Role of Flex-Dose Delivery Program in Patients Affected by HCC: Advantages in Management of Tare in Our Experience
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Treatment Simulation
- mliver: mass of the normal liver;
- mtumor: mass of the tumor.
2.3. TARE Procedure
2.4. After Radioembolization
2.5. Patient Follow-Up
2.6. Endpoint
2.7. Statistics Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, H.S.; El-Serag, H.B. The epidemiology of hepatocellular carcinoma in the USA. Curr. Gastroenterol. Rep. 2019, 21, 17. [Google Scholar] [CrossRef]
- Howlader, N.; Noone, A.M.; Krapch, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; et al. (Eds.) EEER Cancer Statistics Review, 1975–2016; National Cancer Institute: Bethesda, MD, USA, 2018. [Google Scholar]
- Roayaie, S.; Jibara, G.; Tabrizian, P.; Park, J.-W.; Yang, J.; Yan, L.; Schwartz, M.; Han, G.; Izzo, F.; Chen, M.; et al. The role of hepatic resection in the treatment of hepatocellular cancer. Hepatology 2015, 62, 440–451. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, R.; Posa, A.; Mariappan, M.; Spiliopoulos, S. Locoregional treatments for hepatocellular carcinoma: Current evidence and future directions. World J. Gastroenterol. 2019, 25, 4614–4628. [Google Scholar] [CrossRef]
- Hallemeier, C.L.; Apisarnthanarax, S.; Dawson, L.A. BCLC 2022 update: Important advances, but missing external beam radiotherapy. J. Hepatol. 2022, 76, 1237–1239. [Google Scholar] [CrossRef] [PubMed]
- Smits, M.L.; Elschot, M.; van den Bosch, M.A.; van de Maat, G.H.; van het Schip, A.D.; Zonnenberg, B.A.; Seevinck, P.R.; Verkooijen, H.M.; Bakker, C.J.; de Jong, H.W.A.M.; et al. In Vivo dosimetry based on SPECT and MR imaging of 166Ho-microspheres for treatment of liver malignancies. J. Nucl. Med. 2013, 54, 2093–2100. [Google Scholar] [CrossRef]
- Cremonesi, M.; Chiesa, C.; Strigari, L.; Ferrari, M.; Botta, F.; Guerriero, F.; De Cicco, C.; Bonomo, G.; Orsi, F.; Bodei, L.; et al. Radioembolization of hepatic lesions from a radiobiology and dosimetric perspective. Front. Oncol. 2014, 4, 210. [Google Scholar] [CrossRef]
- Chiesa, C. The individualized dosimetry in the radioembolization of hepatocarcinoma with 90Y-microspheres. Phys. Med. 2016, 32 (Suppl. 3), 169–170. [Google Scholar] [CrossRef]
- Chiesa, C.; Maccauro, M.; Romito, R.; Spreafico, C.; Pellizzari, S.; Negri, A.; Sposito, C.; Morosi, C.; Civelli, E.; Lanocita, R.; et al. Need, feasibility and convenience of dosimetric treatment planning in liver selective internal radiation therapy with 90Y microspheres: The experience of the National Tumor Institute of Milan. Q. J. Nucl. Med. Mol. Imaging 2011, 55, 168–197. [Google Scholar] [PubMed]
- Levillain, H.; Bagni, O.; Deroose, C.M.; Dieudonné, A.; Gnesin, S.; Grosser, O.S.; Kappadath, S.C.; Kennedy, A.; Kokabi, N.; Liu, D.M.; et al. International recommendations for personalized selective internal radiation therapy of primary and metastatic liver diseases with yttrium-90 resin microspheres. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1570–1584. [Google Scholar] [CrossRef]
