FGFR3 Mutations in Urothelial Carcinoma: A Single-Center Study Using Next-Generation Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. NGS Analysis
2.3. Statistical Analysis
2.4. Ethics Statement
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferro, M.; Chiujdea, S.; Musi, G.; Lucarelli, G.; Del Giudice, F.; Hurle, R.; Damiano, R.; Cantiello, F.; Mari, A.; Minervini, A.; et al. Impact of Age on Outcomes of Patients With Pure Carcinoma In Situ of the Bladder: Multi-Institutional Cohort Analysis. Clin. Genitourin. Cancer 2022, 20, e166–e172. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Babjuk, M.; Burger, M.; Capoun, O.; Cohen, D.; Comperat, E.M.; Dominguez Escrig, J.L.; Gontero, P.; Liedberg, F.; Masson-Lecomte, A.; Mostafid, A.H.; et al. European Association of Urology Guidelines on Non-muscle-invasive Bladder Cancer (Ta, T1, and Carcinoma in Situ). Eur. Urol. 2022, 81, 75–94. [Google Scholar] [CrossRef] [PubMed]
- Witjes, J.A.; Bruins, H.M.; Cathomas, R.; Comperat, E.M.; Cowan, N.C.; Gakis, G.; Hernandez, V.; Linares Espinos, E.; Lorch, A.; Neuzillet, Y.; et al. European Association of Urology Guidelines on Muscle-invasive and Metastatic Bladder Cancer: Summary of the 2020 Guidelines. Eur. Urol. 2021, 79, 82–104. [Google Scholar] [CrossRef] [PubMed]
- Roupret, M.; Seisen, T.; Birtle, A.J.; Capoun, O.; Comperat, E.M.; Dominguez-Escrig, J.L.; Gurses Andersson, I.; Liedberg, F.; Mariappan, P.; Hugh Mostafid, A.; et al. European Association of Urology Guidelines on Upper Urinary Tract Urothelial Carcinoma: 2023 Update. Eur. Urol. 2023, 84, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Mollica, V.; Rizzo, A.; Montironi, R.; Cheng, L.; Giunchi, F.; Schiavina, R.; Santoni, M.; Fiorentino, M.; Lopez-Beltran, A.; Brunocilla, E.; et al. Current Strategies and Novel Therapeutic Approaches for Metastatic Urothelial Carcinoma. Cancers 2020, 12, 1449. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Mollica, V.; Massari, F. Expression of Programmed Cell Death Ligand 1 as a Predictive Biomarker in Metastatic Urothelial Carcinoma Patients Treated with First-line Immune Checkpoint Inhibitors Versus Chemotherapy: A Systematic Review and Meta-analysis. Eur. Urol. Focus 2022, 8, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Kamps, R.; Brandao, R.D.; Bosch, B.J.; Paulussen, A.D.; Xanthoulea, S.; Blok, M.J.; Romano, A. Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. Int. J. Mol. Sci. 2017, 18, 308. [Google Scholar] [CrossRef] [PubMed]
- Ascione, C.M.; Napolitano, F.; Esposito, D.; Servetto, A.; Belli, S.; Santaniello, A.; Scagliarini, S.; Crocetto, F.; Bianco, R.; Formisano, L. Role of FGFR3 in bladder cancer: Treatment landscape and future challenges. Cancer Treat. Rev. 2023, 115, 102530. [Google Scholar] [CrossRef]
- Pietzak, E.J.; Bagrodia, A.; Cha, E.K.; Drill, E.N.; Iyer, G.; Isharwal, S.; Ostrovnaya, I.; Baez, P.; Li, Q.; Berger, M.F.; et al. Next-generation Sequencing of Nonmuscle Invasive Bladder Cancer Reveals Potential Biomarkers and Rational Therapeutic Targets. Eur. Urol. 2017, 72, 952–959. [Google Scholar] [CrossRef]
