Lifestyle and Lipoprotein(a) Levels: Does a Specific Counseling Make Sense?
Abstract
:1. Introduction
2. Dietary Intervention
2.1. Weight Loss and Lp(a) Levels
2.2. Dietary Fats
2.3. Popular Beverages
3. Nutraceutical Supplementation
3.1. L-Carnitine
3.2. Coenzyme Q10
3.3. Flaxseeds
3.4. Curcumin
4. Physical Activity
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capo-danno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies With the special contribution of the European Association of Preventive Cardiology (EAPC). Rev. Esp. Cardiol. (Engl. Ed.) 2022, 75, 429. [Google Scholar] [CrossRef] [PubMed]
- Tada, H.; Yamagami, K.; Sakata, K.; Usui, S.; Kawashiri, M.A.; Takamura, M. Healthy lifestyle, lipoprotein (a) levels and the risk of coronary artery disease. Eur. J. Clin. Investig. 2023, 54, e14093. [Google Scholar] [CrossRef] [PubMed]
- Koschinsky, M.L.; Kronenberg, F. The long journey of lipoprotein (a) from cardiovascular curiosity to therapeutic target. Atherosclerosis 2022, 349, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Arsenault, B.J.; Kamstrup, P.R. Lipoprotein (a) and cardiovascular and valvular diseases: A genetic epidemiological perspec-tive. Atherosclerosis 2022, 349, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Baars, D.P.; Desai, R.; Singh, D.; Pinto-Sietsma, S.J. Association between Lipoprotein (a) and risk of atrial fibrillation: A Systematic Review and Meta-analysis of Mendelian Randomization Studies. Curr. Probl. Cardiol. 2023, 49 Pt A, 102024. [Google Scholar] [CrossRef]
- Amiri, M.; Raeisi-Dehkordi, H.; Verkaar, A.J.C.F.; Wu, Y.; van Westing, A.C.; Berk, K.A.; Bramer, W.M.; Aune, D.; Voortman, T. Circulating lipoprotein (a) and all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis. Eur. J. Epidemiol. 2023, 38, 485–499. [Google Scholar] [CrossRef] [PubMed]
- Fogacci, F.; Di Micoli, V.; Avagimyan, A.; Giovannini, M.; Imbalzano, E.; Cicero, A.F.G. Assessment of Apolipoprotein (a) Isoform Size Using Phenotypic and Genotypic Methods. Int. J. Mol. Sci. 2023, 24, 13886. [Google Scholar] [CrossRef]
- Banach, M. Lipoprotein (a): The enemy that we still don’t know how to defeat. Eur. Heart J. Open 2023, 3, oead080. [Google Scholar] [CrossRef]
- Sukkari, M.H.; Al-Bast, B.; Al Tamimi, R.; Giesing, W.; Siddique, M. Is there a benefit of aspirin therapy for primary prevention to reduce the risk of atherosclerotic cardiovascular disease in patients with elevated Lipoprotein (a)—A review of the evidence. Am. J. Prev. Cardiol. 2023, 15, 100579. [Google Scholar] [CrossRef]
- Alhomoud, I.S.; Talasaz, A.; Mehta, A.; Kelly, M.S.; Sisson, E.M.; Bucheit, J.D.; Brown, R.; Dixon, D.L. Role of lipoprotein (a) in atherosclerotic cardiovascular disease: A review of current and emerging therapies. Pharmacotherapy 2023, 43, 1051–1063. [Google Scholar] [CrossRef]
- Kosmas, C.E.; Bousvarou, M.D.; Papakonstantinou, E.J.; Tsamoulis, D.; Koulopoulos, A.; Echavarria Uceta, R.; Guzman, E.; Rallidis, L.S. Novel Pharmacological Therapies for the Management of Hyperlipoproteinemia(a). Int. J. Mol. Sci. 2023, 24, 13622. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.J.; Nissen, S.E.; Fleming, C.; Urva, S.; Suico, J.; Berg, P.H.; Linnebjerg, H.; Ruotolo, G.; Turner, P.K.; Michael, L.F. Muvalaplin, an Oral Small Molecule Inhibitor of Lipoprotein (a) Formation: A Randomized Clinical Trial. J. Am. Med. Assoc. 2023, 330, 1042–1053. [Google Scholar] [CrossRef]