- Chiesa, C.; Sjogreen-Gleisner, K.; Walrand, S.; Strigari, L.; Flux, G.; Gear, J.; Stokke, C.; Gabina, P.M.; Bernhardt, P.; Konijnenberg, M.; et al. EANM dosimetry committee series on standard operational procedures: A unified methodology for 99mTc-MAA pre- and 90Y peri-therapy dosimetry in liver radioembolization with 90Y microspheres. EJNMMI Phys. 2021, 8, 77. [Google Scholar] [CrossRef]
- Giammarile, F.; Bodei, L.; Chiesa, C.; Konijnenberg, M.; Cremonesi, M.; Flamen, P.; Gnesin, S.; Bodei, L.; Kracmerova, T.; Luster, M.; et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 1393–1406. [Google Scholar] [CrossRef] [PubMed]
- Matheoud, R.; Secco, C.; Ridone, S.; Inglese, E.; Brambilla, M. The use of molecular sieves to simulate hot lesions in 18F-fluorodeoxyglucose—Positron emission tomography imaging. Phys. Med. Biol. 2008, 53, N137–N148. [Google Scholar] [CrossRef] [PubMed]
- Gulec, S.A.; Mesoloras, G.; Stabin, M. Dosimetric techniques in 90Y-microsphere therapy of liver cancer: The MIRD equations for dose calculations. J. Nucl. Med. 2006, 47, 1209–1211. [Google Scholar] [PubMed]
- Pereira, H.; Bouattour, M.; Dioguardi Burgio, M.; Assenat, E.; Grégory, J.; Bronowicki, J.P.; Chatellier, G.; Vilgrain, V.; SARAH Trial Group. Health-related quality of life in locally advanced hepatocellular carcinoma treated by either radioembolization or sorafenib (SARAH trial). Eur. J. Cancer 2021, 154, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Choi, H.J.; Kim, B.K.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Han, K.H.; Baek, S.E.; Chung, Y.E.; Park, M.S.; et al. The Modified Response Evaluation Criteria in Solid Tumors (RECIST) Yield a More Accurate Prognoses Than the RECIST 1.1 in Hepatocellular Carcinoma Treated with Transarterial Radioembolization. Gut Liver 2020, 14, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Lencioni, R. mRECIST for HCC: Performance and novel refinements. J. Hepatol. 2020, 72, 288–306. [Google Scholar] [CrossRef] [PubMed]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, C.; Mahler, M.; Soulen, M.C. Curative-Intent Therapies in Localized Hepatocellular Carcinoma. Curr. Treat. Options Oncol. 2020, 21, 31. [Google Scholar] [CrossRef] [PubMed]
- Paladini, A.; Vallati, G.E.; Beomonte Zobel, D.; Paladini, L.; Annovazzi, A.; Sciuto, R.; Cappelli, F.; Borzelli, A.; Pane, F.; Negroni, D.; et al. Delivery of selective internal radiation therapy complicated by variant hepatic vascular anatomy. Radiol. Case Rep. 2019, 14, 662–672. [Google Scholar] [CrossRef]
- Brosch, J.; Gosewisch, A.; Kaiser, L.; Seidensticker, M.; Ricke, J.; Zellmer, J.; Bartenstei, P.; Ziegler, S.; Ilhan, H.; Todica, A.; et al. 3D image-based dosimetry for Yttrium-90 radioembolization of hepatocellular carcinoma: Impact of imaging method on absorbed dose estimates. Phys. Med. 2020, 80, 317–326. [Google Scholar] [CrossRef]
- Ho, W.J.; Sharma, G.; Zhu, Q.; Stein-O’Brien, G.; Durham, J.; Anders, R.; Popovic, A.; Mo, G.; Kamel, I.; Weiss, M.; et al. Integrated immunological analysis of a successful conversion of locally advanced hepatocellular carcinoma to resectability with neoadjuvant therapy. J. Immunother. Cancer 2020, 8, e000932. [Google Scholar] [CrossRef]
- Flamen, P.; Burghelea, M.; Derijckere, I.D.; Guiot, T.; Gulyban, A.; Vanderlinden, B.; Vouche, M.; Levillain, H.; Reynaert, N. Combined quality and dose-volume histograms for assessing the predictive value of 99mTc-MAA SPECT/CT simulation for personalizing radioembolization treatment in liver metastatic colorectal cancer. EJNMMI Phys. 2020, 7, 75, Erratum in EJNMMI Phys. 2021, 8, 9. [Google Scholar] [CrossRef]
