Enhancing Cochlear Implant Outcomes across Age Groups: The Interplay of Forward Focus and Advanced Combination Encoder Coding Strategies in Noisy Conditions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neal, K.; McMahon, C.M.; Hughes, S.E.; Boisvert, I. Listening-Based Communication Ability in Adults With Hearing Loss: A Scoping Review of Existing Measures. Front. Psychol. 2022, 13, 786347. [Google Scholar] [CrossRef] [PubMed]
- McRackan, T.R.; Bauschard, M.; Hatch, J.L.; Franko-Tobin, E.; Droghini, H.R.; Nguyen, S.A.; Dubno, J.R. Meta-analysis of quality-of-life improvement after cochlear implantation and associations with speech recognition abilities. Laryngoscope 2018, 128, 982–990. [Google Scholar] [CrossRef]
- Lin, F.R.; Yaffe, K.; Xia, J.; Xue, Q.-L.; Harris, T.B.; Purchase-Helzner, E.; Satterfield, S.; Ayonayon, H.N.; Ferrucci, L.; Simonsick, E.M.; et al. Hearing loss and cognitive decline in older adults. JAMA Intern. Med. 2013, 173, 293–299. [Google Scholar] [CrossRef]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Lin, F.R.; Albert, M. Hearing loss and dementia—Who is listening? Aging Ment. Health 2014, 18, 671–673. [Google Scholar] [CrossRef]
- Liang, Z.; Li, A.; Xu, Y.; Qian, X.; Gao, X. Hearing Loss and Dementia: A Meta-Analysis of Prospective Cohort Studies. Front. Aging Neurosci. 2021, 13, 695117. [Google Scholar] [CrossRef]
- Weißgerber, T.; Stöver, T.; Baumann, U. Speech perception in modulated noise assessed in bimodal CI users. HNO 2023, 72, 10–16. [Google Scholar] [CrossRef]
- Hutter, E.; Grapp, M.; Argstatter, H. Music therapy in adults with cochlear implants: Effects on music perception and subjective sound quality. HNO 2016, 64, 880–890. [Google Scholar] [CrossRef]
- Abdel-Latif, K.H.A.; Meister, H. Speech Recognition and Listening Effort in Cochlear Implant Recipients and Normal-Hearing Listeners. Front. Neurosci. 2021, 15, 725412. [Google Scholar] [CrossRef]
- Lundberg, E.M.H.; Strong, D.; Anderson, M.; Kaizer, A.M.; Gubbels, S. Do Patients Benefit from a Cochlear Implant When They Qualify Only in the Presence of Background Noise? Otol. Neurotol. 2021, 42, 251–259. [Google Scholar] [CrossRef]
- Hamzavi, J.; Franz, P.; Baumgartner, W.D.; Gstöettner, W. Hearing performance in noise of cochlear implant patients versus severely-profoundly hearing-impaired patients with hearing aids. Audiology 2001, 40, 26–31. [Google Scholar] [CrossRef]
- Mudery, J.A.; Francis, R.; McCrary, H.; Jacob, A. Older Individuals Meeting Medicare Cochlear Implant Candidacy Criteria in Noise but Not in Quiet: Are These Patients Improved by Surgery? Otol. Neurotol. 2017, 38, 187–191. [Google Scholar] [CrossRef]
- Hey, M.; Hocke, T.; Mauger, S.; Müller-Deile, J. A clinical assessment of cochlear implant recipient performance: Implications for individualized map settings in specific environments. Eur. Arch. Oto-Rhino-Laryngol. 2016, 273, 4011–4020. [Google Scholar] [CrossRef]
- Hey, M.; Hocke, T.; Böhnke, B.; Mauger, S.J. ForwardFocus with cochlear implant recipients in spatially separated and fluctuating competing signals—Introduction of a reference metric. Int. J. Audiol. 2019, 58, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Dawson, P.W.; Mauger, S.J.; Hersbach, A.A. Clinical evaluation of signal-to-noise ratio–based noise reduction in Nucleus® cochlear implant recipients. Ear Hear. 2011, 32, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Mauger, S.J.; Arora, K.; Dawson, P.W. Cochlear implant optimized noise reduction. J. Neural Eng. 2012, 9, 065007. [Google Scholar] [CrossRef] [PubMed]
- Mauger, S.J.; Warren, C.D.; Knight, M.R.; Goorevich, M.; Nel, E. Clinical evaluation of the Nucleus®6 cochlear implant system: Performance improvements with SmartSound iQ. Int. J. Audiol. 2014, 53, 564–576. [Google Scholar] [CrossRef]
- Pollack, I.; Pickett, J.M. Cocktail Party Effect. J. Acoust. Soc. Am. 1957, 29, 1262. [Google Scholar] [CrossRef]
