Valproic Acid and Lamotrigine Differentially Modulate the Telomere Length in Epilepsy Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Clinical Data of Patients
2.3. Relative Quantification of Telomere Length and mtDNA Copy Number
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Epilepsy: A Public Health Imperative: Summary. 2019. Available online: https://iris.who.int/handle/10665/325440 (accessed on 12 December 2024).
- Málaga, I.; Sánchez-Carpintero, R.; Roldán, S.; Ramos-Lizana, J.; García-Peñas, J.J. New anti-epileptic drugs in Paediatrics. An. Pediatr. 2019, 91, 415.e1–415.e10. [Google Scholar] [CrossRef] [PubMed]
- Hakami, T. Neuropharmacology of Antiseizure Drugs. Neuropsychopharmacol. Rep. 2021, 41, 336–351. [Google Scholar] [CrossRef]
- Martínez-Juárez, I.E.; López-Zapata, R.; Gómez-Arias, B.; Bravo-Armenta, E.; Romero-Ocampo, L.; Estévez-Cruz, Z.; Hernández-De la Cruz, G.; Morán-Molina, S. Refractory epilepsy: Use of the new definition and related risk factors. A study in the Mexican population of a third-level centre. Rev. Neurol. 2012, 54, 159–166. [Google Scholar]
- Barrett, J.H.; Iles, M.M.; Dunning, A.M.; Pooley, K.A. Telomere length and common disease: Study design and analytical challenges. Hum. Genet. 2015, 134, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Eitan, E.; Hutchison, E.R.; Mattson, M.P. Telomere shortening in neurological disorders: An abundance of unanswered questions. Trends Neurosci. 2014, 37, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Ridout, K.K.; Ridout, S.J.; Price, L.H.; Sen, S.; Tyrka, A.R. Depression and telomere length: A meta-analysis. J. Affect. Disord. 2016, 191, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Apetroaei, M.M.; Fragkiadaki, P.; Velescu, B.; Ștefan Baliou, S.; Renieri, E.; Dinu-Pirvu, C.E.; Drăgănescu, D.; Vlăsceanu, A.M.; Nedea, M.I.I.; Udeanu, D.I.; et al. Pharmacotherapeutic Considerations on Telomere Biology: The Positive Effect of Pharmacologically Active Substances on Telomere Length. Int. J. Mol. Sci. 2024, 25, 7694. [Google Scholar] [CrossRef]
- Martinsson, L.; Wei, Y.; Xu, D.; Melas, P.A.; Mathé, A.A.; Schalling, M.; Lavebratt, C.; Backlund, L. Long-term lithium treatment in bipolar disorder is associated with longer leukocyte telomeres. Transl. Psychiatry 2013, 3, e261. [Google Scholar] [CrossRef] [PubMed]
- Powell, T.R.; Dima, D.; Frangou, S.; Breen, G. Telomere Length and Bipolar Disorder. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2018, 43, 445–453. [Google Scholar] [CrossRef]
- Squassina, A.; Pisanu, C.; Congiu, D.; Caria, P.; Frau, D.; Niola, P.; Melis, C.; Baggiani, G.; Lopez, J.P.; Cruceanu, C.; et al. Leukocyte telomere length positively correlates with duration of lithium treatment in bipolar disorder patients. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 2016, 26, 1241–1247. [Google Scholar] [CrossRef]
- Courtes, A.C.; Jha, R.; Topolski, N.; Soares, J.C.; Barichello, T.; Fries, G.R. Exploring accelerated aging as a target of bipolar disorder treatment: A systematic review. J. Psychiatr. Res. 2024, 180, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Hough, C.M.; Bersani, F.S.; Mellon, S.H.; Epel, E.S.; Reus, V.I.; Lindqvist, D.; Lin, J.; Mahan, L.; Rosser, R.; Burke, H.; et al. Leukocyte telomere length predicts SSRI response in major depressive disorder: A preliminary report. Mol. Neuropsychiatry 2016, 2, 88–96. [Google Scholar] [CrossRef]