- Christensen, P.; Larsen, T.M.; Westerterp-Plantenga, M.; Macdonald, I.; Martinez, J.A.; Handjiev, S.; Poppitt, S.; Hansen, S.; Ritz, C.; Astrup, A.; et al. Men and women respond differently to rapid weight loss: Metabolic outcomes of a multi-centre intervention study after a low-energy diet in 2500 overweight, individuals with pre-diabetes (PREVIEW). Diabetes Obes. Metab. 2018, 20, 2840–2851. [Google Scholar] [CrossRef] [PubMed]
- Harder, H.; Dinesen, B.; Astrup, A. The effect of a rapid weight loss on lipid profile and glycemic control in obese type 2 diabetic patients. Int. J. Obes. Relat. Metab. Disord. 2004, 28, 180–182. [Google Scholar] [CrossRef]
- Heffron, S.P.; Parikh, A.; Volodarskiy, A.; Ren-Fielding, C.; Schwartzbard, A.; Nicholson, J.; Bangalore, S. Changes in lipid profile of obese patients following contemporary bariatric surgery: A meta-analysis. Am. J. Med. 2016, 129, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Spivak, H.; Sakran, N.; Dicker, D.; Rubin, M.; Raz, I.; Shohat, T.; Blumenfeld, O. Different effects of bariatric surgical procedures on dyslipidemia: A registry-based analysis. Surg. Obes. Relat. Dis. 2017, 13, 1189–1194. [Google Scholar] [CrossRef]
- Mulla, C.M.; Middelbeek, R.J.W.; Patti, M.-E. Mechanisms of weight loss and improved metabolism following bariatric sur-gery. Ann. N. Y. Acad. Sci. 2018, 1411, 53–64. [Google Scholar] [CrossRef]
- Kiortsis, D.N.; Tzotzas, T.; Giral, P.; Bruckert, E.; Beucler, I.; Valsamides, S.; Turpin, G. Changes in lipoprotein (a) levels and hormonal correlations during a weight reduction program. Nutr. Metab. Cardiovasc. Dis. 2001, 11, 153–157. [Google Scholar]
- Berk, K.A.; Yahya, R.; Verhoeven, A.J.M.; Touw, J.; Leijten, F.P.; van Rossum, E.F.; Wester, V.L.; Lips, M.A.; Pijl, H.; Timman, R.; et al. Effect of diet-induced weight loss on lipopro-tein(a) levels in obese individuals with and without type 2 diabetes. Diabetologia 2017, 60, 989–997. [Google Scholar] [CrossRef]
- Berk, K.A.; Borgeraas, H.; Narverud, I.; Mulder, M.T.; Øyri, L.K.L.; Verhoeven, A.J.M.; Småstuen, M.C.; Bogsrud, M.P.; Omland, T.; Hertel, J.K.; et al. Differential effects of bariatric surgery and lifestyle interventions on plasma levels of Lp(a) and fatty acids. Lipids Health Dis. 2022, 21, 145. [Google Scholar] [CrossRef]
- Gómez-Martin, J.M.; Balsa, J.A.; Aracil, E.; Cuadrado-Ayuso, M.; Rosillo, M.; De la Peña, G.; Lasunción, M.A.; Escobar-Morreale, H.F.; Botella-Carretero, J.I. Beneficial changes on plasma apolipoproteins A and B, high density lipoproteins and oxidized low density lipoproteins in obese women after bariatric surgery: Comparison between gastric bypass and sleeve gastrectomy. Lipids Health Dis. 2018, 17, 145. [Google Scholar] [CrossRef]
- Paredes, S.; Alves, M.; Lopes Pereira, M.; Marques, O.; Ribeiro, L. Lipoprotein (a) Change After Sleeve Gastrectomy Is Affected by the Presence of Metabolic Syndrome. Obes. Surg. 2020, 30, 545–552. [Google Scholar] [CrossRef]
- Scholl, J.G. Does a ketogenic diet lower a very high Lp(a)? A striking experiment in a male physician. BMJ Nutr. Prev. Health 2020, 3, 413–415. [Google Scholar] [CrossRef] [PubMed]