- van Rhijn, B.W.G.; Mertens, L.S.; Mayr, R.; Bostrom, P.J.; Real, F.X.; Zwarthoff, E.C.; Boormans, J.L.; Abas, C.; van Leenders, G.; Gotz, S.; et al. FGFR3 Mutation Status and FGFR3 Expression in a Large Bladder Cancer Cohort Treated by Radical Cystectomy: Implications for Anti-FGFR3 Treatment? (dagger). Eur. Urol. 2020, 78, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Seiler, R.; Ashab, H.A.D.; Erho, N.; van Rhijn, B.W.G.; Winters, B.; Douglas, J.; Van Kessel, K.E.; Fransen van de Putte, E.E.; Sommerlad, M.; Wang, N.Q.; et al. Impact of Molecular Subtypes in Muscle-invasive Bladder Cancer on Predicting Response and Survival after Neoadjuvant Chemotherapy. Eur. Urol. 2017, 72, 544–554. [Google Scholar] [CrossRef] [PubMed]
- Paner, G.P.; Stadler, W.M.; Hansel, D.E.; Montironi, R.; Lin, D.W.; Amin, M.B. Updates in the Eighth Edition of the Tumor-Node-Metastasis Staging Classification for Urologic Cancers. Eur. Urol. 2018, 73, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Soukup, V.; Capoun, O.; Cohen, D.; Hernandez, V.; Babjuk, M.; Burger, M.; Comperat, E.; Gontero, P.; Lam, T.; MacLennan, S.; et al. Prognostic Performance and Reproducibility of the 1973 and 2004/2016 World Health Organization Grading Classification Systems in Non-muscle-invasive Bladder Cancer: A European Association of Urology Non-muscle Invasive Bladder Cancer Guidelines Panel Systematic Review. Eur. Urol. 2017, 72, 801–813. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.H.; Kim, S.S.; Lee, H.; Kim, S.; Kang, T.W. Somatic Mutation of the Non-Muscle-Invasive Bladder Cancer Associated with Early Recurrence. Diagnostics 2023, 13, 3201. [Google Scholar] [CrossRef] [PubMed]
- Roupret, M.; Zigeuner, R.; Palou, J.; Boehle, A.; Kaasinen, E.; Sylvester, R.; Babjuk, M.; Oosterlinck, W. European guidelines for the diagnosis and management of upper urinary tract urothelial cell carcinomas: 2011 update. Eur. Urol. 2011, 59, 584–594. [Google Scholar] [CrossRef]
- Ferro, M.; Falagario, U.G.; Barone, B.; Maggi, M.; Crocetto, F.; Busetto, G.M.; Giudice, F.D.; Terracciano, D.; Lucarelli, G.; Lasorsa, F.; et al. Artificial Intelligence in the Advanced Diagnosis of Bladder Cancer-Comprehensive Literature Review and Future Advancement. Diagnostics 2023, 13, 2308. [Google Scholar] [CrossRef]
- Moss, T.J.; Qi, Y.; Xi, L.; Peng, B.; Kim, T.B.; Ezzedine, N.E.; Mosqueda, M.E.; Guo, C.C.; Czerniak, B.A.; Ittmann, M.; et al. Comprehensive Genomic Characterization of Upper Tract Urothelial Carcinoma. Eur. Urol. 2017, 72, 641–649. [Google Scholar] [CrossRef]
- Xie, Y.; Su, N.; Yang, J.; Tan, Q.; Huang, S.; Jin, M.; Ni, Z.; Zhang, B.; Zhang, D.; Luo, F.; et al. FGF/FGFR signaling in health and disease. Signal Transduct. Target. Ther. 2020, 5, 181. [Google Scholar] [CrossRef]
