Soldering in Dentistry: An Updated Technical Review
Abstract
:1. Introduction
2. Welding Application Fields
3. Dental Alloys, Welds and Filler Metals
4. Gas Welds
5. Electric Arc Welding
- -
- Cored wire (flux-cored arc welding): In this method, the electric arc strikes between a metal electrode with a continuous power supply and the base material [37]. The electrode contains a flux, i.e., a chemical cleaning agent which prevents oxidation. In fact, the flux itself is relied upon to generate the necessary protection from the atmosphere, producing both gaseous protection and liquid slag protecting the weld. This process can occur with or without a protective gas.
- -
- MIG and MAG welding. Flux core welding is similar to MIG/MAG welding. In fact, both of these methods use a spool of wire to provide the filler metal to the weld, but the primary difference is in the type of wire [39]. MIG welding uses a solid wire, whereas flux core welding wire is tubular, with the flux contained inside the tube. These acronyms, MIG and MAG, derive from the names “metal inert gas” and “metal active gas.” The MIG or MAG welding process, also known as continuous wire welding, is also similar to TIG. However, it differs in that it has a fusible electrode in the form of a wire, which also forms the filler metal. The difference between MIG and MAG essentially depends on the type of gas used. MIG welding uses inert shielding gases, while MAG welding uses active shielding gases. Inert gases do not take part in the reaction and do not change the result, unlike active gases. In the case of MIG welding, the protective gases are argon and helium. For MAG welding, on the other hand, protective oxidizing gases are used; often mixtures of argon and carbon dioxide [40].
- -
- Shielded Metal Arc Welding: This process, also called manual metal arc (MMA), is a welding process based on a consumable electrode that is also covered by a flux [42]. An electric current, alternating or direct, is used to generate the arc. During execution, the coating of the electrode disintegrates, giving off vapors which serve as a shielding gas and providing a layer of slag. These phenomena both serve to protect the welding area from air contamination. The electrode consists of a core metallic wire covered with silicate binders and other material that may include fluorides, carbonates, oxides, metal alloys and cellulose. The cover is extruded over the wire and then dried in an oven. Although this welding method is one of the most widespread in the world, it is rarely used in the dental field, even in industrial production.
- -
- Submerged Arc Welding: This method requires a solid or tubular electrode (flux cored) with a continuous power supply. The weld pool and arc zone are protected from atmospheric contamination by being immersed in a blanket of fusible granular flow made up of calcium, manganese or silicon oxide. When molten, the flux becomes conductive and provides a path for current between the electrode and the workpiece [43]. This thick layer of flux completely coats the molten metal, preventing splashes and sparks. It also suppresses the intense ultraviolet radiation and fumes that are part of SMAW. Welding can be carried out only in the flat position. This welding method is efficient but has no applications in dentistry.
- -
- TIG welding (Gas tungsten arc welding): TIG welding is an electric arc welding process in an inert atmosphere (Figure 3). The arc is produced by the shielding gas (argon or helium) that comes out of the gun which also carries the electrode. The arc is ignited by a pilot spark, which, by causing ionization of the protective gas, makes it conductive. The electrode is made of tungsten, and given its high melting temperature, it does not melt. This process can take place with or without a filler metal [44].