- Strigari, L.; Sciuto, R.; Rea, S.; Carpanese, L.; Pizzi, G.; Soriani, A.; Iaccarino, G.; Benassi, M.; Ettorre, G.M.; Maini, C.L. Efficacy and toxicity related to treatment of hepatocellular carcinoma with 90Y-SIR spheres: Radiobiologic considerations. J. Nucl. Med. 2010, 51, 1377–1385. [Google Scholar] [CrossRef]
- D’Arienzo, M.; Chiaramida, P.; Chiacchiararelli, L.; Coniglio, A.; Cianni, R.; Salvatori, R.; Ruzza, A.; Scopinaro, F.; Bagni, O. 90Y PET-based dosimetry after selective internal radiotherapy treatments. Nucl. Med. Commun. 2012, 33, 633–640. [Google Scholar] [CrossRef]
- Duan, H.; Khalaf, M.H.; Ferri, V.; Baratto, L.; Srinivas, S.M.; Sze, D.Y.; Iagaru, A. High quality imaging and dosimetry for yttrium-90 (90Y) liver radioembolization using a SiPM-based PET/CT scanner. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2426–2436. [Google Scholar] [CrossRef]
Patients | Gender | Age (Years) | HCC Etiology | HCC Characteristics | ALBI Score | BCLC | ECOG | Follow-Up |
---|---|---|---|---|---|---|---|---|
1 | Female | 67 | exotoxic | unilobar | −2.42 Grade 2 | B | 0 | Yes |
2 | Female | 72 | HCV | unilobar | −2.36 Grade 2 | B | 0 | Procedure not performed |
3 | Male | 78 | HCV + exotoxic | bilobar | −2.42 Grade 2 | B | 0 | Yes |
4 | Female | 67 | HCV | bilobar | −2.50 Grade 2 | B | 1 | Yes |
5 | Male | 69 | exotoxic | unilobar | −2.69 Grade 1 | B | 0 | Yes |
6 | Male | 71 | HCV | unilobar | −2.56 Grade 2 | B | 0 | Yes |
7 | Male | 65 | exotoxic | unilobar | −2.95 Grade 1 | B | 1 | Yes |
8 | Male | 78 | HCV + exotoxic | unilobar | −2.48 Grade 2 | B | 0 | |
9 | Male | 56 | exotoxic | unilobar | −2.45 Grade 2 | B | 1 | Yes |
10 | Male | 70 | HCV | unilobar | −1.91 Grade 2 | B | 0 | Procedure not performed |
11 | Male | 77 | exotoxic | unilobar | −2.87 Grade 1 | B | 0 | Yes |
12 | Female | 72 | HCV + exotoxic | unilobar | −2.50 Grade 2 | B | 0 | Yes |
13 | Female | 74 | HCV + exotoxic | bilobar | −3.28 Grade 1 | B | 1 | Procedure not performed |
14 | Male | 59 | HCV + exotoxic | unilobar | −3.59 Grade 1 | B | 0 | Not completed |
15 | Male | 66 | exotoxic | unilobar | −2.78 Grade 1 | B | 0 | Procedure not performed |
16 | Male | 85 | HCV + exotoxic | bilobar | −2.70 Grade 1 | B | 1 | Yes |
17 | Male | 76 | HCV + exotoxic | unilobar | −2.57 Grade 2 | B | 0 | Not completed |
18 | Male | 74 | HCV | bilobar | −2.96 Grade 1 | B | 1 | Procedure not performed |
19 | Male | 64 | HCV | unilobar | −3.04 Grade 1 | B | 0 | Procedure not performed |
Patients | Lung Shunt | 90Y Activity MBq | Absorbed Dose Tumor (Gy) | Absorbed Dose Healthy Liver | Lesion Weight (kg) | Ratio | Tumor Size-Maximum Diameter (cm) |
---|---|---|---|---|---|---|---|
1 | 2.1% | 1890 | 306 | 14 | 0.218 | 22 | 5.5 |
2 | 3%, patient dead | ||||||
3 | 1.45% | 1130 | 158 | 14 | 0.066 | 11 | 3.7 |
4 | 1.45% | 810 | 560 | 14 | 0.083 | 40 | 4.1 |
5 | 1.8% | 1780 | 289 | 6 | 0.271 | 48 | 6.3 |
6 | 2.9% | 640 | 350 | 10 | 0.041 | 35 | 3.2 |
7 | 1% | 1700 | 400 | 2 | 0.206 | 200 | 5.5 |
8 | 3.7% | 3280 | 133 | 13 | 1.094 | 10 | 10.5 |
9 | 6.2% | 1420 | 290 | 9 | 0.422 | 32 | 7.9 |