- Rasgon, N.; Lin, K.W.; Lin, J.; Epel, E.; Blackburn, E. Telomere length as a predictor of response to Pioglitazone in patients with unremitted depression: A preliminary study. Transl. Psychiatry 2016, 6, e709. [Google Scholar] [CrossRef] [PubMed]
- Polho, G.B.; Cardillo, G.M.; Kerr, D.S.; Chile, T.; Gattaz, W.F.; Forlenza, O.V.; Brentani, H.P.; De-Paula, V.J. Antipsychotics preserve telomere length in peripheral blood mononuclear cells after acute oxidative stress injury. Neural Regen. Res. 2022, 17, 1156–1160. [Google Scholar]
- Bersani, F.S.; Lindqvist, D.; Mellon, S.H.; Penninx, B.W.J.H.; Verhoeven, J.E.; Révész, D.; Reus, V.I.; Wolkowitz, O.M. Telomerase activation as a possible mechanism of action for psychopharmacological interventions. Drug Discov. Today 2015, 20, 1305–1309. [Google Scholar] [CrossRef] [PubMed]
- Elvsåshagen, T.; Vera, E.; Bøen, E.; Bratlie, J.; Andreassen, O.A.; Josefsen, D.; Malt, U.F.; Blasco, M.A.; Boye, B. The load of short telomeres is increased and associated with lifetime number of depressive episodes in bipolar II disorder. J. Affect. Disord. 2011, 135, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.C.; Choi, C.S.; Gonzales, E.L.T.; Mabunga, D.F.N.; Lee, S.H.; Jeon, S.J.; Hwangbo, R.; Hong, M.; Ryu, J.H.; Han, S.-H.; et al. Valproic Acid Induces Telomerase Reverse Transcriptase Expression during Cortical Development. Exp. Neurobiol. 2017, 26, 252–265. [Google Scholar] [CrossRef]
- Miranda, D.M.; Rosa, D.V.; Costa, B.S.; Nicolau, N.F.; Magno, L.V.; de Paula, J.J.; Romano-Silva, M.A. Telomere shortening in patients with drug-resistant epilepsy. Epilepsy Res. 2020, 166, 106427. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, X.; Ding, X.; Wang, F.; Geng, X. Telomere and its role in the aging pathways: Telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology 2019, 20, 1–16. [Google Scholar] [CrossRef]
- Sahin, E.; Colla, S.; Liesa, M.; Moslehi, J.; Müller, F.L.; Guo, M.; Cooper, M.; Kotton, D.; Fabian, A.J.; Walkey, C.; et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011, 470, 359–365. [Google Scholar] [CrossRef]
- Zole, E.; Ranka, R. Mitochondria, its DNA and telomeres in ageing and human population. Biogerontology 2018, 19, 189–208. [Google Scholar] [CrossRef] [PubMed]
- Zsurka, G.; Kunz, W.S. Mitochondrial dysfunction and seizures: The neuronal energy crisis. Lancet Neurol. 2015, 14, 956–966. [Google Scholar] [CrossRef]
- Bachmann, R.F.; Wang, Y.; Yuan, P.; Zhou, R.; Li, X.; Alesci, S.; Du, J.; Manji, H.K. Common effects of lithium and valproate on mitochondrial functions: Protection against methamphetamine-induced mitochondrial damage. Int. J. Neuropsychopharmacol. 2009, 12, 805–822. [Google Scholar] [CrossRef] [PubMed]
- Scaini, G.; Rezin, G.T.; Carvalho, A.F.; Streck, E.L.; Berk, M.; Quevedo, J. Mitochondrial dysfunction in bipolar disorder: Evidence, pathophysiology and translational implications. Neurosci. Biobehav. Rev. 2016, 68, 694–713. [Google Scholar] [CrossRef]
- Kageyama, Y.; Deguchi, Y.; Kasahara, T.; Tani, M.; Kuroda, K.; Inoue, K.; Kato, T. Intra-individual state-dependent comparison of plasma mitochondrial DNA copy number and IL-6 levels in patients with bipolar disorder. J. Affect. Disord. 2022, 299, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Jou, S.H.; Lin, T.T.; Lai, T.J.; Liu, C.S. Mitochondria DNA Change and Oxidative Damage in Clinically Stable Patients with Major Depressive Disorder. PLoS ONE 2015, 10, e0125855. [Google Scholar] [CrossRef]
