatigue after an ultra-endurance triathlon using tensiomyography (TMG). J. Sports Sci. 2011, 29, 619–625. [Google Scholar] [CrossRef]
- Pišot, R.; Narici, V.; Šimunič, B.; De Boer, M.; Seynnes, O.; Jurdana, M.; Mekjavić, B. Whole muscle contractile parameters and thickness loss during 35-day bed rest. Eur. J. Appl. Physiol. 2008, 104, 409–414. [Google Scholar] [CrossRef]
- Rey, E.; Lago-Penas, C.; Lago-Ballesteros, J. Tensiomyography of selected lower-limb muscles in professional soccer players. J. Electromyogr. Kinesiol. 2012, 22, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Valenčič, V.; Knez, N. Measuring of skeletal muscles’ dynamic properties. Artif. Organs 1997, 21, 240–242. [Google Scholar] [CrossRef]
- Peiffer, J.; Abbiss, R.; Nosaka, K.; Peake, M.; Laursen, B. Effect of cold water immersion after exercise in the heat on muscle function, body temperatures, and vessel diameter. J. Sci. Med. Sport 2009, 12, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, H.; Wijayanto, T.; Tochihara, Y. Neuromuscular function during knee extension exercise after cold water immersion. J. Physiol. Anthropol. 2017, 36, 28. [Google Scholar] [CrossRef] [PubMed]
- Chow, C.; Shao, J.; Wang, H.; Lokhnygina, Y. Sample Size Calculations in Clinical Research; Chapman and Hall/CRC: Boca Raton, FL, USA, 2017. [Google Scholar]
- Ramanathan, L. A new weighting system for mean surface temperature of the human body. J. Appl. Physiol. 1964, 19, 531–533. [Google Scholar] [CrossRef]
- Selkowitz, M. Improvement in isometric strength of the quadriceps femoris muscle after training with electrical stimulation. Phys. Ther. 1985, 65, 186–196. [Google Scholar] [CrossRef]
- Ascensão, A.; Leite, M.; Rebelo, N.; Magalhäes, S.; Magalhäes, J. Effects of cold water immersion on the recovery of physical performance and muscle damage following a one-off soccer match. J. Sports Sci. 2011, 29, 217–225. [Google Scholar] [CrossRef]
- Alvarez-Diaz, P.; Alentorn-Geli, E.; Ramon, S.; Marin, M.; Steinbacher, G.; Rius, M.; Cugat, R. Comparison of tensiomyographic neuromuscular characteristics between muscles of the dominant and non-dominant lower extremity in male soccer players. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 2259–2263. [Google Scholar] [CrossRef]
- van Melick, N.; Meddeler, M.; Hoogeboom, J.; Nijhuis-van der Sanden, W.; van Cingel, E. How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults. PLoS ONE 2017, 12, e0189876. [Google Scholar] [CrossRef]
- Križaj, D.; Šimunič, B.; Žagar, T. Short-term repeatability of parameters extracted from radial displacement of muscle belly. J. Electromyogr. Kinesiol. 2008, 18, 645–651. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 1988. [Google Scholar] [CrossRef]
