NOS2 Polymorphism in Aspect of Left and Right-Sided Colorectal Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cohort Characteristic
2.2. Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Study Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klusek, J.; Nasierowska-Guttmejer, A.; Kowalik, A.; Wawrzycka, I.; Chrapek, M.; Lewitowicz, P.; Radowicz-Chil, A.; Klusek, J.; Głuszek, S. The Influence of Red Meat on Colorectal Cancer Occurrence Is Dependent on the Genetic Polymorphisms of S-Glutathione Transferase Genes. Nutrients 2019, 11, 1682. [Google Scholar] [CrossRef]
- Slattery, M.L.; Lundgreen, A.; Welbourn, B.; Wolff, R.K.; Corcoran, C. Oxidative balance and colon and rectal cancer: Interaction of lifestyle factors and genes. Mutat. Res. 2012, 734, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Jiang, H.; Chen, Z.; Lu, B.; Li, J.; Peng, Y.; Shen, X. The genetic association between iNOS and eNOS polymorphisms and gastric cancer risk: A meta-analysis. OncoTargets Ther. 2018, 11, 2497–2507. [Google Scholar] [CrossRef] [PubMed]
- Qin, A.; Chen, S.; Wang, P.; Huang, X.; Zhang, Y.; Liang, L.; Du, L.R.; Lai, D.H.; Ding, L.; Yu, X.; et al. Knockout of NOS2 Promotes Adipogenic Differentiation of Rat MSCs by Enhancing Activation of JAK/STAT3 Signaling. Front. Cell Dev. Biol. 2021, 9, 638518. [Google Scholar] [CrossRef] [PubMed]
- Vannini, F.; Kashfi, K.; Nath, N. The dual role of iNOS in cancer. Redox Biol. 2015, 6, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, S.S.; Mastropaolo, L.A.; Murchie, R.; Griffiths, C.; Thöni, C.; Elkadri, A.; Xu, W.; Mack, A.; Walters, T.; Guo, C.; et al. Higher activity of the inducible nitric oxide synthase contributes to very early onset inflammatory bowel disease. Clin. Transl. Gastroenterol. 2014, 5, e46. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gray, Z.; Willette-Brown, J.; Zhu, F.; Shi, G.; Jiang, Q.; Song, N.Y.; Dong, L.; Hu, Y. Macrophage inducible nitric oxide synthase circulates inflammation and promotes lung carcinogenesis. Cell Death Discov. 2018, 4, 46. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, G.A.; Cheng, R.Y.S.; Ridnour, L.A.; Basudhar, D.; Somasundaram, V.; McVicar, D.W.; Monteiro, H.P.; Wink, D.A. Inducible Nitric Oxide Synthase in the Carcinogenesis of Gastrointestinal Cancers. Antioxid. Redox Signal. 2017, 26, 1059–1077. [Google Scholar] [CrossRef] [PubMed]
- Wollny, T.; Suprewicz, Ł.; Smok-Kalwat, J.; Antczak, G.; Piktel, E.; Góźdź, S.; Durnaś, B.; Bucki, R. Monitoring inflammation in patients diagnosed with non-small cell lung and colorectal cancer using blood levels of C-reactive protein, procalcitonin, and plasma gelsolin. Medical Studies/Studia Medyczne 2023, 39, 103–113. [Google Scholar] [CrossRef]
- Jorge, Y.C.; Duarte, M.C.; Silva, A.E. Gastric cancer is associated with NOS2-954GC polymorphism and environmental factors in a Brazilian population. BMC Gastroenterol. 2010, 10, 64. [Google Scholar] [CrossRef]