- Wimmer, W.; Weder, S.; Caversaccio, M.; Kompis, M. Speech Intelligibility in Noise with a Pinna Effect Imitating Cochlear Implant Processor. Otol. Neurotol. 2016, 37, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Steffens, T. The systematic selection of speech audiometric procedures. HNO 2017, 65, 219–227. [Google Scholar] [CrossRef]
- Keidser, G.; Naylor, G.; Brungart, D.S.; Caduff, A.; Campos, J.; Carlile, S.; Carpenter, M.G.; Grimm, G.; Hohmann, V.; Holube, I.; et al. The Quest for Ecological Validity in Hearing Science: What It Is, Why It Matters, and How to Advance It. Ear Hear. 2020, 41, 5S–19S. [Google Scholar] [CrossRef]
- Francart, T.; van Wieringen, A.; Wouters, J. Comparison of fluctuating maskers for speech recognition tests. Int. J. Audiol. 2011, 50, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Qazi, O.U.R.; van Dijk, B.; Moonen, M.; Wouters, J. Understanding the effect of noise on electrical stimulation sequences in cochlear implants and its impact on speech intelligibility. Hear. Res. 2013, 299, 79–87. [Google Scholar] [CrossRef]
- Berg, K.A.; Noble, J.H.; Dawant, B.M.; Dwyer, R.T.; Labadie, R.F.; Gifford, R.H. Speech recognition as a function of the number of channels in perimodiolar electrode recipients. J. Acoust. Soc. Am. 2019, 145, 1556–1564. [Google Scholar] [CrossRef] [PubMed]
- Shew, M.A.; Herzog, J.A.; Kallogjeri, D.; Chen, S.; Wick, C.; Durakovic, N.; McJunkin, J.; Buchman, C.A. The Impact of Age on Noise Sensitivity in Cochlear Implant Recipients. Otol. Neurotol. 2022, 43, 72–79. [Google Scholar] [CrossRef]
- Füllgrabe, C. Age-dependent changes in temporal-fine-structure processing in the absence of peripheral hearing loss. Am. J. Audiol. 2013, 22, 313–315. [Google Scholar] [CrossRef]
- Hoppe, U.; Hocke, T.; Iro, H. Age-Related Decline of Speech Perception. Front. Aging Neurosci. 2022, 14, 891202. [Google Scholar] [CrossRef]
- Peelle, J.E. Listening Effort: How the Cognitive Consequences of Acoustic Challenge Are Reflected in Brain and Behavior. Ear Hear. 2018, 39, 204–214. [Google Scholar] [CrossRef]
- Philips, C.; Jacquemin, L.; Lammers, M.J.W.; Mertens, G.; Gilles, A.; Vanderveken, O.M.; Van Rompaey, V. Listening effort and fatigue among cochlear implant users: A scoping review. Front. Neurol. 2023, 14, 1278508. [Google Scholar] [CrossRef]
- Stenbäck, V.; Marsja, E.; Hällgren, M.; Lyxell, B.; Larsby, B. The Contribution of Age, Working Memory Capacity, and Inhibitory Control on Speech Recognition in Noise in Young and Older Adult Listeners. J. Speech Lang. Hear. Res. 2021, 64, 4513–4523. [Google Scholar] [CrossRef] [PubMed]
- Perreau, A.E.; Wu, Y.-H.; Tatge, B.; Irwin, D.; Corts, D. Listening Effort Measured in Adults with Normal Hearing and Cochlear Implants. J. Am. Acad. Audiol. 2017, 28, 685–697. [Google Scholar] [CrossRef]
- Rahne, T.; Wagner, T.M.; Kopsch, A.C.; Plontke, S.K.; Wagner, L. Influence of Age on Speech Recognition in Noise and Hearing Effort in Listeners with Age-Related Hearing Loss. J. Clin. Med. 2023, 12, 6133. [Google Scholar] [CrossRef]
- Wagener, K.; Brand, T.; Kollmeier, B. Entwicklung und Evaluation eines Satztests für die deutsche Sprache Teil III: Evaluation des Oldenburger Satztests - Development and evaluation of a German sentence test Part III: Evaluation of the Oldenburg sentence test. Z. Audiol. 1999, 38, 86–95. [Google Scholar]
- Kollmeier, B.; Warzybok, A.; Hochmuth, S.; Zokoll, M.A.; Uslar, V.; Brand, T.; Wagener, K.C. The multilingual matrix test: Principles, applications, and comparison across languages: A review. Int. J. Audiol. 2015, 54, 3–16. [Google Scholar] [CrossRef]
- Krüger, M.; Schulte, M.; Holube, I. Entwicklung einer Adaptiven Skalierungsmethode zur Ermittlung der Subjektiven Höranstrengung Conference Paper, 18. Jahrestagung der Deutschen Gesellschaft für Audiologie 2015, pp. 1–6. Available online: https://www.researchgate.net/publication/277010703_Entwicklung_einer_adaptiven_Skalierungsmethode_zur_Ermittlung_der_subjektiven_Horanstrengung (accessed on 11 January 2024).