- Choo, C.; Peiffer, J.; Lopes-Silva, P.; Mesquita, N.; Amano, T.; Kondo, N.; Abbiss, R. Effect of ice slushy ingestion and cold water immersion on thermoregulatory behavior. PLoS ONE 2019, 14, e0212966. [Google Scholar] [CrossRef] [PubMed]
- Stephens, M.; Sharpe, K.; Gore, C.; Miller, J.; Slater, G.J.; Versey, N.; Halson, S.L. Core temperature responses to cold-water immersion recovery: A pooled-data analysis. Int. J. Sports Physiol. Perform. 2018, 13, 917–925. [Google Scholar] [CrossRef]
- Song, S.; Kim, J.; Chun, O.; Lee, H.; Noh, H. The effect of cooling tubing intervention on recovery in elite wrestler competition simulation. Exerc. Sci. 2019, 28, 221–231. [Google Scholar] [CrossRef]
- Barwood, M.J.; Davey, S.; House, J.R.; Tipton, M.J. Post-exercise cooling techniques in hot, humid conditions. Eur. J. Appl. Physiol. 2009, 107, 385–396. [Google Scholar] [CrossRef]
- Roberts, A.; Nosaka, K.; Coombes, S.; Peake, M. Cold water immersion enhances recovery of submaximal muscle function after resistance exercise. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2014, 307, R998–R1008. [Google Scholar] [CrossRef]
- Costello, J.T.; Culligan, K.; Selfe, J.; Donnelly, A.E. Muscle, skin and core temperature after− 110 C cold air and 8 C water treatment. PLoS ONE 2012, 7, e48190. [Google Scholar] [CrossRef] [PubMed]
- Bailey, M.; Erith, J.; Griffin, J.; Dowson, A.; Brewer, S.; Gant, N.; Williams, C. Influence of cold-water immersion on indices of muscle damage following prolonged intermittent shuttle running. J. Sports Sci. 2007, 25, 1163–1170. [Google Scholar] [CrossRef]
- Yeung, S.; Ting, H.; Hon, M.; Fung, Y.; Choi, M.; Cheng, C.; Yeung, W. Effects of cold water immersion on muscle oxygenation during repeated bouts of fatiguing exercise: A randomized controlled study. Medicine 2016, 95, e2455. [Google Scholar] [CrossRef] [PubMed]
- Bortolo Pesenti, F.; Rossi Spartalis, E.; Miyuki Okino, A.; Venturini, D.; Frisseli, A.; de Souza Guerino Macedo, C. Effect of Immersion in Cold Water on Creatine Kinase and Myoglobin Levels in Soccer Players. J. Health Sci. 2020, 22, 2447–8938. [Google Scholar] [CrossRef]
- Pinto, J.; Rocha, P.; Torres, R. Cold-Water Immersion Has No Effect on Muscle Stiffness after Exercise-Induced Muscle Damage. Clin. J. Sport Med. 2020, 30, 533–538. [Google Scholar] [CrossRef]
- Vieira, A.; Siqueira, F.; Ferreira-Junior, B.; do Carmo, J.; Durigan, Q.; Blazevich, A.; Rodrigues, P.; Wassmansdorf, R.; Salgueirosa, M.; Hernandez, G.; et al. Time-course of changes in indirect markers of muscle damage responses following a 130-km cycling race. Rev. Bras. Cineantropometria Desempenho Hum. 2016, 18, 322–331. [Google Scholar] [CrossRef]