- Lee, K.M.; Kang, D.; Park, S.K.; Berndt, S.I.; Reding, D.; Chatterjee, N.; Chanock, S.; Huang, W.Y.; Hayes, R.B. Nitric oxide synthase gene polymorphisms and prostate cancer risk. Carcinogenesis. 2009, 30, 621–625. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H. Prognostic and Predictive Models for Left- and Right-Colorectal Cancer Patients: A Bioinformatics Analysis Based on Ferroptosis-Related Genes. Front. Oncol. 2022, 12, 833834. [Google Scholar] [CrossRef] [PubMed]
- Aljama, S.; Lago, E.P.; Zafra, O.; Sierra, J.; Simón, D.; Santos, C.; Pascual, J.R.; Garcia-Romero, N. Dichotomous colorectal cancer behaviour. Crit. Rev. Oncol. Hematol. 2023, 189, 104067. [Google Scholar] [CrossRef] [PubMed]
- Shimada, Y.; Kameyama, H.; Nagahashi, M.; Ichikawa, H.; Muneoka, Y.; Yagi, R.; Tajima, Y.; Okamura, T.; Nakano, M.; Sakata, J.; et al. Comprehensive genomic sequencing detects important genetic differences between right-sided and left-sided colorectal cancer. Oncotarget 2017, 8, 93567–93579. [Google Scholar] [CrossRef] [PubMed]
- Baran, B.; Mert Ozupek, N.; Yerli Tetik, N.; Acar, E.; Bekcioglu, O.; Baskin, Y. Difference Between Left-Sided and Right-Sided Colorectal Cancer: A Focused Review of Literature. Gastroenterol. Res. 2018, 11, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; Wu, B. Recent Advances on the Differences between Left- and Right-sided Colorectal Cancer. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2021, 43, 980–985. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Yaeger, R.; Chatila, W.K.; Lipsyc, M.D.; Hechtman, J.F.; Cercek, A.; Sanchez-Vega, F.; Jayakumaran, G.; Middha, S.; Zehir, A.; Donoghue, M.T.A.; et al. Clinical Sequencing Defines the Genomic Landscape of Metastatic Colorectal Cancer. Cancer Cell 2018, 33, 125–136.e3. [Google Scholar] [CrossRef] [PubMed]
- Fazeli, M.S.; Keramati, M.R. Rectal cancer: A review. Med. J. Islam. Repub. Iran 2015, 29, 171. [Google Scholar] [PubMed]
- Pardini, B.; Corrado, A.; Paolicchi, E.; Cugliari, G.; Berndt, S.I.; Bezieau, S.; Bien, S.A.; Brenner, H.; Caan, B.J.; Campbell, P.T.; et al. DNA repair and cancer in colon and rectum: Novel players in genetic susceptibility. Int. J. Cancer 2020, 146, 363–372. [Google Scholar] [CrossRef]
- Lin, M.; Eng, C.; Hawk, E.T.; Huang, M.; Greisinger, A.J.; Gu, J.; Ellis, L.M.; Wu, X.; Lin, J. Genetic variants within ultraconserved elements and susceptibility to right- and left-sided colorectal adenocarcinoma. Carcinogenesis 2012, 33, 841–847. [Google Scholar] [CrossRef]
- Brierley, J.D.; Gospodarowicz, M.K.; Wittekind, C.; Union for International Cancer Contro. TNM Classification of Malignant Tumors, 8th ed.; Wiley: New York, NY, USA, 2017. [Google Scholar]
- Serdar, C.C.; Cihan, M.; Yücel, D.; Serdar, M.A. Sample size, power and effect size revisited: Simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem. Med. 2021, 31, 010502. [Google Scholar] [CrossRef]