10 | 6.1% | 2800 | 447 | 5 | 0.144 | 89 | 4.5 |
11 | 28%, not enrolled | ||||||
12 | 1.1% | 1520 | 261 | 5 | 0.266 | 52 | 6.3 |
13 | 21% not enrolled | ||||||
14 | 2.3% | 1120 | 380 | 5.2 | 0.119 | 76 | 4.2 |
15 | 0.6% but evidence of pancreatic shunt | ||||||
16 | 4.4% | 2590 | 296 | 19 | 0.361 | 33 | 7.3 |
17 | 2.4% | 1280 | 285 | 8 | 0.165 | 36 | 5 |
18 | 26% not enrolled | ||||||
19 | 1% but evidence of small bowel shunt | ||||||
Average | 319 | 9.5 | 0.265 kg | ||||
Median | 296 | 9 | 0.206 kg | ||||
IQR | 95 | 8.8 | 0.152 kg |
Patients | Mrecist 6 Months Follow-Up | mRECIST 9 Months Follow-Up | ALBI Score before TARE | ALBI Score Post TARE | Notes |
---|---|---|---|---|---|
1 | CR | CR | −2.42 Grade 2 | −1.54 Grade 2 | |
2 | −2.36 Grade 2 | ||||
3 | PR | PR | −2.42 Grade 2 | −1.54 Grade 2 | |
4 | PR | PR | −2.50 Grade 2 | −2.33 Grade 2 | |
5 | CR | CR | −2.69 Grade 1 | −2.30 Grade 2 | |
6 | CR | CR | −2.56 Grade 2 | −2.96 Grade 1 | |
7 | PD | PD | −2.95 Grade 1 | −2.62 Grade 1 | Extra-hepatic pathology progression |
8 | PR | PD | −2.48 Grade 2 | −2.56 Grade 2 | Evidence of other hepatic nodules during follow-up |
9 | CR | CR | −2.45 Grade 2 | −1.95 Grade 2 | |
10 | PD | PD | −1.91 Grade 2 | −1.72 Grade 2 | Evidence of an increasing tissue near hepatic lesion |
11 | - | - | −2.87 Grade 1 | ||
12 | PR | PD | −2.50 Grade 2 | −1.75 Grade 2 | Increasing residual tissue after TARE and evidence of new hepatic nodules |
13 | - | - | −3.28 Grade 1 | ||
14 | CR | - | −3.59 Grade 1 | −2.30 Grade 2 | Absence of a complete follow-up |
15 | - | - | −2.78 Grade 1 | ||
16 | CR | CR | −2.70 Grade 1 | ||
17 | PR | - | −2.57 Grade 2 | −2.70 Grade 1 | Absence of a complete follow-up |
18 | - | - | −2.96 Grade 1 | ||
19 | - | - | −3.04 Grade 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paladini, A.; Spinetta, M.; Matheoud, R.; D’Alessio, A.; Sassone, M.; Di Fiore, R.; Coda, C.; Carriero, S.; Biondetti, P.; Laganà, D.; et al. Role of Flex-Dose Delivery Program in Patients Affected by HCC: Advantages in Management of Tare in Our Experience. J. Clin. Med. 2024, 13, 2188. https://doi.org/10.3390/jcm13082188
Paladini A, Spinetta M, Matheoud R, D’Alessio A, Sassone M, Di Fiore R, Coda C, Carriero S, Biondetti P, Laganà D, et al. Role of Flex-Dose Delivery Program in Patients Affected by HCC: Advantages in Management of Tare in Our Experience. Journal of Clinical Medicine. 2024; 13(8):2188. https://doi.org/10.3390/jcm13082188
Chicago/Turabian StylePaladini, Andrea, Marco Spinetta, Roberta Matheoud, Andrea D’Alessio, Miriana Sassone, Riccardo Di Fiore, Carolina Coda, Serena Carriero, Pierpaolo Biondetti, Domenico Laganà, and et al. 2024. "Role of Flex-Dose Delivery Program in Patients Affected by HCC: Advantages in Management of Tare in Our Experience" Journal of Clinical Medicine 13, no. 8: 2188. https://doi.org/10.3390/jcm13082188
APA StylePaladini, A., Spinetta, M., Matheoud, R., D’Alessio, A., Sassone, M., Di Fiore, R., Coda, C., Carriero, S., Biondetti, P., Laganà, D., Minici, R., Semeraro, V., Sacchetti, G. M., Carrafiello, G., & Guzzardi, G. (2024). Role of Flex-Dose Delivery Program in Patients Affected by HCC: Advantages in Management of Tare in Our Experience. Journal of Clinical Medicine, 13(8), 2188. https://doi.org/10.3390/jcm13082188