- Urso, L. Anti-inflammatory interventions and skeletal muscle injury: Benefit or detriment? J. Appl. Physiol. 2013, 115, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Mur-Gimeno, E.; Sebio-Garcia, R.; Solé, J.; Lleida, A.; Moras, G. Short-term effects of two different recovery strategies on muscle contractile properties in healthy active men: A randomised cross-over study. J. Sports Sci. 2022, 40, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Petersen, C.; Fyfe, J. Post-exercise cold water immersion effects on physiological adaptations to resistance training and the underlying mechanisms in skeletal muscle: A narrative review. Front. Sports Act. Living 2021, 3, 660291. [Google Scholar] [CrossRef]
- Sánchez-Ureña, B.; Rojas-Valverde, D.; Gutiérrez-Vargas, R. Effectiveness of two cold water immersion protocols on neuromuscular function recovery: A tensiomyography study. Front. Physiol. 2018, 9, 766. [Google Scholar] [CrossRef]
- Edholm, P.; Ørtenblad, N.; Holmberg, H.C.; Sperlich, B. Optimizing recovery strategies for winter athletes: Insights for Milano-Cortina 2026 Olympic Games. Sport Sci. Health 2024, 20, 1169–1182. [Google Scholar] [CrossRef]
- An, J.; Lee, I.; Yi, Y. The thermal effects of water immersion on health outcomes: An integrative review. Int. J. Environ. Res. Public Health 2019, 16, 1280. [Google Scholar] [CrossRef]
Average skin temperature = 0.3 × (Chest + Upper arm) + 0.2 × (Thigh + Calf) |
Variables | Treatment Group | Rest | IAE | 10 min After Exercise | 30 min After Exercise | 48 h After Exercise | 72 h After Exercise | Sig | η2 |
---|---|---|---|---|---|---|---|---|---|
Average skin temperature (°C) | Whole-body CWI (n = 9) | 33.20 ± 0.66 c,d | 32.72 ± 0.70 c,d | 28.63 ± 1.00 #,†,e,f | 31.61 ± 0.49 † | 33.23 ± 0.49 | 33.10 ± 0.82 | Treatment 0.761 | 0.022 |
Lower-body CWI (n = 9) | 32.55 ± 0.50 c | 32.32 ± 1.02 c | 30.84 ± 1.39 d,e,f | 32.33 ± 0.93 | 32.57 ± 0.94 | 33.04 ± 0.69 | Time 0.001 * | 0.742 | |
Control (n = 9) | 32.40 ± 0.78 c | 31.81 ± 0.62 | 31.14 ± 0.91 d,e,f | 32.35 ± 0.79 | 32.35 ± 0.79 | 32.76 ± 0.65 | Treatment × Time 0.001 * | 0.488 | |
Chest temperature (°C) | Whole-body CWI (n = 9) | 33.58 ± 1.03 c | 32.29 ± 0.99 c | 26.41 ± 2.26 #,†,d,e,f | 31.61 ± 1.38 #,† | 33.72 ± 0.83 | 33.44 ± 1.72 | Treatment 0.111 | 0.167 |
Lower-body CWI (n = 9) | 33.17 ± 1.16 | 31.61 ± 1.18 | 31.90 ± 1.40 | 33.23 ± 1.58 | 32.84 ± 1.27 | 33.19 ± 1.36 | Time 0.001 * | 0.595 | |
Control (n = 9) | 32.68 ± 1.26 c | 31.40 ± 0.97 | 30.41 ± 1.02 d,e,f | 32.77 ± 1.71 | 33.44 ± 1.58 | 33.11 ± 1.74 | Treatment × Time 0.001 * | 0.441 | |
Thigh temperature (°C) | Whole-body CWI (n = 9) | 32.64 ± 0.82 c | 32.97 ± 1.51 c,d | 26.90 ± 1.92 †,d,e,f | 31.12 ± 1.20 f | 32.94 ± 0.73 | 32.86 ± 0.50 | Treatment 0.423 | 0.069 |
Lower-body CWI (n = 9) | 32.33 ± 1.22 c | 33.30 ± 1.51 c | 29.17 ± 2.47 d,e,f | 31.79 ± 1.03 | 32.22 ± 1.18 | 32.77 ± 0.81 | Time 0.001 * | 0.691 | |