- Liao, X.; Chen, J.; Liu, Y.; He, A.; Wu, J.; Cheng, J.; Zhang, X.; Lv, Z.; Wang, F.; Mei, H. Knockdown of long noncoding RNA FGFR3- AS1 induces cell proliferation inhibition, apoptosis and motility reduction in bladder cancer. Cancer Biomark. 2018, 21, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Akanksha, M.; Sandhya, S. Role of FGFR3 in Urothelial Carcinoma. Iran. J. Pathol. 2019, 14, 148–155. [Google Scholar] [CrossRef]
- Lyle, S.R.; Hsieh, C.C.; Fernandez, C.A.; Shuber, A.P. Molecular grading of tumors of the upper urothelial tract using FGFR3 mutation status identifies patients with favorable prognosis. Res. Rep. Urol. 2012, 4, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Knowles, M.A.; Hurst, C.D. Molecular biology of bladder cancer: New insights into pathogenesis and clinical diversity. Nat. Rev. Cancer 2015, 15, 25–41. [Google Scholar] [CrossRef]
- Nassar, A.H.; Umeton, R.; Kim, J.; Lundgren, K.; Harshman, L.; Van Allen, E.M.; Preston, M.; Dong, F.; Bellmunt, J.; Mouw, K.W.; et al. Mutational Analysis of 472 Urothelial Carcinoma Across Grades and Anatomic Sites. Clin. Cancer Res. 2019, 25, 2458–2470. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Ochoa, A.; McConkey, D.J.; Aine, M.; Hoglund, M.; Kim, W.Y.; Real, F.X.; Kiltie, A.E.; Milsom, I.; Dyrskjot, L.; et al. Genetic Alterations in the Molecular Subtypes of Bladder Cancer: Illustration in the Cancer Genome Atlas Dataset. Eur. Urol. 2017, 72, 354–365. [Google Scholar] [CrossRef]
- Lamont, F.R.; Tomlinson, D.C.; Cooper, P.A.; Shnyder, S.D.; Chester, J.D.; Knowles, M.A. Small molecule FGF receptor inhibitors block FGFR-dependent urothelial carcinoma growth in vitro and in vivo. Br. J. Cancer 2011, 104, 75–82. [Google Scholar] [CrossRef]
- Sfakianos, J.P.; Cha, E.K.; Iyer, G.; Scott, S.N.; Zabor, E.C.; Shah, R.H.; Ren, Q.; Bagrodia, A.; Kim, P.H.; Hakimi, A.A.; et al. Genomic Characterization of Upper Tract Urothelial Carcinoma. Eur. Urol. 2015, 68, 970–977. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Mollica, V.; Santoni, M.; Massari, F. Clinicopathological Features of FGFR3—Mutated Upper Tract Urothelial Carcinoma: A Genomic Database Analysis. Clin. Genitourin. Cancer 2022, 20, 482–487. [Google Scholar] [CrossRef]
- Springer, S.U.; Chen, C.H.; Rodriguez Pena, M.D.C.; Li, L.; Douville, C.; Wang, Y.; Cohen, J.D.; Taheri, D.; Silliman, N.; Schaefer, J.; et al. Non-invasive detection of urothelial cancer through the analysis of driver gene mutations and aneuploidy. eLife 2018, 7, e32143. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, K.; Sung, H.H.; Jeon, H.G.; Jeong, B.C.; Seo, S.I.; Jeon, S.S.; Lee, H.M.; Choi, H.Y.; Kwon, G.Y.; et al. Molecular Characterization of Urothelial Carcinoma of the Bladder and Upper Urinary Tract. Transl. Oncol. 2018, 11, 37–42. [Google Scholar] [CrossRef]