6. Infrared Welding
7. Laser Welding
8. Electric Spot Welding
9. Intraoral Welding
10. Common Welding Problems
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Da Silveira-Júnior, C.D.; de Castro, M.G.; Davi, L.R.; das Neves, F.D.; Novais, V.R.; Simamoto-Júnior, P.C. Welding techniques in dentistry. In Welding Processes; InTech Open: Rijeka, Croatia, 2012. [Google Scholar]
- Hashemzadeh, M.; Chen, B.Q.; Soares, C.G. Comparison between different heat sources types in thin-plate welding simulation. In Developments in Maritime Transportation and Exploitation of Sea Resources; Taylor & Francis Group: London, UK, 2014; pp. 329–335. [Google Scholar]
- MacEntee, M.I.; Hawbolt, E.B.; Zahel, J.I. The tensile and shear strength of a base metal weld joint used in dentistry. J. Dent. Res. 1981, 60, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Phillips, D.H. Welding Engineering: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2023. [Google Scholar]
- Gomes, D.F. The Applicability of Welding Technologies in the Health Sector: Critical Review; Instituto Superior de Engenharia de Lisboa: Lisbon, Portugal, 2019. [Google Scholar]
- Zinelis, S.; Annousaki, O.; Eliades, T.; Makou, M. Elemental composition of brazing alloys in metallic orthodontic brackets. Angle Orthod. 2004, 74, 394–399. [Google Scholar]
- Ahn, B. Recent advances in brazing fillers for joining of dissimilar materials. Metals 2021, 11, 1037. [Google Scholar] [CrossRef]
- Perveen, A.; Molardi, C.; Fornaini, C. Applications of laser welding in dentistry: A state-of-the-art review. Micromachines 2018, 9, 209. [Google Scholar] [CrossRef] [PubMed]
- Pop, D.M.; Dodenciu, D.; Sinescu, C.; Negrutiu, M.L.; Topala, F.I.; Petrescu, E.L.; Rominu, R.O.; Stoia, A.E.; Rominu, M. Investigations of different types of welding in dental technology. In Proceedings of the Advances in Communications, Computers, Systems, Circuits and Devices, European Conference of Systems, Tenerife, Spain, 30 November 2010; World Scientific and Engineering Academy and Society: Athens, Greece, 2010; pp. 19–22. [Google Scholar]
- Tahir, A.M.; Lair, N.A.; Wei, F.J. Investigation on mechanical properties of welded material under different types of welding filler (shielded metal arc welding). In AIP Conference Proceedings; AIP Publishing: Woodbury, NY, USA, 2018; Volume 1958. [Google Scholar]
- Upadhyay, D.; Panchal, M.A.; Dubey, R.S.; Srivastava, V.K. Corrosion of alloys used in dentistry: A review. Mater. Sci. Eng. A 2006, 432, 1. [Google Scholar] [CrossRef]
- O’Brien, W.J.; Hirthe, W.M.; Ryge, G. Wetting characteristics of dental gold solders. J. Dent. Res. 1963, 42, 675–680. [Google Scholar] [CrossRef]
- Schmalz, G.; Garhammer, P. Biological interactions of dental cast alloys with oral tissues. Dent. Mater. 2002, 18, 396–406. [Google Scholar] [CrossRef]
- Wataha, J.C. Biocompatibility of dental casting alloys: A review. J. Prosthet. Dent. 2000, 83, 223–234. [Google Scholar] [CrossRef]
- Hildebrand, H.F.; Veron, C.; Martin, P. Nickel, chromium, cobalt dental alloys and allergic reactions: An overview. Biomaterials 1989, 10, 545–548. [Google Scholar] [CrossRef]
- Vaicelyte, A.; Janssen, C.; Le Borgne, M.; Grosgogeat, B. Cobalt–Chromium dental alloys: Metal exposures, toxicological risks, CMR classification, and EU regulatory framework. Crystals 2020, 10, 1151. [Google Scholar] [CrossRef]
- Nicholson, J.W. Titanium alloys for dental implants: A review. Prosthesis 2020, 2, 11. [Google Scholar] [CrossRef]
- Matos, I.C.; Bastos, I.N.; Diniz, M.G.; de Miranda, M.S. Corrosion in artificial saliva of a Ni-Cr-based dental alloy joined by TIG welding and conventional brazing. J. Prosthet. Dent. 2015, 114, 278–285. [Google Scholar] [CrossRef]
- Legat, A.; Funduk, N. Tensile strength and corrosion resistance of brazed and laser-welded cobalt-chromium alloy joints. J. Prosthet. Dent. 2006, 96, 273–282. [Google Scholar]