- Ebbeling, C.B.; Knapp, A.; Johnson, A.; Wong, J.M.W.; Greco, K.F.; Ma, C.; Mora, S.; Ludwig, D.S. Effects of a low-carbohydrate diet on insulin-resistant dyslipoproteinemia-a randomized controlled feeding trial. Am. J. Clin. Nutr. 2022, 115, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Cipryan, L.; Litschmannova, M.; Maffetone, P.B.; Plews, D.J.; Dostal, T.; Hofmann, P.; Laursen, P.B. Very Low-Carbohydrate High-Fat Diet Improves Risk Markers for Cardiometabolic Health More Than Exercise in Men and Women with Overfat Constitution: Secondary Analysis of a Randomized Controlled Clinical Trial. Front. Nutr. 2022, 9, 867690. [Google Scholar] [CrossRef]
- Kronenberg, F.; Mora, S.; Stroes, E.S.G.; Ference, B.A.; Arsenault, B.J.; Berglund, L.; Dweck, M.R.; Koschinsky, M.; Lambert, G.; Mach, F.; et al. Lipoprotein (a) in atherosclerotic cardiovascular disease and aortic stenosis: A European Atherosclerosis Society consensus statement. Eur. Heart J. 2022, 43, 3925–3946. [Google Scholar] [CrossRef] [PubMed]
- Seidelmann, S.B.; Claggett, B.; Cheng, S.; Henglin, M.; Shah, A.; Steffen, L.M.; Folsom, A.R.; Rimm, E.B.; Willett, W.C.; Solomon, S.D. Dietary carbohydrate intake and mortality: A prospective cohort study and meta-analysis. Lancet Public Health 2018, 3, e419–e428. [Google Scholar] [CrossRef] [PubMed]
- Richter, C.K.; Skulas-Ray, A.C.; Champagne, C.M.; Kris-Etherton, P.M. Plant protein and animal proteins: Do they differen-tially affect cardiovascular disease risk? Adv. Nutr. 2015, 6, 712–728. [Google Scholar] [CrossRef]
- Ros, E.; Martínez-González, M.A.; Estruch, R.; Salas-Salvadó, J.; Fitó, M.; Martínez, J.A.; Corella, D. Mediterranean diet and cardiovascular health: Teachings of the PREDIMED study. Adv. Nutr. 2014, 5, 330S–336S. [Google Scholar] [CrossRef]
- Najjar, R.S.; Moore, C.E.; Montgomery, B.D. Consumption of a defined, plant-based diet reduces lipoprotein (a), inflammation, and other atherogenic lipoproteins and particles within 4 weeks. Clin. Cardiol. 2018, 41, 1062–1068. [Google Scholar] [CrossRef]
- Wang, D.D.; Li, Y.; Chiuve, S.E.; Stampfer, M.J.; Manson, J.E.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Association of specific dietary fats with total and cause-specific mortality. JAMA Intern. Med. 2016, 176, 1134–1145. [Google Scholar] [CrossRef]
- Chen, G.-C.; Zhang, R.; Martínez-González, M.A.; Zhang, Z.-L.; Bonaccio, M.; van Dam, R.B.; Qin, L.-Q. Nut consumption in relation to all-cause and cause-specific mortality: A meta-analysis 18 prospective studies. Food Funct. 2017, 8, 3893–3905. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Li, J.; Hu, F.B.; Salas-Salvadó, J.; Tobias, D.K. Effects of walnut consumption on blood lipids and other cardiovascular risk factors: An updated meta-analysis and systematic review of controlled trials. Am. J. Clin. Nutr. 2018, 108, 174–187. [Google Scholar] [CrossRef]
- Bamberger, C.; Rossmeier, A.; Lechner, K.; Wu, L.; Waldmann, E.; Stark, R.G.; Altenhofer, J.; Henze, K.; Parhofer, K.G. A walnut-enriched diet reduces lipids in healthy Caucasian subjects, independent of recommended macronutrient replacement and time point of consumption: A prospective, randomized, controlled trial. Nutrients 2017, 9, 1097. [Google Scholar] [CrossRef]
- Nora, C.L.; Zhang, L.; Castro, R.J.; Marx, A.; Carman, H.B.; Lum, T.; Tsimikas, S.; Hong, M.Y. Effects of mixed nut consumption on LDL cholesterol, lipoprotein (a), and other cardiometabolic risk factors in overweight and obese adults. Nutr. Metab. Car-Diovasc. Dis. 2023, 33, 1529–1538. [Google Scholar] [CrossRef] [PubMed]