- Kang, H.W.; Kim, Y.H.; Jeong, P.; Park, C.; Kim, W.T.; Ryu, D.H.; Cha, E.J.; Ha, Y.S.; Kim, T.H.; Kwon, T.G.; et al. Expression levels of FGFR3 as a prognostic marker for the progression of primary pT1 bladder cancer and its association with mutation status. Oncol. Lett. 2017, 14, 3817–3824. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.Z.; Rouanne, M.; Tan, K.T.; Huang, R.Y.; Thiery, J.P. Molecular Subtypes of Urothelial Bladder Cancer: Results from a Meta-cohort Analysis of 2411 Tumors. Eur. Urol. 2019, 75, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, S.; Li, H.; Chou, H. FGFR3 promotes the growth and malignancy of melanoma by influencing EMT and the phosphorylation of ERK, AKT, and EGFR. BMC Cancer 2019, 19, 963. [Google Scholar] [CrossRef] [PubMed]
Variables | n = 123 |
---|---|
Age (years) | 71.39 ± 9.33 |
BMI (kg/m2) | 24.10 ± 3.53 |
Sex | |
Male | 103 (83.7%) |
Female | 20 (16.3%) |
Comorbidities | |
Hypertension | 70 (56.9%) |
Diabetes mellitus | 29 (23.6%) |
NMIBC | 51 (41.5%) |
MIBC | 44 (35.8%) |
UTUC | 28 (22.8%) |
Stage | |
0a | 48 (39.0%) |
1 | 3 (2.4%) |
2 | 8 (6.5%) |
3 | 39 (31.7%) |
4 | 25 (20.3%) |
FGFR3 mutation | 37 (30.1%) |
Risk stratification for NMIBC (n = 51) | |
Low | 14 (27.4%) |
Intermediate | 21 (41.2%) |
High | 16 (31.4%) |
Recurrence within 1 year (NMIBC, n = 51) | 28 (54.9%) |
Curative radical surgery (MIBC and UTUC, n = 72) | 27 (39.7%) |
Progression within 1 year (MIBC and UTUC, n = 72) | 26 (36.1%) |
Bladder tumor recurrence within 1 year (UTUC, n = 28) | 4 (14.3%) |
Variable | NMIBC (n = 51) | MIBC (n = 44) | UTUC (n = 28) | p Value |
---|---|---|---|---|
Age (years) | 71.08 ± 9.09 | 72.68 ± 10.01 | 69.93 ± 8.71 | 0.236 a |
BMI (kg/m2) | 25.03 ± 3.32 | 23.20 ± 3.81 | 23.82 ± 3.12 | 0.036 b |
Sex | 0.312 c | |||
Male | 45 (88.2%) | 37 (84.1%) | 21 (75.0%) | |
Female | 6 (11.8%) | 7 (15.9%) | 7 (25.0%) | |
Hypertension | 29 (56.9%) | 26 (59.1%) | 15 (53.6%) | 0.899 c |
Diabetes mellitus | 14 (27.4%) | 8 (18.2%) | 7 (25.0%) | 0.558 c |
Stage | <0.001 d | |||
0a | 48 (94.1%) | 0 (0.0%) | 0 (0.0%) | |
1 | 3 (5.9%) | 0 (0.0%) | 0 (0.0%) | |
2 | 0 (0.0%) | 3 (6.8%) | 5 (17.9%) | |
3 | 0 (0.0%) | 30 (68.2%) | 9 (32.1%) | |
4 | 0 (0.0%) | 11 (25.0%) | 14 (50.0%) | |
FGFR3 mutation | 23 (45.1%) | 10 (22.7%) | 4 (14.3%) | 0.007 c |
Variable | No (n = 86) | Yes (n = 37) | p Value |
---|---|---|---|
Age (years) | 70.71 ± 9.64 | 72.97 ± 8.50 | 0.219 a |
BMI (kg/m2) | 23.97 ± 3.50 | 24.41 ± 3.63 | 0.530 a |
Sex | 0.291 b | ||
Male | 74 (86.1%) | 29 (78.4%) | |
Female | 12 (13.9%) | 8 (21.6%) | |
Hypertension | 47 (54.7%) | 23 (62.2%) | 0.440 b |
Diabetes mellitus | 21 (24.4%) | 8 (21.6%) | 0.738 b |
Stage | 0.019 c | ||
0a | 26 (30.2%) | 22 (59.5%) | |
1 | 2 (2.3%) | 1 (2.7%) | |
2 | 7 (8.1%) | 1 (2.7%) | |
3 | 29 (33.7%) | 10 (27.0%) | |
4 | 22 (25.6%) | 3 (8.1%) | |
Risk stratification for NMIBC (n = 51) | <0.001 c | ||
Low | 13 (46.4%) | 1 (4.4%) | |
Intermediate | 10 (35.7%) | 11 (47.8%) | |
High | 5 (17.9%) | 11 (47.8%) | |
Recurrence within 1 year (NMIBC, n = 51) | 13 (46.4%) | 15 (65.2%) | 0.180 b |
Progression within 1 year (MIBC and UTUC, n = 72) | 18 (31.0%) | 8 (57.1%) | 0.068 b |