- Barresi, V.; Reggiani Bonetti, L.; Ieni, A.; Caruso, R.A.; Tuccari, G. Histological grading in colorectal cancer: New insights and perspectives. Histol. Histopathol. 2015, 30, 1059–1067. [Google Scholar] [CrossRef]
- WHO Classification of Tumours Editorial Board. WHO Classification of Tumours: Digestive System Tumours, 5th ed.; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Virostko, J.; Capasso, A.; Yankeelov, T.E.; Goodgame, B. Recent trends in the age at diagnosis of colorectal cancer in the US National Cancer Data Base, 2004–2015. Cancer 2019, 125, 3828–3835. [Google Scholar] [CrossRef]
- Patel, S.G.; May, F.P.; Anderson, J.C.; Burke, C.A.; Dominitz, J.A.; Gross, S.A.; Jacobson, B.C.; Shaukat, A.; Robertson, D.J. Updates on Age to Start and Stop Colorectal Cancer Screening: Recommendations from the U.S. Multi-Society Task Force on Colorectal Cancer. Gastroenterology 2022, 162, 285–299, Erratum in Gastroenterology 2022, 163, 339. [Google Scholar] [CrossRef] [PubMed]
- Reif de Paula, T.; Simon, H.L.; Profeta da Luz, M.M.; Keller, D.S. Right sided colorectal cancer increases with age and screening should be tailored to reflect this: A national cancer database study. Tech Coloproctol. 2021, 25, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Massat, N.J.; Moss, S.M.; Halloran, S.P.; Duffy, S.W. Screening and Primary prevention of Colorectal Cancer: A Review of sex-specific and site-specific differences. J. Med. Screen. 2013, 20, 125–148. [Google Scholar] [CrossRef] [PubMed]
- Janion, K.; Szczepańska, E.; Nowakowska-Zajdel, E.; Strzelczyk, J.; Copija, A. Selected Oxidative Stress Markers in Colorectal Cancer Patients in Relation to Primary Tumor Location-A Preliminary Research. Medicina 2020, 56, 47. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol. 2021, 14, 101174. [Google Scholar] [CrossRef]
- White, A.; Ironmonger, L.; Steele, R.J.C.; Ormiston-Smith, N.; Crawford, C.; Seims, A. A review of sex-related differences in colorectal cancer incidence, screening uptake, routes to diagnosis, cancer stage and survival in the UK. BMC Cancer 2018, 18, 906. [Google Scholar] [CrossRef]
- Phan, L.; Jin, Y.; Zhang, H.; Qiang, W.; Shekhtman, E.; Shao, D.; Revoe, D.; Villamarin, R.; Ivanchenko, E.; Kimura, M.; et al. “ALFA: Allele Frequency Aggregator”. National Center for Biotechnology Information, U.S. National Library of Medicine. Available online: https://www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/ (accessed on 10 March 2023).
- Fabisiewicz, A.; Pacholewicz, K.; Paszkiewicz-Kozik, E.; Walewski, J.; Siedlecki, J.A. Polymorphisms of DNA repair and oxidative stress genes in B-cell lymphoma patients. Biomed. Rep. 2013, 1, 151–155. [Google Scholar] [CrossRef]
- Shen, J.; Wang, R.T.; Wang, L.W.; Xu, Y.C.; Wang, X.R. A novel genetic polymorphism of inducible nitric oxide synthase is associated with an increased risk of gastric cancer. World J. Gastroenterol. 2004, 10, 3278–3783. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hou, W.; Zhong, M.; Wu, B. Comprehensive Proteomic Analysis of Colon Cancer Tissue Revealed the Reason for the Worse Prognosis of Right-Sided Colon Cancer and Mucinous Colon Cancer at the Protein Level. Curr. Oncol. 2021, 28, 3554–3572. [Google Scholar] [CrossRef] [PubMed]