- Matveyenko, A.; Seid, H.; Kim, K.; Ramakrishnan, K.; Thomas, T.; Matienzo, N.; Reyes-Soffer, G. Association of free-living diet composition with plasma lipoprotein (a) levels in healthy adults. Lipids Health Dis. 2023, 22, 144. [Google Scholar] [CrossRef] [PubMed]
- Müller, H.; Lindman, A.S.; Blomfeldt, A.; Seljeflot, I.; Pedersen, J.I. A diet rich in coconut oil reduces diurnal postprandial variations in circulating tissue plasminogen activator antigen and fasting lipoprotein (a) compared with a diet rich in un-saturated fat in women. J. Nutr. 2003, 133, 3422–3427. [Google Scholar] [CrossRef] [PubMed]
- Loganathan, R.; Nagapan, G.; Teng, K.T.; Voon, P.T.; Yap, S.Y.; Ng, Y.T.; Ng, T.K.W.; Choo, Y.M.; Ong, A.S.H.; Ong, S.H.; et al. Diets enriched with palm olein, cocoa butter, and extra virgin olive oil exhibited similar lipid response: A randomized controlled study in young healthy adults. Nutr. Res. 2022, 105, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Harcombe, Z. US dietary guidelines: Is saturated fat a nutrient of concern? Br. J. Sports Med. 2018, 53, 1393–1396. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G.; et al. Dietary fats and cardiovascular disease: A presidential advisory from the American Heart Association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef] [PubMed]
- Lichtenstein, A.L. Trans fatty acids and blood lipid levels, Lp(a), parameters of cholesterol metabolism, and hemostatic factors. J. Nutr. Biochem. 1998, 9, 244–248. [Google Scholar] [CrossRef]
- Clevidence, B.A.; Judd, J.T.; Schaefer, E.J.; Jenner, J.L.; Lichtenstein, A.H.; Muesing, R.A.; Wittes, J.; Sunkin, M.E. Plasma lipo-protein (a) levels in men and women consuming diets enriched in saturated, cis-, or trans-monounsaturated fatty acids. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 1657–1661. [Google Scholar] [CrossRef]
- Almendingen, K.; Jordal, O.; Kierulf, P.; Sandstad, B.; Pedersen, J.I. Effects of partially hydrogenated fish oil, partially hy-drogenated soybean oil, and butter on serum lipoproteins and Lp[a] in men. J. Lipid Res. 1995, 36, 1370–1384. [Google Scholar] [CrossRef]
- Chisholm, A.; Mann, J.; Sutherland, W.; Duncan, A.; Skeaff, M.; Frampton, C. Effect on lipoprotein profile of replacing butter with margarine in a low fat diet: Randomised crossover study with hypercholesterolemic subjects. BMJ 1996, 312, 931–934. [Google Scholar] [CrossRef]
- Bozzetto, L.; De Natale, C.; Di Capua, L.; Della Corte, G.; Patti, L.; Maione, S.; Riccardi, G.; Rivellese, A.A.; Annuzzi, G. The association of hs-CRP with fasting and postprandial plasma lipids in patients with type 2 diabetes is disrupted by dietary monounsaturated fatty acids. Acta Diabetol. 2013, 50, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Higgins, V.; Adeli, K. Postprandial dyslipidemia: Pathophysiology and cardiovascular disease risk assessment. eJIFCC 2017, 28, 168–184. [Google Scholar] [PubMed]
- Paniagua, J.A.; de la Sacristana, A.G.; Sánchez, E.; Romero, I.; Vidal-Puig, A.; Berral, F.J.; Escribano, A.; Moyano, M.J.; Peréz-Martinez, P.; López-Miranda, J.; et al. A MUFA-rich diet improves postprandial glucose, lipid and GLP-1 responses in insulin- resistant subjects. J. Am. Coll. Nutr. 2007, 26, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Tsofliou, F.; Fyfe, C.L.; Matheson, I.; Jackson, D.M.; Horgan, G.W.; Wahle, K.W.J.; Ahren, B.; Williams, L.M.; Sneddon, A.A. Modulation of fasted and postprandial plasma lipids in healthy volunteers by a dietary mixture of omega-3 fatty acids and conjugated linoleic acid. J. Food Lipids 2009, 16, 499–513. [Google Scholar] [CrossRef]