- Byrne, G. Soldering in prosthodontics—An overview, part I. J. Prosthodont. Implant Esthet. Reconstr. Dent. 2011, 20, 233–243. [Google Scholar] [CrossRef]
- Saeed, A.M.; Hussain, Z.; Badri, A.; Ariga, T. The effects of welding parameters on the weldability of different materials using brazing alloy fillers. Mater. Des. 2010, 31, 3339–3345. [Google Scholar] [CrossRef]
- Kou, S. Fluid flow and solidification in welding: Three decades of fundamental research at the University of Wisconsin. Weld. J. 2012, 91, 287S–302S. [Google Scholar]
- Reimann, L.; Brytan, Z.; Jania, G. Influence of Filler Metal on Electrochemical Characteristics of a Laser-Welded CoCrMoW Alloy Used in Prosthodontics. Materials 2022, 15, 5721. [Google Scholar] [CrossRef] [PubMed]
- Bobzin, K.; Lugscheider, E.; Ernst, F.; Rösing, J.; Ferrara, S. Challenging gold based filler metals for uses in medicine. Mater. Sci. Technol. 2009, 25, 1422. [Google Scholar] [CrossRef]
- Taylor, N.O.; Teamer, C.K. Gold solders for dental use. J. Dent. Res. 1949, 28, 219–227. [Google Scholar] [CrossRef]
- Singh, R.P.; Kumar, S.; Dubey, S.; Singh, A. A review on working and applications of oxy-acetylene gas welding. Mater. Today Proc. 2021, 38, 34–39. [Google Scholar] [CrossRef]
- Bhatia, A. Fundamentals of Gas Cutting and Welding; Continuing Education and Development, Inc.: Woodcliff Lake, NJ, USA, 2011. [Google Scholar]
- Sharma, S.; Sheoran, G.; Shakher, C. Investigation of temperature and temperature profile in axi-symmetric flame of butane torch burner using digital holographic interferometry. Opt. Lasers Eng. 2012, 50, 1436–1444. [Google Scholar] [CrossRef]
- Compressed Gas Association. Handbook of Compressed Gases; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Myers, R.L. The 100 Most Important Chemical Compounds: A Reference Guide; ABC-CLIO: Santa Barbara, CA, USA, 2007. [Google Scholar]
- Parkin, N.; Flood, C.R. Welding Craft Practice: Oxy-Acetylene Gas Welding and Related Studies; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Kumar, R.K. HHO Generation & Its Application on Welding. Int. J. Sci. Res. Dev. 2017, 5, 2321-0613. [Google Scholar]
- Suban, M.; Tušek, J.; Uran, M. Use of hydrogen in welding engineering in former times and today. J. Mater. Process. Technol. 2001, 119, 193–198. [Google Scholar] [CrossRef]
- Ursua, A.; Gandia, L.M.; Sanchis, P. Hydrogen production from water electrolysis: Current status and future trends. Proc. IEEE 2011, 100, 410–426. [Google Scholar] [CrossRef]
- Stade, E.H.; Reisbick, M.H.; Preston, J.D. Preceramic and postceramic solder joints. J. Prosthet. Dent. 1975, 34, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Dobraš, D.; Petrović, Ž.; Božičković, Z. Brown’s gas–heat source for welding. In Proceedings of the 11th International Conference on Accomplishments in Electrical and Mechanical Engineering and Information Technology, Banja Luka, Bosnia and Herzegovina, 30 May–1 June 2013. [Google Scholar]
- Kannan, T.; Murugan, N. Effect of flux cored arc welding process parameters on duplex stainless steel clad quality. J. Mater. Process. Technol. 2006, 176, 230–239. [Google Scholar] [CrossRef]
- Aloraier, A.; Almazrouee, A.; Shehata, T.; Price, J.W. Role of welding parameters using the flux cored arc welding process of low alloy steels on bead geometry and mechanical properties. J. Mater. Eng. Perform. 2012, 21, 540–547. [Google Scholar] [CrossRef]
- Weman, K.; Lindén, G. (Eds.) MIG Welding Guide; Woodhead Publishing: Sawston, UK, 2006. [Google Scholar]
- Karayel, E.; Bozkurt, Y. Additive manufacturing method and different welding applications. J. Mater. Res. Technol. 2020, 9, 11424–11438. [Google Scholar] [CrossRef]
- Groetelaars, P.J.; Morais, C.O.; Scotti, A. Influence of the arc length on metal transfer in the single potential double-wire MIG/MAG process. Weld. Int. 2009, 23, 112–119. [Google Scholar] [CrossRef]
