Isolated Depo-Medrol Administration under Tenon’s Capsule for Post-COVID-19 Uveitis in a Child: A Case Report and Literature Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Case Description
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghosh, N.; Nandi, S.; Saha, I. A review on evolution of emerging SARS-CoV-2 variants based on spike glycoprotein. Int. Immunopharmacol. 2022, 105, 108565. [Google Scholar] [CrossRef]
- Parums, D.V. Editorial: The XBB.1.5 (‘Kraken’) Subvariant of Omicron SARS-CoV-2 and its Rapid Global Spread. Med. Sci. Monit. 2023, 29, e939580. [Google Scholar] [CrossRef] [PubMed]
- Parums, D.V. Editorial: A Rapid Global Increase in COVID-19 is Due to the Emergence of the EG.5 (Eris) Subvariant of Omicron SARS-CoV-2. Med. Sci. Monit. 2023, 29, e942244. [Google Scholar] [CrossRef] [PubMed]
- Sperotto, F.; Gutiérrez-Sacristán, A.; Makwana, S.; Li, X.; Rofeberg, V.N.; Cai, T.; Bourgeois, F.T.; Omenn, G.S.; Hanauer, D.A.; Sáez, C.; et al. Clinical phenotypes and outcomes in children with multisystem inflammatory syndrome across SARS-CoV-2 variant eras: A multinational study from the 4CE consortium. EClinicalMedicine 2023, 64, 102212. [Google Scholar] [CrossRef] [PubMed]
- Mostafavi, E.; Dubey, A.K.; Teodori, L.; Ramakrishna, S.; Kaushik, A. SARS-CoV-2 Omicron variant: A next phase of the COVID-19 pandemic and a call to arms for system sciences and precision medicine. MedComm 2022, 3, e119. [Google Scholar] [CrossRef]
- Alnahdi, M.A.; Alkharashi, M. Ocular manifestations of COVID-19 in the pediatric age group. Eur. J. Ophthalmol. 2023, 33, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Worldmeter. COVID-19 Coronavirus Pandemic. Available online: https://www.worldometers.info/coronavirus/ (accessed on 22 September 2022).
- Akbari, M.; Dourandeesh, M. Update on overview of ocular manifestations of COVID-19. Front. Med. 2022, 9, 877023. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.M.; Abrishami, M.; Zamani, G.; Hemmati, A.; Momtahen, S.; Hassani, M.; Omidtabrizi, A. Acute Bilateral Neuroretinitis and Panuveitis in A Patient with Coronavirus Disease 2019: A Case Report. Ocul. Immunol. Inflamm. 2021, 29, 677–680. [Google Scholar] [CrossRef] [PubMed]
- Braceros, K.K.; Asahi, M.G.; Gallemore, R.P. Visual Snow-Like Symptoms and Posterior Uveitis following COVID-19 Infection. Case Rep. Ophthalmol. Med. 2021, 2021, 6668552. [Google Scholar] [CrossRef]
- Ichhpujani, P.; Singh, R.B.; Dhillon, H.K.; Kumar, S. Ocular manifestations of COVID-19 in pediatric patients. Ther. Adv. Ophthalmol. 2023, 15, 25158414221149916. [Google Scholar] [CrossRef]
- Guo, C.X.; He, L.; Yin, J.Y.; Meng, X.G.; Tan, W.; Yang, G.P.; Bo, T.; Liu, J.P.; Lin, X.J.; Chen, X. Epidemiological and clinical features of pediatric COVID-19. BMC Med. 2020, 18, 250. [Google Scholar] [CrossRef] [PubMed]
- Valente, P.; Iarossi, G.; Federici, M.; Petroni, S.; Palma, P.; Cotugno, N.; De Ioris, M.A.; Campana, A.; Buzzonetti, L. Ocular manifestations and viral shedding in tears of pediatric patients with coronavirus disease 2019: A preliminary report. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2020, 24, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.; Kumari, E.; Roy, A.; Bandyopadhyay, M. Ocular manifestations and clinical profile of multisystemic inflammatory syndrome in children during COVID-19 pandemic. Int. J. Res. Med. Sci. 2021, 10, 173. [Google Scholar] [CrossRef]