- Tholstrup, T.; Samman, S. Postprandial lipoprotein (a) is affected differently by specific individual dietary fatty acids in healthy young men. J. Nutr. 2004, 134, 2550–2555. [Google Scholar] [CrossRef] [PubMed]
- Brunkwall, L.; Almgren, P.; Hellstrand, S.; Orho-Melander, M.; Ericson, U. Commonly consumed beverages associate with different lifestyle and dietary intakes. Int. J. Food Sci. Nutr. 2019, 70, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Mukhtar, H. Tea and health: Studies in humans. Curr. Pharm. Des. 2013, 19, 6141–6147. [Google Scholar] [CrossRef]
- Nova, E.; Baccan, G.C.; Veses, A.; Zapatera, B.; Marcos, A. Potential health benefits of moderate alcohol consumption: Current perspectives in research. Proc. Nutr. Soc. 2012, 71, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; Judd, J.T.; Baer, D.J.; Clevidence, B.A.; Paul, D.R.; Edwards, A.J.; Wiseman, S.A.; Muesing, R.A.; Chen, S.C. Black tea consumption reduces total and LDL cholesterol in mildly hypercholesterolemic adults. J. Nutr. 2003, 133, 3298S–3302S. [Google Scholar] [CrossRef]
- Mozaffari-Khosravi, H.; Jalali-Khanabadi, B.-A.; Afkhami-Ardekani, M.; Fatehi, F. Effects of sour tea (Hibiscus sabdariffa) on lipid profile and lipoproteins in patients with type II diabetes. J. Altern. Complement. Med. 2009, 15, 899–903. [Google Scholar] [CrossRef]
- Miranda, A.M.; Steluti, J.; Goulart, A.C.; Benseñor, I.M.; Lotufo, P.A.; Marchioni, D.M. Coffee consumption and coronary artery calcium score: Cross-sectional results of ELSA-Brasil (Brazilian Longitudinal Study of Adult Health). J. Am. Heart Assoc. 2018, 7, e007155. [Google Scholar] [CrossRef]
- Pang, J.; Zhang, Z.; Zheng, T.-Z.; Bassig, B.A.; Mao, C.; Liu, X.; Zhu, Y.; Shi, K.; Ge, J.; Yang, Y.-J.; et al. Green tea consumption and risk of cardiovascular and ischemic related diseases: A meta-analysis. Int. J. Cardiol. 2016, 202, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Cui, L.; Zhu, J.; Wang, K.; Sun, N.; Sun, C. Coffee consumption and risk of hypertension: A systematic review and dose-response meta-analysis of cohort studies. J. Hum. Hypertens. 2018, 32, 83–93. [Google Scholar] [CrossRef]
- Zhang, C.; Qin, Y.-Y.; Wei, X.; Yu, F.-F.; Zhou, Y.-H.; He, J. Tea consumption and risk of cardiovascular outcomes and total mortality: A systematic review and meta-analysis of prospective observational studies. Eur. J. Epidemiol. 2015, 30, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Urgert, R.; Weusten-van der Wouw, M.P.; Hovenier, R.; Meyboom, S.; Beynen, A.C.; Katan, M.B. Diterpenes from coffee beans decrease serum levels of lipoprotein (a) in humans: Results from four randomised controlled trials. Eur. J. Clin. Nutr. 1997, 51, 431–436. [Google Scholar] [CrossRef]
- Penson, P.; Serban, M.-C.; Ursoniu, S.; Banach, M.; the Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group. Does coffee consumption alter plasma lipoprotein (a) concentrations? A systematic review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1706–1714. [Google Scholar] [CrossRef]
- Urgert, R.; Weusten-van der Wouw, M.P.; Hovenier, R.; Lund-Larsen, P.G.; Katan, M.B. Chronic consumers of boiled coffee have elevated serum levels of lipoprotein (a). J. Intern. Med. 1996, 240, 367–371. [Google Scholar] [CrossRef]