- Radhakrishnan, V.M. Welding Technology and Design; New Age International: Delhi, India, 2005. [Google Scholar]
- Singh, A.; Singh, R.P. A review of effect of welding parameters on the mechanical properties of weld in submerged arc welding process. Mater. Today Proc. 2020, 26, 1714–1717. [Google Scholar] [CrossRef]
- Jeyaprakash, N.; Haile, A.; Arunprasath, M. The parameters and equipments used in TIG welding: A review. Int. J. Eng. Sci. 2015, 4, 11–20. [Google Scholar]
- Castro, G.C.; Araújo, C.A.; Mesquita, M.F.; Consani, R.L.; Nóbilo, M.A. Stress distribution in Co-Cr implant frameworks after laser or TIG welding. Braz. Dent. J. 2013, 24, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Shenoy, A.; Ahmed, N.; Rajaraman, V.; Maiti, S.; Ganapathy, D.M. Comparative analysis of weld strength of nickel-chromium and cobalt-chromium base metal alloys when submitted to tungsten inert gas welding. J. Adv. Pharm. Technol. Res. 2022, 13, 442. [Google Scholar]
- Júnior, P.C.; Novais, V.R.; Machado, A.R.; Soares, C.J.; Raposo, L.H. Effect of joint design and welding type on the flexural strength and weld penetration of Ti-6Al-4V alloy bars. J. Prosthet. Dent. 2015, 113, 467–474. [Google Scholar] [CrossRef] [PubMed]
- de Castro Silverio, M.G.; Menegaz, G.L.; Araújo, C.A.; da Silva Júnior, W.M.; Júnior, P.C. Evaluation of TIG dental welding applied to Ti-6Al-4V alloys with different diameters: Analysis by Ultimate Tensile Strength, Vickers Hardness, and Finite Element Method. Res. Soc. Dev. 2021, 10, e29110916481. [Google Scholar] [CrossRef]
- Singh, S.R.; Khanna, P. A-TIG (activated flux tungsten inert gas) welding—A review. Mater. Today Proc. 2021, 44, 808–820. [Google Scholar] [CrossRef]
- Rocha, R.; Pinheiro, A.L.; Villaverde, A.B. Flexural strength of pure Ti, Ni-Cr and Co-Cr alloys submitted to Nd: YAG laser or TIG welding. Braz. Dent. J. 2006, 17, 20–23. [Google Scholar] [CrossRef]
- Dobranszky, J.; Bernath, A.; Marton, H. Characterisation of the plasma shape of the TIG welding arc. Int. J. Microstruct. Mater. Prop. 2008, 3, 126–140. [Google Scholar] [CrossRef]
- Wang, R.R.; Welsch, G.E. Joining titanium materials with tungsten inert gas welding, laser welding, and infrared brazing. J. Prosthet. Dent. 1995, 74, 521–530. [Google Scholar] [CrossRef]
- Ohsawa, H.; Hagiwara, Y.; Honda, Y.; Hanamura, S.; Nebashi, N.; Yamazaki, D.; Kameda, T.; Igarashi, T. A study of dental soldering.(10) The temperature distribution of infra-red soldering machine. Nihon Hotetsu Shika Gakkai Zasshi 1990, 34, 599–608. [Google Scholar] [CrossRef]
- Dominici, J.T.; Sobczak, K.P.; Mitchell, R.J. A Comparison of Infrared-and Torch-Soldering of Au-Pd and Co-Cr Metal-Ceramic Alloys Using a High-Fusing Solder. J. Prosthodont. 1995, 4, 101–110. [Google Scholar] [CrossRef]
- Shiue, R.K.; Wu, S.K.; Chen, S.Y. Infrared brazing of TiAl using Al-based braze alloys. Intermetallics 2003, 11, 661–671. [Google Scholar] [CrossRef]
- Cheng, A.C.; Chai, J.Y.; Gilbert, J.; Jameson, L.M. Investigation of stiffness and microstructure of joints soldered with gas-oxygen torch infrared methods. J. Prosthet. Dent. 1994, 72, 8–15. [Google Scholar] [CrossRef]
- Cheng, A.C.; Chai, J.Y.; Gilbert, J.; Jameson, L.M. Mechanical properties of metal connectors soldered by gas torch versus an infrared technique. J. Prosthodont. 1993, 2, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, G.; Wagnild, G.; Marshall, G.; Watanabe, L. Comparison of tensile strength of solder joints by infrared and conventional torch technique. J. Prosthet. Dent. 1992, 68, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Byrne, G.; Laub, L.W.; Hu, J.Y.; Land, M.F. The fit of fixed partial dentures joined by infrared soldering. J. Prosthet. Dent. 1992, 68, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, C.; Le Petitcorps, Y.; Albingre, L.; Dupuis, V. Optimization of operator and physical parameters for laser welding of dental materials. Br. Dent. J. 2004, 196, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Ardelean, L.C.; Reclaru, L.; Bortun, C.M.; Ghiban, B. Laser welding of different dental alloys. In Superalloys For Industry Applications; InTech: London, UK, 2018; pp. 85–107. [Google Scholar]