- Madani, S. Acute and sub-acute ocular manifestations in pediatric patients with COVID-19: A systematic review. Med. Hypothesis Discov. Innov. Ophthalmol. 2022, 11, 11–18. [Google Scholar] [CrossRef]
- Singh, S.; Garcia, G., Jr.; Shah, R.; Kramerov, A.A.; Wright, R.E., III; Spektor, T.M.; Ljubimov, A.V.; Arumugaswami, V.; Kumar, A. SARS-CoV-2 and its beta variant of concern infect human conjunctival epithelial cells and induce differential antiviral innate immune response. Ocul. Surf. 2022, 23, 184–194. [Google Scholar] [CrossRef]
- Willcox, M.D.; Walsh, K.; Nichols, J.J.; Morgan, P.B.; Jones, L.W. The ocular surface, coronaviruses and COVID-19. Clin. Exp. Optom. 2020, 103, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.; Low, R.; Tong, L.; Gupta, V.; Veeraraghavan, A.; Agrawal, R. COVID-19 and the Ocular Surface: A Review of Transmission and Manifestations. Ocul. Immunol. Inflamm. 2020, 28, 726–734. [Google Scholar] [CrossRef]
- Hong, N.; Yu, W.; Xia, J.; Shen, Y.; Yap, M.; Han, W. Evaluation of ocular symptoms and tropism of SARS-CoV-2 in patients confirmed with COVID-19. Acta Ophthalmol. 2020, 98, e649–e655. [Google Scholar] [CrossRef]
- Xia, J.; Tong, J.; Liu, M.; Shen, Y.; Guo, D. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS-CoV-2 infection. J. Med. Virol. 2020, 92, 589–594. [Google Scholar] [CrossRef]
- Kyrou, I.; Randeva, H.S.; Spandidos, D.A.; Karteris, E. Not only ACE2-the quest for additional host cell mediators of SARS-CoV-2 infection: Neuropilin-1 (NRP1) as a novel SARS-CoV-2 host cell entry mediator implicated in COVID-19. Signal Transduct. Target Ther. 2021, 6, 21. [Google Scholar] [CrossRef]
- Collin, J.; Queen, R.; Zerti, D.; Dorgau, B.; Georgiou, M.; Djidrovski, I.; Hussain, R.; Coxhead, J.M.; Joseph, A.; Rooney, P.; et al. Co-expression of SARS-CoV-2 entry genes in the superficial adult human conjunctival, limbal and corneal epithelium suggests an additional route of entry via the ocular surface. Ocul. Surf. 2021, 19, 190–200. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, K.; Zhu, Y.; Lyu, D.; Yu, Y.; Li, S.; Yao, K. Ocular manifestations in COVID-19 patients: A systematic review and meta-analysis. Travel. Med. Infect. Dis. 2021, 44, 102191. [Google Scholar] [CrossRef]
- Eissa, M.; Abdelrazek, N.A.; Saady, M. COVID-19 and its relation to the human eye: Transmission, infection, and ocular manifestations. Graefes Arch. Clin. Exp. Ophthalmol. 2023, 261, 1771–1780. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Patel, J.; Swiston, C.; Patel, B.C. Ophthalmic Manifestations of Coronavirus (COVID-19). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Soni, A.; Narayanan, R.; Tyagi, M.; Belenje, A.; Basu, S. Acute Retinal Necrosis as a presenting ophthalmic manifestation in COVID 19 recovered patients. Ocul. Immunol. Inflamm. 2021, 29, 722–725. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Chimal, L.G.; Cuevas, G.G.; Di-Luciano, A.; Chamartín, P.; Amadeo, G.; Martínez-Castellanos, M.A. Ophthalmic manifestations associated with SARS-CoV-2 in newborn infants: A preliminary report. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2021, 25, 102–104. [Google Scholar] [CrossRef] [PubMed]