- Cornelis, M.C.; van Dam, R.M. Habitual Coffee and Tea Consumption and Cardiometabolic Biomarkers in the UK Biobank: The Role of Beverage Types and Genetic Variation. J. Nutr. 2020, 150, 2772–2788. [Google Scholar] [CrossRef]
- Paassilta, M.; Kervinen, K.; Rantala, A.O.; Savolainen, M.J.; Lilja, M.; Reunanen, A.; Kesäniemi, Y.A. Social alcohol consumption and low Lp(a) lipoprotein concentrations in middle aged Finnish men: Population based study. BMJ 1998, 316, 594–595. [Google Scholar] [CrossRef]
- Catena, C.; Novello, M.; Dotto, L.; De Marchi, S.; Sechi, L.A. Serum lipoprotein (a) concentrations and alcohol consumption in hypertension: Possible relevance for cardiovascular damage. J. Hypertens. 2003, 21, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, P.C.; McGrath, L.T.; McClean, E.; Young, I.S.; Archbold, G.P. Effect of red wine consumption on lipoprotein (a) and other risk factors for atherosclerosis. QJM Int. J. Med. 1995, 88, 101–108. [Google Scholar]
- Chiva-Blanch, G.; Urpi-Sarda, M.; Ros, E.; Valderas-Martinez, P.; Casas, R.; Arranz, S.; Guillén, M.; Lamuela-Raventós, R.M.; Llorach, R.; Andres-Lacueva, C.; et al. Effects of red wine polyphenols and alcohol on glucose metabolism and the lipid profile: A randomized clinical trial. Clin. Nutr. 2013, 32, 200–206. [Google Scholar] [CrossRef]
- GBD 2016 Alcohol and Drug Use Collaborators. The global burden of disease attributable to alcohol and drug use in 195 countries and territories, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Psychiatry 2018, 5, 987–1012. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.W.; Kaptoge, S.; Butterworth, A.S.; Willeit, P.; Warnakula, S.; Bolton, T.; Paige, E.; Paul, D.S.; Sweeting, M.; Burgess, S.; et al. Risk thresholds for alcohol consumption: Combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. Lancet 2018, 391, 1513–1523. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Fogacci, F.; Stoian, A.P.; Vrablik, M.; Al Rasadi, K.; Banach, M.; Toth, P.P.; Rizzo, M. Nutraceuticals in the Management of Dyslipidemia: Which, When, and for Whom? Could Nutraceuticals Help Low-Risk Individuals with Non-optimal Lipid Levels? Curr. Atheroscler. Rep. 2021, 23, 57. [Google Scholar] [CrossRef] [PubMed]
- Serban, M.-C.; Sahebkar, A.; Mikhailidis, D.P.; Toth, P.P.; Jones, S.R.; Muntner, P.; Blaha, M.J.; Andrica, F.; Martin, S.S.; Borza, C.; et al. Impact of L-carnitine on plasma lipoprotein (a) concentrations: A sys-tematic review and meta-analysis of randomized controlled trials. Sci. Rep. 2016, 6, 19188. [Google Scholar] [CrossRef]
- Pekala, J.; Patkowska-Sokoła, B.; Bodkowski, R.; Jamroz, D.; Nowakowski, P.; Lochyński, S.; Librowski, T. L-carnitine met-abolic functions and meaning in humans life. Curr. Drug Metab. 2011, 12, 667–678. [Google Scholar] [CrossRef]
- Jing, Z.-C.; Wu, B.-X.; Peng, J.-Q.; Li, X.-L.; Pan, L.; Zhao, S.P.; Li, D.Y.; Yu, Z.X.; Gong, J.B.; Zhao, Q.Y.; et al. Effect of intravenous L-carnitine in Chinese patients with chronic heart failure. Eur. Heart J. Suppl. 2016, 18 (Suppl. A), A27–A36. [Google Scholar] [CrossRef]
- Lee, B.-J.; Lin, J.-S.; Lin, Y.-C.; Lin, P.-T. Effects of l-carnitine supplementation on lipid profiles in patients with coronary artery disease. Lipids Health Dis. 2016, 15, 107. [Google Scholar] [CrossRef]