- Huyghe, J.R.; Harrison, T.A.; Bien, S.A.; Hampel, H.; Figueiredo, J.C.; Schmit, S.L.; Conti, D.V.; Chen, S.; Qu, C.; Lin, Y.; et al. Genetic architectures of proximal and distal colorectal cancer are partly distinct. Gut 2021, 70, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Hugen, N.; Brown, G.; Glynne-Jones, R.; de Wilt, J.H.; Nagtegaal, I.D. Advances in the care of patients with mucinous colorectal cancer. Nat. Rev. Clin. Oncol. 2016, 13, 361–369. [Google Scholar] [CrossRef]
- Luo, C.; Cen, S.; Ding, G.; Wu, W. Mucinous colorectal adenocarcinoma: Clinical pathology and treatment options. Cancer Commun. 2019, 39, 13. [Google Scholar] [CrossRef]
- Xu, K.; Zheng, S.; Li, B.; Shao, Y.; Yin, X. Molecular characterization of colorectal mucinous adenocarcinoma and adenocarcinoma, not otherwise specified, identified by multiomic data analysis. Front. Mol. Biosci. 2023, 10, 1150362. [Google Scholar] [CrossRef]
- Hwang, H.S.; Kim, D.; Choi, J. Distinct mutational profile and immune microenvironment in microsatellite-unstable and POLE-mutated tumors. J. Immunother. Cancer 2021, 9, e002797. [Google Scholar] [CrossRef]
Control (N = 120) | CRC (N = 199) | p-Value | |
---|---|---|---|
Sex | 0.0177 | ||
Female | 64 (53.3%) | 79 (39.7%) | |
Male | 56 (46.7%) | 120 (60.3%) | |
Age | 0.0864 | ||
Mean (SD) | 62.14 (11.67) | 64.54 (8.40) | |
Median (Q1, Q3) | 64.00 (54.00, 70.25) | 65.00 (59.00, 71.00) | |
Range | 38.00–94.00 | 38.00–81.00 | |
BMI | 0.8069 | ||
N-Miss * | 2 | 1 | |
Mean (SD) | 27.33 (4.56) | 27.42 (4.39) | |
Median (Q1, Q3) | 26.85 (23.72, 30.35) | 26.90 (24.45, 29.70) | |
Range | 18.40–38.40 | 17.50–42.20 |
Controls | CRC | ||||||||
---|---|---|---|---|---|---|---|---|---|
n | % | n | % | OR | Lower | Upper | p-Value | AIC | |
Codominant | 0.6616 | 427.6 | |||||||
G/G | 82 | 68.3 | 128 | 64.3 | 1.00 | ||||
A/G | 34 | 28.3 | 61 | 30.7 | 1.15 | 0.70 | 1.90 | ||
A/A | 4 | 3.3 | 10 | 5.0 | 1.60 | 0.49 | 5.28 | ||
Dominant | 0.4631 | 425.9 | |||||||
G/G | 82 | 68.3 | 128 | 64.3 | 1.00 | ||||
A/G-A/A | 38 | 31.7 | 71 | 35.7 | 1.20 | 0.74 | 1.94 | ||
Recessive | 0.4665 | 425.9 | |||||||
G/G-A/G | 116 | 96.7 | 189 | 95.0 | 1.00 | ||||
A/A | 4 | 3.3 | 10 | 5.0 | 1.53 | 0.47 | 5.01 | ||
Over dominant | 0.6601 | 426.3 | |||||||
G/G-A/A | 86 | 71.7 | 138 | 69.3 | 1.00 | ||||
A/G | 34 | 28.3 | 61 | 30.7 | 1.12 | 0.68 | 1.84 | ||
log-Additive | 0.3838 | 425.7 | |||||||
0, 1, 2 | 120 | 37.6 | 199 | 62.4 | 1.20 | 0.80 | 1.79 |
Rectal Cancer (N = 85) | Left-Sided CRC (N = 65) | Right-Sided CRC (N = 49) | Rectal vs. Left-Sided p-Value | Rectal vs. Right-Sided p-Value | Left vs. Right-Sided p-Value | |
---|---|---|---|---|---|---|
Sex | 0.5012 | 0.8969 | 0.6442 | |||
female | 32 (37.6%) | 28 (43.1%) | 19 (38.8%) | |||
male | 53 (62.4.2%) | 37 (56.9%) | 30 (61.2%) | |||