Bladder tumor recurrence within 1 year (UTUC, n = 28) | 2 (8.3%) | 2 (50.0%) | 0.086 b |
Variables | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
Odds Ratio (95% CI) | p Value | Odds Ratio (95% CI) | p Value | |
Age (years) | 1.03 (0.97–1.10) | 0.340 | Not applicable | |
BMI (kg/m2) | 0.99 (0.84–1.17) | 0.893 | ||
Sex | ||||
Male | Reference | |||
Female | 0.80 (0.15–4.40) | 0.798 | ||
Hypertension | 0.53 (0.17–1.66) | 0.277 | ||
Diabetes mellitus | 0.51 (0.15–1.78) | 0.291 | ||
Stage | ||||
0a | Reference | |||
1 | 1.69 (0.14–19.94) | 0.676 | ||
Risk stratification | ||||
Low | Reference | |||
Intermediate | 1.98 (0.49–7.94) | 0.335 | ||
High | 5.40 (1.12–26.04) | 0.036 | ||
FGFR3 mutation | 2.16 (0.70–6.73) | 0.183 |
Variables | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
Odds Ratio (95% CI) | p Value | Odds Ratio (95% CI) | p Value | |
Age (years) | 1.10 (1.03–1.17) | 0.007 | 1.08 (1.01–1.15) | 0.029 |
BMI (kg/m2) | 0.85 (0.73–0.99) | 0.032 | 0.83 (0.70–0.99) | 0.046 |
Sex | ||||
Male | Reference | |||
Female | 1.43 (0.43–4.68) | 0.559 | ||
Hypertension | 2.96 (1.04–8.39) | 0.041 | 3.00 (0.92–9.81) | 0.069 |
Diabetes mellitus | 0.58 (0.16–2.04) | 0.396 | ||
Stage | ||||
2 | Reference | |||
3 | 5.41 (0.61–48.27) | 0.131 | ||
4 | 3.29 (0.34–31.49) | 0.301 | ||
UTUC | 0.33 (0.11–0.96) | 0.043 | 0.37 (0.11–1.21) | 0.100 |
Curative radical surgery | 0.35 (0.12–1.05) | 0.061 | ||
FGFR3 mutation | 2.96 (0.90–9.80) | 0.075 |
Variables | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
Odds Ratio (95% CI) | p Value | Odds Ratio (95% CI) | p Value | |
Age (years) | 1.08 (0.92–1.26) | 0.340 | Not applicable | |
BMI (kg/m2) | 0.81 (0.54–1.23) | 0.325 | ||
Sex | ||||
Male | Reference | |||
Female | 1.00 (0.09–11.52) | 1.000 | ||
Hypertension | 3.00 (0.27–33.08) | 0.370 | ||
Diabetes mellitus | 0.33 (0.03–3.34) | 0.350 | ||
Stage | ||||
2 | Reference | |||
3 | 2.00 (0.15–26.73) | 0.600 | ||
4 | 1.60 (0.13–19.09) | 0.710 | ||
FGFR3 mutation | 11.00 (0.96–125.77) | 0.054 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.H.; Kim, S.s.; Kim, S.; Lee, H.; Kang, T.W. FGFR3 Mutations in Urothelial Carcinoma: A Single-Center Study Using Next-Generation Sequencing. J. Clin. Med. 2024, 13, 1305. https://doi.org/10.3390/jcm13051305
Yu SH, Kim Ss, Kim S, Lee H, Kang TW. FGFR3 Mutations in Urothelial Carcinoma: A Single-Center Study Using Next-Generation Sequencing. Journal of Clinical Medicine. 2024; 13(5):1305. https://doi.org/10.3390/jcm13051305
Chicago/Turabian StyleYu, Seong Hyeon, Sung sun Kim, Shinseung Kim, Hyungki Lee, and Taek Won Kang. 2024. "FGFR3 Mutations in Urothelial Carcinoma: A Single-Center Study Using Next-Generation Sequencing" Journal of Clinical Medicine 13, no. 5: 1305. https://doi.org/10.3390/jcm13051305
APA StyleYu, S. H., Kim, S. s., Kim, S., Lee, H., & Kang, T. W. (2024). FGFR3 Mutations in Urothelial Carcinoma: A Single-Center Study Using Next-Generation Sequencing. Journal of Clinical Medicine, 13(5), 1305. https://doi.org/10.3390/jcm13051305