- Rahne, T.; Fröhlich, L.; Wagner, L.; Kropp, M.H.; Müller, A. Speech perception and hearing effort using a new active middle ear implant audio processor. Eur. Arch. Oto-Rhino-Laryngol. 2022, 279, 4667–4675. [Google Scholar] [CrossRef]
- Hey, M.; Böhnke, B.; Mewes, A.; Munder, P.; Mauger, S.J.; Hocke, T. Speech comprehension across multiple CI processor generations: Scene dependent signal processing. Laryngoscope Investig. Otolaryngol. 2021, 6, 807–815. [Google Scholar] [CrossRef]
- Dowell, R.C. The case for earlier cochlear implantation in postlingually deaf adults. Int. J. Audiol. 2016, 55, S51–S56. [Google Scholar] [CrossRef]
- Dazert, S.; Thomas, J.P.; Loth, A.; Zahnert, T.; Stöver, T. Cochlea-Implantation. Dtsch. Arztebl. Int. 2020, 117, 690–700. [Google Scholar] [CrossRef]
- Badajoz-Davila, J.; Buchholz, J.M. Effect of Test Realism on Speech-in-noise Outcomes in Bilateral Cochlear Implant Users. Ear Hear. 2021, 42, 1687–1698. [Google Scholar] [CrossRef]
- Hey, M.; Mewes, A.; Hocke, T. Speech comprehension in noise—Considerations for ecologically valid assessment of communication skills ability with cochlear implants. HNO 2023, 71, 26–34. [Google Scholar] [CrossRef]
- Rader, T.; Fastl, H.; Baumann, U. Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field. Ear Hear. 2013, 34, 324–332. [Google Scholar] [CrossRef]
- Cooke, M. A glimpsing model of speech perception in noise. J. Acoust. Soc. Am. 2006, 119, 1562–1573. [Google Scholar] [CrossRef]
- Rader, T.; Adel, Y.; Fastl, H.; Baumann, U. Speech Perception with Combined Electric-Acoustic Stimulation: A Simulation and Model Comparison. Ear Hear. 2015, 36, e314–e325. [Google Scholar] [CrossRef]
- Meister, H. Speech comprehension and cognitive performance in acoustically difficult situations. HNO 2020, 68, 171–176. [Google Scholar] [CrossRef]
- Weissgerber, T.; Stöver, T.; Baumann, U. Speech perception in noise: Impact of directional microphones in users of combined electric-acoustic stimulation. PLoS ONE 2019, 14, e0213251. [Google Scholar] [CrossRef]
- Dreschler, W.A.; Verschuure, H.; Ludvigsen, C.; Westermann, S. ICRA noises: Artificial noise signals with speech-like spectral and temporal properties for hearing instrument assessment. Int. J. Audiol. 2001, 40, 148–157. [Google Scholar] [CrossRef]
- Pichora-Fuller, M.K.; Kramer, S.E.; Eckert, M.A.; Edwards, B.; Hornsby, B.W.; Humes, L.E.; Lemke, U.; Lunner, T.; Matthen, M.; Mackersie, C.L.; et al. Hearing impairment and cognitive energy: The framework for understanding effortful listening (FUEL). Ear Hear. 2016, 37, 5S–27S. [Google Scholar] [CrossRef]
- Kwak, C.; Han, W. Age-Related Difficulty of Listening Effort in Elderly. Int. J. Environ. Res. Public Health 2021, 18, 8845. [Google Scholar] [CrossRef]
- Carlyon, R.P.; Goehring, T. Cochlear Implant Research and Development in the Twenty-first Century: A Critical Update. J. Assoc. Res. Otolaryngol. 2021, 22, 481–508. [Google Scholar] [CrossRef]
Age Groups | |||
---|---|---|---|
Characteristics | ≤40 Years | >40 Years | All |
Number | 14 | 18 | 32 |
Age, mean (SD), years | 28.6 (7.9) | 70.0 (7.2) | 51.9 (22.1) |
Median [25th, 75th percentiles] | 27.0 [20.0, 36.3] | 69.5 [62.8, 76.3] | 61.0 [29.5, 71.5] |
Men/women, N | 9/5 | 13/5 | 22/10 |