- Kumar, P.; Efstathopoulos, P.; Millischer, V.; Olsson, E.; Wei, Y.B.; Brüstle, O.; Schalling, M.; Villaescusa, J.C.; Ösby, U.; Lavebratt, C. Mitochondrial DNA copy number is associated with psychosis severity and anti-psychotic treatment. Sci. Rep. 2018, 8, 12743. [Google Scholar] [CrossRef]
- Fernandez-Egea, E.; Bernardo, M.; Heaphy, C.M.; Griffith, J.K.; Parellada, E.; Esmatjes, E.; Conget, I.; Nguyen, L.; George, V.; Stöppler, H.; et al. Telomere length and pulse pressure in newly diagnosed, antipsychotic-naive patients with nonaffective psychosis. Schizophr. Bull. 2009, 35, 437–442. [Google Scholar] [CrossRef]
- Shivakumar, V.; Rajasekaran, A.; Subbanna, M.; Kalmady, S.V.; Venugopal, D.; Agrawal, R.; Amaresha, A.C.; Agarwal, S.M.; Joseph, B.; Narayanaswamy, J.C.; et al. Leukocyte mitochondrial DNA copy number in schizophrenia. Asian J. Psychiatry 2020, 53, 102193. [Google Scholar] [CrossRef]
- Lee, E.H.; Han, M.H.; Ha, J.; Park, H.H.; Koh, S.H.; Choi, S.H.; Lee, J.-H. Relationship between telomere shortening and age in Korean individuals with mild cognitive impairment and Alzheimer’s disease compared to that in healthy controls. Aging 2020, 13, 2089–2100. [Google Scholar] [CrossRef]
- Pyle, A.; Anugrha, H.; Kurzawa-Akanbi, M.; Yarnall, A.; Burn, D.; Hudson, G. Reduced mitochondrial DNA copy number is a biomarker of Parkinson’s disease. Neurobiol. Aging 2016, 38, 216.e7–216.e10. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.H.; Budtz-Jørgensen, E.; Sørensen, S.A.; Nielsen, J.E.; Hjermind, L.E.; Vinther-Jensen, T.; Nielsen, S.M.B.; Nørremølle, A. Reduction in mitochondrial DNA copy number in peripheral leukocytes after onset of Huntington’s disease. Mitochondrion 2014, 17, 14–21. [Google Scholar] [CrossRef]
- Breuer, L.E.M.; Boon, P.; Bergmans, J.W.M.; Mess, W.H.; Besseling, R.M.H.; de Louw, A.; Tijhuis, A.G.; Zinger, S.; Bernas, A.; Klooster, D.C.W.; et al. Cognitive deterioration in adult epilepsy: Does accelerated cognitive ageing exist? Neurosci. Biobehav. Rev. 2016, 64, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.S.; Acevedo, C.; Arzimanoglou, A.; Bogacz, A.; Cross, J.H.; Elger, C.E.; Engel, J.; Forsgren, L.; French, J.A.; Glynn, M.; et al. ILAE official report: A practical clinical definition of epilepsy. Epilepsia 2014, 55, 475–482. [Google Scholar] [CrossRef]
- Najafi, M.R.; Malekian, M.; Akbari, M.; Najafi, M.A. Magnetic resonance imaging and electroencephalography findings in a sample of Iranian patients with epilepsy. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2018, 23, 106. [Google Scholar]
- Westover, M.B.; Cormier, J.; Bianchi, M.T.; Shafi, M.; Kilbride, R.; Cole, A.J.; Cash, S.S. Revising the “Rule of Three” for inferring seizure freedom. Epilepsia 2012, 53, 368–376. [Google Scholar] [CrossRef]
- Cawthon, R.M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002, 30, e47. [Google Scholar] [CrossRef]
- Refinetti, P.; Warren, D.; Morgenthaler, S.; Ekstrøm, P.O. Quantifying mitochondrial DNA copy number using robust regression to interpret real time PCR results. BMC Res. Notes 2017, 10, 593. [Google Scholar] [CrossRef] [PubMed]
- RStudio Team. RStudio: Integrated Development Environment for R [Internet]; RStudio, PBC: Boston, MA, USA, 2024; Available online: http://www.rstudio.com/ (accessed on 12 December 2024).