- Sjögren, G.; Andersson, M.; Bergman, M. Laser welding of titanium in dentistry. Acta Odontol. Scand. 1988, 46, 247–253. [Google Scholar] [CrossRef]
- Varghese, S.; Bhat, V.; Joseph, S. Laser welding of dental alloys: A systematic overview. Libyan Dent. J. 2014, 4. [Google Scholar] [CrossRef]
- Ferraris, S.; Spriano, S.; Lorenzon, G. Intraoral welding of titanium dental implants: Characterization of the joints. J. Mater. Process. Technol. 2016, 235, 85–91. [Google Scholar] [CrossRef]
- Jain, S.; Vibhute, P.K.; Patil, C.; Umale, V.; Kulshrestha, R.; Chandurkar, K. Laser welding in orthodontics: A review study. J. Dent. Health Oral Res. 2020, 1, 1–4. [Google Scholar] [CrossRef]
- Bertrand, C.; Le Petitcorps, Y.; Albingre, L.; Dupuis, V. The laser welding technique applied to the non precious dental alloys procedure and results. Br. Dent. J. 2001, 190, 255–257. [Google Scholar] [CrossRef]
- Bertrand, C.; Poulon-Quintin, A. Temporal pulse shaping: A key parameter for the laser welding of dental alloys. Lasers Med. Sci. 2015, 30, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Watanabe, I.; Yoshida, K.; Atsuta, M. Joint strength of laser-welded titanium. Dent. Mater. 2002, 18, 143–148. [Google Scholar] [CrossRef]
- Nascimento, L.E.; Santos, R.L.; Pithon, M.M.; Araújo, M.T.; Nojima, M.G.; Nojima, L.I. The effect of electric spot-welding on the mechanical properties of different orthodontic wire alloys. Mater. Res. 2012, 15, 409–414. [Google Scholar] [CrossRef]
- Mesquita, T.R.; Martins, L.P.; Martins, R.P. Welding strength of NiTi wires. Dent. Press J. Orthod. 2018, 23, 58–62. [Google Scholar] [CrossRef]
- Rossi, F.; Pasqualini, M.E.; Dal Carlo, L.; Shulman, M.; Nardone, M.; Winkler, S. Immediate loading of maxillary one-piece screw implants utilizing intraoral welding: A case report. J. Oral Implantol. 2015, 41, 473–475. [Google Scholar] [CrossRef] [PubMed]
- Strub, J.R.; Jurdzik, B.A.; Tuna, T. Prognosis of immediately loaded implants and their restorations: A systematic literature review. J. Oral Rehabil. 2012, 39, 704–717. [Google Scholar] [CrossRef] [PubMed]
- Avvanzo, P.; Fabrocini, L.A.; Ciavarella, D.; Avvanzo, A.; Muzio, L.L.; De Maio, R.A. Use of intraoral welding to stabilize dental implants in augmented sites for immediate provisionalization: A case report. J. Oral Implantol. 2012, 38, 33–41. [Google Scholar] [CrossRef]
- Degidi, M.; Nardi, D.; Piattelli, A. Prospective study with a 2-year follow-up on immediate implant loading in the edentulous mandible with a definitive restoration using intra-oral welding. Clin. Oral Implant. Res. 2010, 21, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Degidi, M.; Nardi, D.; Piattelli, A. A six-year follow-up of full-arch immediate restorations fabricated with an intraoral welding technique. Implant Dent. 2013, 22, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Ceschini, L.; Boromei, I.; Morri, A.; Nardi, D.; Sighinolfi, G.; Degidi, M. Microstructural characterization and hardness properties of electric resistance welding titanium joints for dental applications. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2015, 229, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Iijima, M.; Brantley, W.A.; Yuasa, T.; Kawashima, I.; Mizoguchi, I. Joining characteristics of β-titanium wires with electrical resistance welding. J. Biomed. Mater. Res. Part B 2008, 85, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Hruska, A.R.; Borelli, P. Quality criteria for pure titanium casting, laboratory soldering, intraoral welding, and a device to aid in making uncontaminated castings. J. Prosthet. Dent. 1991, 66, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Fornaini, C.; Vescovi, P.; Merigo, E.; Rocca, J.P.; Mahler, P.; Bertrand, C.; Nammour, S. Intraoral metal laser welding: A case report. Lasers Med. Sci. 2010, 25, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Weman, K. Welding Processes Handbook; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Wang, G.; Liao, T.W. Automatic identification of different types of welding defects in radiographic images. Ndt E Int. 2002, 35, 519–528. [Google Scholar] [CrossRef]
- Nasir, N.S.; Razab, M.K.; Mamat, S.; Iqbal, M. Review on welding residual stress. Stress 2006, 2, 8–10. [Google Scholar]
- Steinman, R.R. Warpage produced by soldering with dental solders and gold alloys. J. Prosthet. Dent. 1954, 4, 384–395. [Google Scholar] [CrossRef]
- Finch, D.M.; Burdekin, F.M. Effects of welding residual stresses on significance of defects in various types of welded joint. Eng. Fract. Mech. 1992, 41, 721–735. [Google Scholar] [CrossRef]
- Nitschke-Pagel, T.; Wohlfahrt, H. Residual stresses in welded joints–sources and consequences. In Materials Science Forum; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2002; Volume 404, pp. 215–226. [Google Scholar]
- Yushchenko, K.; Savchenko, V.; Chervyakov, N.; Zvyagintseva, A.; Guyot, E. Comparative hot cracking evaluation of welded joints of alloy 690 using filler metals InconelSr 52 and 52 Mss. Weld. World 2011, 55, 28–35. [Google Scholar] [CrossRef]
- Pokhodnya, I.K.; Shvachko, V.I. Cold cracks in welded joints of structural steels. Mater. Sci. 1996, 32, 45–55. [Google Scholar] [CrossRef]
- Dhas, J.E.; Dhas, S.J. A review on optimization of welding process. Procedia Eng. 2012, 38, 544–554. [Google Scholar] [CrossRef]
- Da Silva, R.R.; Siqueira, M.H.; de Souza, M.P.; Rebello, J.M.; Calôba, L.P. Estimated accuracy of classification of defects detected in welded joints by radiographic tests. NDT E Int. 2005, 38, 335–343. [Google Scholar] [CrossRef]
Soldering | Brazing | Welding | |
---|---|---|---|
Temperatures | 450 °C | 600 °C | 3800 °C |
Fusion of filler material only | Heating below the melting point of the pieces to be joined | Heating above the melting point of the pieces to be joined | |
Filler metal | Yes | Yes | Often used |
Mechanical resistance | Poor [no changes] | Good [negligible changes] | Optimal [usually improved] |
Field of application | Electronic devices | When the joint does not provide a space between the pieces to be joined | Every field where high mechanical resistance is required |
Post-welding heat treatments | Not necessary | Not necessary | Yes |
Preheating | Required | Required | Sometimes required depending on the technique used |
Skill | Low | Medium | High |
Cost | Medium | Medium | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cumbo, E.; Gallina, G.; Messina, P.; Bilello, G.; Isaqali Karobari, M.; Scardina, G.A. Soldering in Dentistry: An Updated Technical Review. J. Clin. Med. 2024, 13, 809. https://doi.org/10.3390/jcm13030809
Cumbo E, Gallina G, Messina P, Bilello G, Isaqali Karobari M, Scardina GA. Soldering in Dentistry: An Updated Technical Review. Journal of Clinical Medicine. 2024; 13(3):809. https://doi.org/10.3390/jcm13030809
Chicago/Turabian StyleCumbo, Enzo, Giuseppe Gallina, Pietro Messina, Giuseppa Bilello, Mohmed Isaqali Karobari, and Giuseppe Alessandro Scardina. 2024. "Soldering in Dentistry: An Updated Technical Review" Journal of Clinical Medicine 13, no. 3: 809. https://doi.org/10.3390/jcm13030809
APA StyleCumbo, E., Gallina, G., Messina, P., Bilello, G., Isaqali Karobari, M., & Scardina, G. A. (2024). Soldering in Dentistry: An Updated Technical Review. Journal of Clinical Medicine, 13(3), 809. https://doi.org/10.3390/jcm13030809