Right/left CI, N | 5/9 | 8/10 | 13/19 |
Word recognition, mean (SD), % correct at 65 dB SPL | |||
Ipsilateral | 71 (17) | 73 (15) | 72 (15) |
Median [25th, 75th percentiles] | 73 [58, 85] | 75 [60, 85] | 75 [60, 85] |
Contralateral | 65 (40) | 59 (23) | 62 (31) |
Median [25th, 75th percentiles] | 78 [34, 100] | 65 [53, 75] | 68 [48, 84] |
Active electrodes, mean (SD), n | 21.8 (0.8) | 21.8 (0.5) | 21.8 (0.6) |
Median [25th, 75th percentiles] | 22.0 [22.0, 22.0] | 22.0 [22.0, 22.0] | 22.0 [22.0, 22.0] |
Pulse width, mean (SD), ms | 35.5 (13.7) | 29.7 (7.5) | 32.3 (10.9) |
Median [25th, 75th percentiles] | 37.0 [25.0, 37.0] | 25.0 [25.0, 37.0] | 25.0 [25.0, 37.0] |
Stimulation rate, mean (SD), Hz | 921.4 (80.2) | 977.8 (186.5) | 953.1 (150.2) |
Median [25th, 75th percentiles] | 900.0 [900.0, 900.0] | 900.0 [900.0, 1200.0] | 900.0 [900.0, 900.0] |
CI usage per day, mean (SD), hours | 11.5 (5.5) | 13.7 (2.3) | 12.8 (4.1) |
Median [25th, 75th percentiles] | 13.0 [8.8, 15.3] | 14.0 [12.0, 15.2] | 14.0 [11.3, 15.0] |
CI experience, mean (SD), years | 5.9 (4.9) | 5.1 (3.2) | 5.4 (4.0) |
Median [25th, 75th percentiles] | 4.5 [1.7, 9.5] | 4.0 [2.8, 7.0] | 4.0 [2.0, 9.0] |
Age Group, Years | Age Group, Years | ||||
---|---|---|---|---|---|
Outcome | ≤40 | >40 | Total | ||
Speech recognition in noise | |||||
SRT50 in dB SNR, mean (SD) | |||||
olnoise M8/FF− | S0N0 | −3.2 (2.9) | −2.3 (2.4) | −2.7 (2.6) | |
S0Nfront | −3.9 (3.0) | −3.1 (1.9) | −3.5 (2.4) | ||
S0Nrear | −7.5 (4.4) | −7.0 (2.8) | −7.2 (3.5) | ||
icra5 M8/FF− | S0N0 | −5.1 (10.6) | 0.1 (5.1) | −2.2 (8.2) | |
S0Nfront | −2.6 (7.1) | 1.0 (3.8) | −0.6 (5.7) | ||
S0Nrear | −5.3 (6.8) | −2.9 (4.1) | −4.0 (5.5) | ||
icra5 M8/FF+ | S0N0 | −4.7 (9.9) | 0.7 (5.5) | −1.6 (8.1) | |
S0Nfront | −2.8 (6.6) | 1.0 (3.7) | −0.7 (5.4) | ||
S0Nrear | −9.7 (4.0) | −8.7 (2.9) | −9.1 (3.4) | ||
icra5 M12/FF+ | S0N0 | −5.9 (8.8) | −0.2 (5.0) | −2.7 (7.4) | |
S0Nfront | −3.1 (6.6) | 0.5 (4.1) | −1.1 (5.5) | ||
S0Nrear | −10.3 (4.6) | −9.5 (2.4) | −9.8 (3.5) | ||
Listening effort in noise | |||||
SNRcut in dB SNR (SD) | |||||
icra5 M8/FF− | S0N0 | −4.8 (7.8) | 4.7 (5.7) | 0.1 (8.2) | |
icra5 M8/FF+ | S0N0 | −4.3 (7.4) | 2.3 (4.8) | −0.9 (6.9) | |
icra5 M12/FF+ | S0N0 | −3.7 (7.0) | 3.5 (5.4) | 0.1 (7.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagner, T.M.; Wagner, L.; Plontke, S.K.; Rahne, T. Enhancing Cochlear Implant Outcomes across Age Groups: The Interplay of Forward Focus and Advanced Combination Encoder Coding Strategies in Noisy Conditions. J. Clin. Med. 2024, 13, 1399. https://doi.org/10.3390/jcm13051399
Wagner TM, Wagner L, Plontke SK, Rahne T. Enhancing Cochlear Implant Outcomes across Age Groups: The Interplay of Forward Focus and Advanced Combination Encoder Coding Strategies in Noisy Conditions. Journal of Clinical Medicine. 2024; 13(5):1399. https://doi.org/10.3390/jcm13051399
Chicago/Turabian StyleWagner, Telse M., Luise Wagner, Stefan K. Plontke, and Torsten Rahne. 2024. "Enhancing Cochlear Implant Outcomes across Age Groups: The Interplay of Forward Focus and Advanced Combination Encoder Coding Strategies in Noisy Conditions" Journal of Clinical Medicine 13, no. 5: 1399. https://doi.org/10.3390/jcm13051399