- Olivoto, T.; Lúcio, A.D. metan: An R package for multi-environment trial analysis. Methods Ecol. Evol. 2020, 11, 783–789. [Google Scholar] [CrossRef]
- Rahman, M.; Awosika, A.O.; Nguyen, H. Valproic Acid. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK559112/ (accessed on 12 December 2024).
- Douglas-Hall, P.; Dzahini, O.; Gaughran, F.; Bile, A.; Taylor, D. Variation in dose and plasma level of lamotrigine in patients discharged from a mental health trust. Ther. Adv. Psychopharmacol. 2017, 7, 17–24. [Google Scholar] [CrossRef]
- Dreier, J.W.; Laursen, T.M.; Tomson, T.; Plana-Ripoll, O.; Christensen, J. Cause-specific mortality and life years lost in people with epilepsy: A Danish cohort study. Brain 2023, 146, 124–134. [Google Scholar] [CrossRef]
- Avanesian, A.; Khodayari, B.; Felgner, J.S.; Jafari, M. Lamotrigine extends lifespan but compromises health span in Drosophila melanogaster. Biogerontology 2010, 11, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Evason, K.; Collins, J.J.; Huang, C.; Hughes, S.; Kornfeld, K. Valproic acid extends Caenorhabditis elegans lifespan. Aging Cell 2008, 7, 305–317. [Google Scholar] [CrossRef]
- Okazaki, S.; Numata, S.; Otsuka, I.; Horai, T.; Kinoshita, M.; Sora, I.; Ohmori, T.; Hishimoto, A. Decelerated epigenetic aging associated with mood stabilizers in the blood of patients with bipolar disorder. Transl. Psychiatry 2020, 10, 129. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Young, L.T.; Wang, J.F. Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells. Biol. Psychiatry 2005, 58, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Eren, I.; Naziroğlu, M.; Demirdaş, A. Protective effects of lamotrigine, aripiprazole and escitalopram on depression-induced oxidative stress in rat brain. Neurochem. Res. 2007, 32, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Park, W.J.; Lee, J.H. Positive correlation between telomere length and mitochondrial copy number in breast cancers. Ann. Transl. Med. 2019, 7, 183. [Google Scholar] [CrossRef]
- Ortega-Vázquez, A.; Sánchez-Badajos, S.; Ramírez-García, M.Á.; Alvarez-Luquín, D.; López-López, M.; Adalid-Peralta, L.V.; Monroy-Jaramillo, N. Longitudinal Changes in Mitochondrial DNA Copy Number and Telomere Length in Patients with Parkinson’s Disease. Genes. 2023, 14, 1913. [Google Scholar] [CrossRef]
- Russo, R.; Kemp, M.; Bhatti, U.F.; Pai, M.; Wakam, G.; Biesterveld, B.; Alam, H.B. Life on the battlefield: Valproic acid for combat applications. J. Trauma. Acute Care Surg. 2020, 89 (Suppl. S2), S69–S76. [Google Scholar] [CrossRef]
- Romoli, M.; Mazzocchetti, P.; D’Alonzo, R.; Siliquini, S.; Rinaldi, V.E.; Verrotti, A.; Calabresi, P.; Costa, C. Valproic Acid and Epilepsy: From Molecular Mechanisms to Clinical Evidences. Curr. Neuropharmacol. 2019, 17, 926–946. [Google Scholar] [CrossRef]