- Diwakar, J.; Samaddar, A.; Konar, S.K.; Bhat, M.D.; Manuel, E.; Veenakumari, H.B.; Nandeesh, B.N.; Parveen, A.; Hajira, S.N.; Srinivas, D.; et al. First report of COVID-19-associated rhino-orbito-cerebral mucormycosis in pediatric patients with type 1 diabetes mellitus. J. Mycol. Med. 2021, 31, 101203. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, S.K.; Mohanan-Earatt, A. An analysis of the clinical profile of patients with uveitis following COVID-19 infection. Indian. J. Ophthalmol. 2022, 70, 1000–1006. [Google Scholar] [CrossRef] [PubMed]
- Merticariu, C.I.; Merticariu, M.; Cobzariu, C.; Mihai, M.M.; Dragomir, M.S. Pediatric inflammatory multisystem syndrome induced Panuveitis associated with SARS-CoV-2 infection: What the Ophthalmologists need to know. Rom. J. Ophthalmol. 2022, 66, 198–208. [Google Scholar] [CrossRef]
- Yeo, S.; Kim, H.; Lee, J.; Yi, J.; Chung, Y.R. Retinal vascular occlusions in COVID-19 infection and vaccination: A literature review. Graefes Arch. Clin. Exp. Ophthalmol. 2023, 261, 1793–1808. [Google Scholar] [CrossRef] [PubMed]
- Shiroma, H.F.; Lima, L.H.; Shiroma, Y.B.; Kanadani, T.C.; Nobrega, M.J.; Andrade, G.; de Moraes Filho, M.N.; Penha, F.M. Retinal vascular occlusion in patients with the COVID-19 virus. Int. J. Retina Vitreous. 2022, 8, 45. [Google Scholar] [CrossRef]
- Seirafianpour, F.; Mozafarpoor, S.; Fattahi, N.; Sadeghzadeh-Bazargan, A.; Hanifiha, M.; Goodarzi, A. Treatment of COVID-19 with pentoxifylline: Could it be a potential adjuvant therapy? Dermatol. Ther. 2020, 33, e13733. [Google Scholar] [CrossRef] [PubMed]
- De Sanctis, M.T.; Cesarone, M.R.; Belcaro, G.; Incandela, L.; Steigerwalt, R.; Nicolaides, A.N.; Griffin, M.; Geroulakos, G. Treatment of retinal vein thrombosis with pentoxifylline: A controlled, randomized trial. Angiology 2002, 53 (Suppl. S1), S35–S38. [Google Scholar] [PubMed]
- Mostafa-Hedeab, G.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Jeandet, P.; Saad, H.M.; Batiha, G.E. A raising dawn of pentoxifylline in management of inflammatory disorders in COVID-19. Inflammopharmacology 2022, 30, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C.; Griesel, M.; Mikolajewska, A.; Metzendorf, M.I.; Fischer, A.L.; Stegemann, M.; Spagl, M.; Nair, A.A.; Daniel, J.; Fichtner, F.; et al. Systemic corticosteroids for the treatment of COVID-19: Equity-related analyses and update on evidence. Cochrane Database Syst. Rev. 2022, 11, CD014963. [Google Scholar] [CrossRef] [PubMed]
- Tempest-Roe, S.; Joshi, L.; Dick, A.D.; Taylor, S.R. Local therapies for inflammatory eye disease in translation: Past, present and future. BMC Ophthalmol. 2013, 13, 39. [Google Scholar] [CrossRef] [PubMed]
- Shivpuri, A.; Turtsevich, I.; Solebo, A.L.; Compeyrot-Lacassagne, S. Pediatric uveitis: Role of the pediatrician. Front. Pediatr. 2022, 10, 874711. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, D.; Ali, Y.; Menezo, V.; Taylor, S.R.J. The Use of Sustained Release Intravitreal Steroid Implants in Non-Infectious Uveitis Affecting the Posterior Segment of the Eye. Ophthalmol. Ther. 2022, 11, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Su, G.; Yang, P. Risk factors, clinical features and treatment of Behçet’s disease uveitis. Prog. Retin. Eye Res. 2023, 97, 101216. [Google Scholar] [CrossRef]