Control (n = 9) | 31.93 ± 0.97 | 32.56 ± 1.16 | 31.27 ± 2.68 | 32.30 ± 1.16 | 32.37 ± 0.87 | 32.77 ± 0.71 | Treatment × Time 0.001* | 0.422 | |
Upper arm temperature (°C) | Whole-body CWI (n = 9) | 33.67 ± 0.50 | 33.43 ± 0.80 | 33.22 ± 1.07 | 32.92 ± 0.96 | 33.58 ± 0.75 | 33.18 ± 0.91 | Treatment 0.036 * | 0.242 |
Lower-body CWI (n = 9) | 32.42 ± 0.61 | 32.87 ± 1.28 | 32.87 ± 1.79 | 33.18 ± 1.08 | 32.78 ± 0.85 | 32.89 ± 0.84 | Time 0.399 | 0.041 | |
Control (n = 9) | 32.86 ± 1.10 | 32.44 ± 0.55 | 31.83 ± 0.80 | 32.66 ± 0.67 | 32.88 ± 0.84 | 32.79 ± 0.69 | Treatment × Time 0.128 | 0.121 | |
Calf temperature (°C) | Whole-body CWI (n = 9) | 32.55 ± 1.12 c,d | 32.23 ± 0.95 c,d | 26.63 ± 1.41 †,e,f | 30.41 ± 0.67 #,e,f | 32.18 ± 0.80 | 32.79 ± 0.58 | Treatment 0.206 | 0.140 |
Lower-body CWI (n = 9) | 32.01 ± 0.66 c | 31.39 ± 0.46 c | 28.00 ± 2.30 #,d,e | 30.18 ± 0.58 #,e,f | 32.13 ± 1.47 | 32.79 ± 0.66 | Time 0.001 * | 0.755 | |
Control (n = 9) | 31.79 ± 0.75 | 30.83 ± 1.08 e,f | 31.11 ± 0.88 | 31.39 ± 0.94 | 32.15 ± 0.52 | 32.26 ± 0.80 | Treatment × Time 0.001 * | 0.529 |
Variables | Treatment Group | Rest | IAE | 30 min After Exercise | 48 h After Exercise | 72 h After Exercise | Sig | η2 |
---|---|---|---|---|---|---|---|---|
MVIC (%BW) | Whole-body CWI (n = 9) | 353.56 ± 52.99 | 306.22 ± 57.14 | 327.11 ± 57.71 | 346.44 ± 37.55 | 357.89 ± 44.90 | Treatment 0.131 | 0.156 |
Lower-body CWI (n = 9) | 342.89 ± 30.25 | 274.78 ± 39.77 | 319.56 ± 48.39 | 330.33 ± 27.35 | 344.67 ± 46.24 | Time 0.001 * | 0.466 | |
Control (n = 9) | 323.56 ± 48.27 | 265.89 ± 51.57 | 277.89 ± 65.67 | 283.00 ± 66.67 | 316.89 ± 78.69 | Treatment × Time 0.452 | 0.075 |
Variables | Treatment Group | Rest | IAE | 30 min After Exercise | 48 h After Exercise | 72 h After Exercise | Sig | η2 |
---|---|---|---|---|---|---|---|---|
Pain scale (score) | Whole-body CWI (n = 9) | 0.67 ± 1.12 b,c | 7.11 ± 2.14 c,d,e | 2.89 ± 1.36 † | 1.11 ± 1.53 † | 1.22 ± 1.20 | Treatment 0.001 * | 0.486 |
Lower-body CWI (n = 9) | 0.78 ± 1.30 b,c | 6.33 ± 1.50 c,d,e | 2.56 ± 1.01 †,e | 1.00 ± 1.23 † | 0.44 ± 0.53 | Time 0.001 * | 0.826 | |
Control (n = 9) | 0.89 ± 0.78 b,c,d | 8.00 ± 1.11 c,d,e | 4.44 ± 1.42 e | 3.78 ± 1.64 e | 1.22 ± 1.09 | Treatment × Time 0.049 * | 0.156 |
Variables | Treatment Group | Rest | IAE | 30 min After Exercise | 48 h After Exercise | 72 h After Exercise | Sig | η2 |
---|---|---|---|---|---|---|---|---|
CK (IU/L) | Whole-body CWI (n = 9) | 207.56 ± 77.40 | 230.00 ± 78.34 | 240.89 ± 77.28 | 311.33 ± 160.75 | 235.44 ± 88.94 | Treatment 0.714 | 0.028 |
Lower-body CWI (n = 9) | 209.22 ± 89.34 | 251.33 ± 106.12 | 241.56 ± 106.14 | 360.44 ± 168.68 | 308.11 ± 183.98 | Time 0.001 * | 0.400 | |