- Salamati, A.; Majidinia, M.; Asemi, Z.; Sadeghpour, A.; Oskoii, M.A.; Shanebandi, D.; Alemi, F.; Mohammadi, E.; Karimian, A.; Targhazeh, N. Modulation of telomerase expression and function by miRNAs: Anti-cancer potential. Life Sci. 2020, 259, 118387. [Google Scholar] [CrossRef]
- Chang, C.C.; Chen, P.S.; Lin, J.R.; Chen, Y.A.; Liu, C.S.; Lin, T.T.; Chang, H.H. Mitochondrial DNA Copy Number Is Associated With Treatment Response and Cognitive Function in Euthymic Bipolar Patients Receiving Valproate. Int. J. Neuropsychopharmacol. 2022, 25, 525–533. [Google Scholar] [CrossRef]
- Pipek, L.Z.; Pipek, H.Z.; Castro, L.H.M. Seizure control in mono- and combination therapy in a cohort of patients with Idiopathic Generalized Epilepsy. Sci. Rep. 2022, 12, 12350. [Google Scholar] [CrossRef] [PubMed]
- Costa, B.; Vale, N. Understanding Lamotrigine’s Role in the CNS and Possible Future Evolution. Int. J. Mol. Sci. 2023, 24, 6050. [Google Scholar] [CrossRef]
- Deepa, D.; Jayakumari, N.; Thomas, S.V. Oxidative stress is increased in women with epilepsy: Is it a potential mechanism of anti-epileptic drug-induced teratogenesis? Ann. Indian. Acad. Neurol. 2012, 15, 281–286. [Google Scholar] [PubMed]
- Jang, E.H.; Lee, J.H.; Kim, S.A. Acute Valproate Exposure Induces Mitochondrial Biogenesis and Autophagy with FOXO3a Modulation in SH-SY5Y Cells. Cells 2021, 10, 2522. [Google Scholar] [CrossRef] [PubMed]
- Sitarz, K.S.; Elliott, H.R.; Karaman, B.S.; Relton, C.; Chinnery, P.F.; Horvath, R. Valproic acid triggers increased mitochondrial biogenesis in POLG-deficient fibroblasts. Mol. Genet. Metab. 2014, 112, 57–63. [Google Scholar] [CrossRef]
- Finsterer, J. Toxicity of Antiepileptic Drugs to Mitochondria. Handb. Exp. Pharmacol. 2017, 240, 473–488. [Google Scholar]
- Kong, F.C.; Ma, C.L.; Zhong, M.K. Epigenetic Effects Mediated by Antiepileptic Drugs and their Potential Application. Available online: https://www.eurekaselect.com/article/101309 (accessed on 12 December 2024).
- Stettner, M.; Krämer, G.; Strauss, A.; Kvitkina, T.; Ohle, S.; Kieseier, B.C.; Thelen, P. Long-term antiepileptic treatment with histone deacetylase inhibitors may reduce the risk of prostate cancer. Eur. J. Cancer Prev. Off. J. Eur. Cancer Prev. Organ. ECP 2012, 21, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Ni, G.; Qin, J.; Li, H.; Chen, Z.; Zhou, Y.; Fang, Z.; Chen, Y.; Zhou, J.; Huang, M.; Zhou, L. Effects of antiepileptic drug monotherapy on one-carbon metabolism and DNA methylation in patients with epilepsy. PLoS ONE 2015, 10, e0125656. [Google Scholar] [CrossRef]