- Capittini, C.; Rebuffi, C.; Lenti, M.V.; Di Sabatino, A.; Tinelli, C.; Martinetti, M.; De Silvestri, A. Global Meta-Analysis on the Association between Behcet Syndrome and Polymorphisms from the HLA Class I (A, B, and C) and Class II (DRB1, DQB1, and DPB1) Genes. Dis. Markers 2021, 2021, 9348697. [Google Scholar] [CrossRef]
- Kong, N.C.; Nasruruddin, B.A.; Murad, S.; Ong, K.J.; Sukumaran, K.D. HLA antigens in Malay patients with systemic lupus erythematosus. Lupus 1994, 3, 393–395. [Google Scholar] [CrossRef] [PubMed]
- Rigby, R.J.; Dawkins, R.L.; Wetherall, J.D.; Hawkins, B.R. HLA in systemic lupus erythematosus: Influence on severity. Tissue Antigens 1978, 12, 25–31. [Google Scholar] [PubMed]
- Scharf, Y.; Zonis, S. Histocompatibility antigens (HLA) and uveitis. Surv. Ophthalmol. 1980, 24, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Morris, P.J.; Vaughan, H.; Tait, B.D.; Mackay, I.R. Histocompatibility antigens (HLA): Associations with immunopathic diseases and with responses to microbial antigens. Aust. N. Z. J. Med. 1977, 7, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Bertrams, H.J.; Kuwert, E.K. Association of histocompatibility haplotype HLA-A3-B7 with multiple sclerosis. J. Immunol. 1976, 117 Pt 2, 1906–1912. [Google Scholar] [CrossRef]
- Matsumoto, K.; Fukunari, K.; Ikeda, Y.; Miyazono, M.; Kishi, T.; Matsumoto, R.; Fukuda, M.; Uchiumi, S.; Yoshizaki, M.; Nonaka, Y.; et al. A report of an adult case of tubulointerstitial nephritis and uveitis (TINU) syndrome, with a review of 102 Japanese cases. Am. J. Case Rep. 2015, 28, 119–123. [Google Scholar] [CrossRef]
- Matyushkina, D.; Shokina, V.; Tikhonova, P.; Manuvera, V.; Shirokov, D.; Kharlampieva, D.; Lazarev, V.; Varizhuk, A.; Vedekhina, T.; Pavlenko, A.; et al. Autoimmune Effect of Antibodies against the SARS-CoV-2 Nucleoprotein. Viruses 2022, 14, 1141. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modrzejewska, M.; Cyrankiewicz, J.; Zdanowska, O.; Bosy-Gąsior, W. Isolated Depo-Medrol Administration under Tenon’s Capsule for Post-COVID-19 Uveitis in a Child: A Case Report and Literature Review. J. Clin. Med. 2024, 13, 1341. https://doi.org/10.3390/jcm13051341
Modrzejewska M, Cyrankiewicz J, Zdanowska O, Bosy-Gąsior W. Isolated Depo-Medrol Administration under Tenon’s Capsule for Post-COVID-19 Uveitis in a Child: A Case Report and Literature Review. Journal of Clinical Medicine. 2024; 13(5):1341. https://doi.org/10.3390/jcm13051341
Chicago/Turabian StyleModrzejewska, Monika, Joanna Cyrankiewicz, Oliwia Zdanowska, and Wiktoria Bosy-Gąsior. 2024. "Isolated Depo-Medrol Administration under Tenon’s Capsule for Post-COVID-19 Uveitis in a Child: A Case Report and Literature Review" Journal of Clinical Medicine 13, no. 5: 1341. https://doi.org/10.3390/jcm13051341
APA StyleModrzejewska, M., Cyrankiewicz, J., Zdanowska, O., & Bosy-Gąsior, W. (2024). Isolated Depo-Medrol Administration under Tenon’s Capsule for Post-COVID-19 Uveitis in a Child: A Case Report and Literature Review. Journal of Clinical Medicine, 13(5), 1341. https://doi.org/10.3390/jcm13051341