- Lee, B.-J.; Lin, J.-S.; Lin, Y.-C.; Lin, P.-T. Effects of l-carnitine supplementation on oxidative stress and antioxidant enzymes ac-tivities in patients with coronary artery disease: A randomized, placebo- controlled trial. Nutr. J. 2014, 13, 79. [Google Scholar] [CrossRef]
- Asadi, M.; Rahimlou, M.; Shishehbor, F.; Mansoori, A. The effect of l-carnitine supplementation on lipid profile and glycaemic control in adults with cardiovascular risk factors: A systematic review and meta-analysis of randomized controlled clinical trials. Clin. Nutr. 2020, 39, 110–122. [Google Scholar] [CrossRef]
- Florentin, M.; Elisaf, M.S.; Rizos, C.V.; Nikolaou, V.; Bilianou, E.; Pitsavos, C.; Liberopoulos, E.N. L-carnitine/simvastatin reduces lipoprotein (a) levels compared with simvastatin monotherapy: A randomized double-blind placebo- controlled study. Lipids 2017, 52, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Vallance, H.D.; Koochin, A.; Branov, J.; Rosen-Heath, A.; Bosdet, T.; Wang, Z.; Hazen, S.L.; Horvath, G. Marked elevation in plasma trimethylamine-N-oxide (TMAO) in patients with mitochondrial disorders treated with oral L-carnitine. Mol. Genet. Metab. Rep. 2018, 15, 130–133. [Google Scholar] [CrossRef]
- Fukami, K.; Yamagishi, S.-I.; Sakai, K.; Kaida, Y.; Yokoro, M.; Ueda, S.; Wada, Y.; Takeuchi, M.; Shimizu, M.; Yamazaki, H.; et al. Oral L-carnitine supplementation increases trimethylamine-N-oxide but reduces markers of vascular injury in hemodialysis patients. J. Cardiovasc. Pharmacol. 2015, 65, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.J.; Bostwick, B.L.; Kennedy, A.D.; Donti, T.R.; Sun, Q.; Sutton, V.R.; Elsea, S.H. Chronic oral L-carnitine supple-mentation drives marked plasma TMAO elevations in patients with organic acidemias despite dietary meat restrictions. JIMD Rep. 2016, 30, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; You, T.; Li, J.; Pan, T.; Xiang, L.; Han, Y.; Zhu, L. Circulating trimethylamine N-oxide and the risk of cardiovascular diseases: A systematic review and meta-analysis of 11 prospective cohort studies. J. Cell Mol. Med. 2018, 22, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Deichmann, R.; Lavie, C.; Andrews, S. Coenzyme Q10 and statin-induced mitochondrial dysfunction. Ochsner J. 2010, 10, 16–21. [Google Scholar] [PubMed]
- Liu, H.-T.; Huang, Y.-C.; Cheng, S.-B.; Huang, Y.-T.; Lin, P.-T. Effects of coenzyme Q10 supplementation on antioxidant capacity and inflammation in hepatocellular carcinoma patients after surgery: A randomized, placebo-controlled trial. Nutr. J. 2016, 15, 85. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Tian, Z.; Zhao, D.; Liang, Y.; Dai, S.; Xu, Y.; Hou, S.; Yang, Y. L-shaped association between dietary coenzyme Q10 intake and high-sensitivity C-reactive protein in Chinese adults: A national cross-sectional study. Food Funct. 2023, 14, 9815–9824. [Google Scholar] [CrossRef] [PubMed]
- Fotino, A.D.; Thompson-Paul, A.; Bazzano, L.A. Effect of coenzyme Q10 supplementation on heart failure: A meta-analysis. Am. J. Clin. Nutr. 2013, 97, 268–275. [Google Scholar] [CrossRef]
- Lei, L.; Liu, Y. Efficacy of coenzyme Q10 in patients with cardiac failure: A meta-analysis of clinical trials. BMC Cardiovasc. Disord. 2017, 17, 196. [Google Scholar] [CrossRef]
- Jorat, M.V.; Tabrizi, R.; Mirhosseini, N.; Lankarani, K.B.; Akbari, M.; Heydari, S.T.; Mottaghi, R.; Asemi, Z. The effects of co-enzyme Q10 supplementation on lipid profiles among patients with coronary artery disease: A systematic review and me-ta-analysis of randomized controlled trials. Lipids Health Dis. 2018, 17, 230. [Google Scholar] [CrossRef] [PubMed]