- Yang, N.; Guan, Q.W.; Chen, F.H.; Xia, Q.X.; Yin, X.X.; Zhou, H.H.; Mao, X.-Y. Antioxidants Targeting Mitochondrial Oxidative Stress: Promising Neuroprotectants for Epilepsy. Oxid. Med. Cell Longev. 2020, 2020, 6687185. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sundquist, K.; Wang, X.; Zhang, N.; Hedelius, A.; Sundquist, J.; Memon, A.A. Association of Mitochondrial DNA Copy Number and Telomere Length with Prevalent and Incident Cancer and Cancer Mortality in Women: A Prospective Swedish Population-Based Study. Cancers 2021, 13, 3842. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Garcia, C.; Zeleke, H.; Rojas, A. Impact of Stress on Epilepsy: Focus on Neuroinflammation—A Mini Review. Int. J. Mol. Sci. 2021, 22, 4061. [Google Scholar] [CrossRef] [PubMed]
- Carver, A.J.; Hing, B.; Elser, B.A.; Lussier, S.J.; Yamanashi, T.; Howard, M.A.; Kawasaki, H.; Shinozaki, G.; Stevens, H.E. Correlation of telomere length in brain tissue with peripheral tissues in living human subjects. Front. Mol. Neurosci. 2024, 17, 1303974. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Patients (n = 64) | Controls (n = 64) | ||||
---|---|---|---|---|---|---|
Total (n = 64) | Male (n = 31) | Female (n = 33) | Total (n = 64) | Male (n = 31) | Female (n = 33) | |
Sex (%) | 100 | 48 | 52 | 100 | 48 | 52 |
Age in years, mean ± SD (range) | 32.0 ± 13.10 (18–73) | 32.48 ± 14.20 (18–72) | 31.6 ± 12.3 (18–73) | 32.0 ± 13.0 (18–73) | 32.5 ± 14.30 (73–18) | 31.4 ± 11.9 (19–72) |
Not seizure-free patients * | 42 | 19 | 23 | NA | NA | NA |
Seizure-free patients * | 22 | 12 | 10 | NA | NA | NA |
LTG monotherapy group | Patients (n = 18) | Controls (n = 18) | ||||
Total (n = 18) | Male (n = 7) | Female (n = 11) | Total (n = 18) | Male (n = 7) | Female (n = 11) | |
Sex (%) | 100 | 39 | 61 | 100 | 39 | 61 |
Age in years, mean ± SD (range) | 34.2 ± 14.9 (18–72) | 39.6 ± 27.7 (18–72) | 30.8 ± 9.39 (19–49) | 34.3 ± 15.3 (18–73) | 40.0 ± 21.4 (18–73) | 30.6 ± 9.17 (19–47) |
Not seizure-free patients * | 13 | 5 | 8 | NA | NA | NA |
Seizure-free patients * | 5 | 2 | 3 | NA | NA | NA |
LTG dose in mg; mean ± SD | 225.0 ± 113.0 | 236.0 ± 103.0 | 218.0 ± 123.0 | NA | NA | NA |
LTG PC, n = (subtherapeutic/therapeutic/supratherapeutic) | (7/11/0) | (3/8/0) | (4/3/0) | NA | NA | NA |
LTG PC μg mL−1; mean ± SD | 4.6 ± 3.6 | 2.8 ± 1.6 | 5.74 ± 4.1 | NA | NA | NA |
LTG adjusted PC (µg mL−1 dose Kg−1) | 1.5 ± 1.5 | 0.9 ± 0.3 | 2.0 ± 1.8 | NA | NA | NA |
VPA monotherapy group | Patients (n = 19) | Controls (n = 18) | ||||
Total (n = 19) | Male (n = 9) | Female (n = 10) | Total (n = 19) | Male (n = 9) | Female (n = 10) | |
Sex (%) | 100 | 57 | 43 | 100 | 57 | 43 |
Age in years, mean ± SD (range) | 32.8 ± 12.3 (20–67) | 34.4 ± 14.8 (21–67) | 31.0 ± 9.42 (20–49) | 32.7 ± 12.0 (21–66) | 34.2 ± 14.5 (21–66) | 31.0 ± 9.19 (21–49) |
Not seizure-free patients * (n = 9) | 9 | 4 | 5 | NA | NA | NA |