age | 1 | 0.4148 | 0.389 | |||
<50 | 5 (5.9%) | 4 (6.2%) | 1 (2.0%) | |||
≥50 | 80 (94.1%) | 61 (93.8%) | 48 (98.0%) | |||
Histological type | 0.3788 | 0.0001 | 0.0043 | |||
N-Miss * | 1 | 1 | 0 | |||
mucinous | 6 (7.1%) | 7 (10.9%) | 15 (30.6%) | |||
mucinous and solid | 0 (0.0%) | 1 (1.6%) | 0 (0.0%) | |||
solid | 0 (0.0%) | 0 (0.0%) | 2 (4.1%) | |||
NOS ** | 78 (92.9%) | 56 (87.5%) | 32 (65.3%) | |||
Grade | 0.1781 | 0.3627 | 0.0368 | |||
G1 | 2 (2.4%) | 6 (9.2%) | 1 (2.0%) | |||
G2 | 70 (82.4%) | 54 (83.1%) | 37 (75.5%) | |||
G3 | 6 (7.1%) | 2 (3.1%) | 8 (16.3%) | |||
Gx | 7 (8.2%) | 3 (4.6%) | 3 (6.1%) | |||
pT | 0.2054 | 0.4876 | 0.4206 | |||
N-Miss * | 18 | 19 | 10 | |||
0 | 1 (1.5%) | 0 (0.0%) | 0 (0.0%) | |||
1 | 5 (7.5%) | 5 (10.9%) | 1 (2.5%) | |||
2 | 13 (19.4%) | 3 (6.5%) | 4 (10.0%) | |||
3 | 36 (53.7%) | 25 (54.3%) | 25 (64.1%) | |||
4 | 12 (17.9%) | 13 (28.3%) | 9 (23.1%) | |||
pN | 0.2783 | 0.9415 | 0.321 | |||
N-Miss * | 19 | 21 | 9 | |||
N0 | 31 (47.0%) | 23 (52.3%) | 19 (47.5%) | |||
N1a | 18 (27.3%) | 16 (36.4%) | 10 (25.0%) | |||
N1b | 5 (7.6%) | 2 (4.5%) | 5 (12.5%) | |||
N2a | 6 (9.1%) | 0 (0.0%) | 2 (5.0%) | |||
N2b | 4 (6.1%) | 1 (2.3%) | 3 (7.5%) | |||
Nx | 2 (3.0%) | 2 (4.5%) | 1 (2.5%) | |||
pM | 0.1519 | 0.0084 | 0.3385 | |||
N-Miss * | 31 | 30 | 24 | |||
0 | 0 (0.0%) | 0 (0.0%) | 2 (8.0%) | |||
1 | 0 (0.0%) | 2 (5.7%) | 2 (8.0%) | |||
x | 54 (100.0%) | 33 (94.3%) | 21 (84.0%) | |||
Dominant model_NOS2_rs2297518 | 0.0285 | 0.5798 | 0.0137 | |||
Homozygous GG (WT ***) | 51 (60.0%) | 50 (76.9%) | 27 (55.1%) | |||
Homozygous AA or Heterozygous AG | 34 (40.0%) | 15 (23.1%) | 22 (44.9%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klusek, J.; Lewitowicz, P.; Oblap, R.; Orlewska, E.; Witczak, B.; Marzec, M.T.; Kozłowska-Geller, M.; Nawacki, Ł.; Wawszczak-Kasza, M.; Kocańda, K.; et al. NOS2 Polymorphism in Aspect of Left and Right-Sided Colorectal Cancer. J. Clin. Med. 2024, 13, 937. https://doi.org/10.3390/jcm13040937
Klusek J, Lewitowicz P, Oblap R, Orlewska E, Witczak B, Marzec MT, Kozłowska-Geller M, Nawacki Ł, Wawszczak-Kasza M, Kocańda K, et al. NOS2 Polymorphism in Aspect of Left and Right-Sided Colorectal Cancer. Journal of Clinical Medicine. 2024; 13(4):937. https://doi.org/10.3390/jcm13040937
Chicago/Turabian StyleKlusek, Justyna, Piotr Lewitowicz, Ruslan Oblap, Ewa Orlewska, Bartosz Witczak, Michał Tomasz Marzec, Monika Kozłowska-Geller, Łukasz Nawacki, Monika Wawszczak-Kasza, Kamila Kocańda, and et al. 2024. "NOS2 Polymorphism in Aspect of Left and Right-Sided Colorectal Cancer" Journal of Clinical Medicine 13, no. 4: 937. https://doi.org/10.3390/jcm13040937
APA StyleKlusek, J., Lewitowicz, P., Oblap, R., Orlewska, E., Witczak, B., Marzec, M. T., Kozłowska-Geller, M., Nawacki, Ł., Wawszczak-Kasza, M., Kocańda, K., Jóźwik, A., & Głuszek, S. (2024). NOS2 Polymorphism in Aspect of Left and Right-Sided Colorectal Cancer. Journal of Clinical Medicine, 13(4), 937. https://doi.org/10.3390/jcm13040937