Control (n = 9) | 175.00 ± 74.05 | 189.44 ± 41.36 | 196.56 ± 52.85 | 391.11 ± 184.16 | 261.11 ± 109.28 | Treatment × Time 0.316 | 0.092 | |
LDH (U/L) | Whole-body CWI (n = 9) | 249.63 ± 40.67 | 275.25 ± 52.01 d,e | 232.50 ± 38.70 | 204.88 ± 46.55 † | 198.13 ± 47.35 | Treatment 0.759 | 0.023 |
Lower-body CWI (n = 9) | 224.88 ± 41.52 | 241.25 ± 48.44 | 234.00 ± 47.85 e | 219.00 ± 61.96 † | 199.63 ± 33.76 | Time 0.001 * | 0.378 | |
Control (n = 9) | 225.25 ± 37.09 | 268.13 ± 61.46 | 254.13 ± 30.69 | 268.00 ± 40.08 | 214.13 ± 44.91 | Treatment × Time 0.027 * | 0.171 |
Variables | Treatment Group | Rest | 30 min After Exercise | 48 h After Exercise | 72 h After Exercise | Sig | η2 |
---|---|---|---|---|---|---|---|
Dm (mm) | Whole-body CWI (n = 9) | 7.3 ± 1.8 b | 4.5 ± 2.2 c,d | 7.6 ± 2.4 | 7.5 ± 1.8 | Treatment 0.839 | 0.014 |
Lower-body CWI (n = 9) | 7.3 ± 1.4 b | 4.2 ± 2.2 c | 7.3 ± 2.4 | 6.4 ± 2.8 | Time 0.001 * | 0.485 | |
Control (n = 9) | 7.1 ± 2.5 b | 6.1 ± 2.2 c | 7.3 ± 2.3 | 6.6 ± 1.6 | Treatment × Time 0.047 * | 0.165 | |
Tc (ms) | Whole-body CWI (n = 9) | 29.9 ± 6.0 | 32.1 ± 9.0 | 29.0 ± 5.4 | 29.7 ± 4.3 | Treatment 0.373 | 0.079 |
Lower-body CWI (n = 9) | 27.9 ± 3.6 | 28.6 ± 6.2 | 27.6 ± 3.8 | 25.6 ± 5.1 | Time 0.044 * | 0.125 | |
Control (n = 9) | 28.8 ± 3.3 | 31.6 ± 5.3 | 27.0 ± 5.2 | 28.2 ± 3.8 | Treatment × Time 0.749 | 0.037 | |
Tr (ms) | Whole-body CWI (n = 9) | 34.7 ± 40.7 | 47.5 ± 48.6 | 33.1 ± 40.8 | 52.9 ± 72.2 | Treatment 0.236 | 0.113 |
Lower-body CWI (n = 9) | 13.7 ± 4.1 | 22.3 ± 12.7 | 26.8 ± 27.1 | 19.1 ± 21.2 | Time 0.194 | 0.066 | |
Control (n = 9) | 23.3 ± 29.8 | 57.3 ± 45.4 | 26.8 ± 27.2 | 28.2 ± 35.0 | Treatment × Time 0.498 | 0.067 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Moon, J.; Kim, N. Effects of Whole-Body and Lower-Body Cold-Water Immersion on Exercise-Induced Pain Score, Muscle Damage Indices, and Maximal Voluntary Isometric Contractions. J. Clin. Med. 2025, 14, 3287. https://doi.org/10.3390/jcm14103287
Lee J, Moon J, Kim N. Effects of Whole-Body and Lower-Body Cold-Water Immersion on Exercise-Induced Pain Score, Muscle Damage Indices, and Maximal Voluntary Isometric Contractions. Journal of Clinical Medicine. 2025; 14(10):3287. https://doi.org/10.3390/jcm14103287
Chicago/Turabian StyleLee, Jinseok, Jeheon Moon, and Namsu Kim. 2025. "Effects of Whole-Body and Lower-Body Cold-Water Immersion on Exercise-Induced Pain Score, Muscle Damage Indices, and Maximal Voluntary Isometric Contractions" Journal of Clinical Medicine 14, no. 10: 3287. https://doi.org/10.3390/jcm14103287
APA StyleLee, J., Moon, J., & Kim, N. (2025). Effects of Whole-Body and Lower-Body Cold-Water Immersion on Exercise-Induced Pain Score, Muscle Damage Indices, and Maximal Voluntary Isometric Contractions. Journal of Clinical Medicine, 14(10), 3287. https://doi.org/10.3390/jcm14103287