Seizure-free patients * (n = 10) | 10 | 5 | 5 | NA | NA | NA |
VPA dose in mg; mean ± SD ⤉ | 932.0 ± 437.0 | 1100.0 ± 477.0 | 844.0 ± 397.0 | NA | NA | NA |
VPA PC, n = (subtherapeutic/therapeutic/supratherapeutic) ⤉ | (0/17/0) | (0/9/0) | (0/8/0) | NA | NA | NA |
VPA PC, μg mL−1; mean ± SD ⤉ | 68.1 ± 20.6 | 60.3 ± 16.7 | 76.9 ± 22.0 | NA | NA | NA |
VPA adjusted PC (µg mL−1 dose Kg−1) ⤉ | 4.4 ± 1.3 | 4.0 ± 1.2 | 5.0 ± 1.2 | NA | NA | NA |
LTG + VPA combined therapy group | Patients (n = 27) | Controls (n = 27) | ||||
Total (n = 27) | Male (n = 14) | Female (n = 13) | Total (n = 27) | Male (n = 14) | Female (n = 13) | |
Sex (%) | 100 | 52 | 48 | 100 | 52 | 48 |
Age in years, mean ± SD (range) | 30.1 ± 12.6 (18–73) | 27.6 ± 7.64 (19–48) | 32.8 ± 16.4 (18–73) | 29.9 ± 12.3 (18–72) | 27.6 ± 7.44 (18–47) | 32.4 ± 15.9 (19–72) |
Not seizure-free patients * | 20 | 9 | 11 | NA | NA | NA |
Seizure-free patients * | 7 | 5 | 2 | NA | NA | NA |
LTG dose in mg; mean ± SD | 189.0 ± 84.7 | 211.0 ± 92.4 | 165.0 ± 71.8 | NA | NA | NA |
LTG PC, n = (subtherapeutic/therapeutic/supratherapeutic) | (1/21/5) | (1/10/3) | (0/11/2) | NA | NA | NA |
LTG PC, μg mL−1; mean ± SD | 9.8 ± 4.3 | 9.8 ± 4.6 | 9.7 ± 4.0 | NA | NA | NA |
LTG adjusted PC (µg mL−1 dose Kg−1) | 3.7 ± 1.8 | 3.2 ± 0.8 | 4.1 ± 2.4 | NA | NA | NA |
VPA dose in mg; mean ± SD | 1039.0 ± 496.0 | 1189.0 ± 476.0 | 950 ± 122.0 | NA | NA | NA |
VPA PC, n = (subtherapeutic/therapeutic/supratherapeutic) § | (0/15/1) | (0/6/0) | (0/9/1) | NA | NA | NA |
VPA PC, μg mL−1; mean ± SD § | 74.8 ± 25.5 | 76.8 ± 15.9 | 80.0 ± 33.9 | NA | NA | NA |
VPA adjusted PC (µg mL−1 dose Kg−1) § | 2.7 ± 1.6 | 1.1 ± 1.5 | 2.1 ± 2.0 | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Badajos, S.; Ortega-Vázquez, A.; López-López, M.; Monroy-Jaramillo, N. Valproic Acid and Lamotrigine Differentially Modulate the Telomere Length in Epilepsy Patients. J. Clin. Med. 2025, 14, 255. https://doi.org/10.3390/jcm14010255
Sánchez-Badajos S, Ortega-Vázquez A, López-López M, Monroy-Jaramillo N. Valproic Acid and Lamotrigine Differentially Modulate the Telomere Length in Epilepsy Patients. Journal of Clinical Medicine. 2025; 14(1):255. https://doi.org/10.3390/jcm14010255
Chicago/Turabian StyleSánchez-Badajos, Salvador, Alberto Ortega-Vázquez, Marisol López-López, and Nancy Monroy-Jaramillo. 2025. "Valproic Acid and Lamotrigine Differentially Modulate the Telomere Length in Epilepsy Patients" Journal of Clinical Medicine 14, no. 1: 255. https://doi.org/10.3390/jcm14010255
APA StyleSánchez-Badajos, S., Ortega-Vázquez, A., López-López, M., & Monroy-Jaramillo, N. (2025). Valproic Acid and Lamotrigine Differentially Modulate the Telomere Length in Epilepsy Patients. Journal of Clinical Medicine, 14(1), 255. https://doi.org/10.3390/jcm14010255