- Sahebkar, A.; Simental-Mendía, L.E.; Stefanutti, C.; Pirro, M. Supplementation with coenzyme Q10 reduces plasma lipopro-tein(a) concentrations but not other lipid indices: A systematic review and meta-analysis. Pharmacol. Res. 2016, 105, 198–209. [Google Scholar] [CrossRef]
- Mirhashemi, S.M.; Najafi, V.; Raygan, F.; Asemi, Z. The effects of coenzyme Q10 supplementation on cardiometabolic markers in overweight type 2 diabetic patients with stable myocardial infarction: A randomized, double-blind, placebo-controlled trial. ARYA Atheroscler. 2016, 12, 158–165. [Google Scholar]
- Sahebkar, A.; Katsiki, N.; Ward, N.; Reiner, Ž. Flaxseed Supplementation Reduces Plasma Lipoprotein (a) Levels: A Me-ta-Analysis. Altern. Ther. Health Med. 2021, 27, 50–53. [Google Scholar]
- Panahi, Y.; Khalili, N.; Hosseini, M.S.; Abbasinazari, M.; Sahebkar, A. Lipid-modifying effects of adjunctive therapy with curcuminoids-piperine combination in patients with metabolic syndrome: Results of a randomized controlled trial. Complement. Ther. Med. 2014, 22, 851–857. [Google Scholar] [CrossRef]
- Panahi, Y.; Khalili, N.; Sahebi, E.; Namazi, S.; Reiner, Ž.; Majeed, M.; Sahebkar, A. Curcuminoids modify lipid profile in type 2 diabetes mellitus: A randomized controlled trial. Complement. Ther. Med. 2017, 33, 1–5. [Google Scholar] [CrossRef]
- Dastani, M.; Rahimi, H.R.; Askari, V.R.; Jaafari, M.R.; Jarahi, L.; Yadollahi, A.; Rahimi, V.B. Three months of combination therapy with nano-curcumin reduces the inflammation and lipoprotein (a) in type 2 diabetic patients with mild to moderate coronary artery disease: Evidence of a randomized, double-blinded, placebo-controlled clinical trial. Biofactors 2023, 49, 108–118. [Google Scholar] [CrossRef]
- Sulague, R.M.; Suan, N.N.M.; Mendoza, M.F.; Lavie, C.J. The associations between exercise and lipid biomarkers. Prog. Car-Diovasc Dis. 2022, 75, 59–68. [Google Scholar] [CrossRef]
- Mackinnon, L.T.; Hubinger, L.; Lepre, F. Effects of physical activity and diet on lipoprotein (a). Med. Sci. Sports Exerc. 1997, 29, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- Hubinger, L.; Mackinnon, L.T.; Lepre, F. Lipoprotein (a) [Lp(a)] levels in middle-aged male runners and sedentary controls. Med. Sci. Sports Exerc. 1995, 27, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Taimela, S.; Viikari, J.S.; Porkka, K.V.; Dahlen, G.H. Lipoprotein (a) levels in children and young adults: The influence of physical activity. The Cardiovascular Risk in Young Finns Study. Acta Paediatr. 1994, 83, 1258–1263. [Google Scholar] [CrossRef]
- Kaza, M.; Tsentidis, C.; Vlachopapadopoulou, E.; Karanasios, S.; Sakou, I.I.; Mastorakos, G.; Karavanaki, K. The Role of Exercise on Cardiometabolic Profile and Body Composition in Youth with Type 1 Diabetes. Children 2022, 9, 1840. [Google Scholar] [CrossRef]
- Mackinnon, L.T.; Hubinger, L.M. Effects of exercise on lipoprotein (a). Sports Med. 1999, 28, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.G.; Fogacci, F.; Giovannini, M.; Grandi, E.; D’Addato, S.; Borghi, C. Estimating the Prevalence and Characteristics of Patients Potentially Eligible for Lipoprotein (a)-Lowering Therapies in a Real-World Setting. Biomedicines 2023, 11, 3289. [Google Scholar] [CrossRef]
- Willeit, P.; Ridker, P.M.; Nestel, P.J.; Simes, J.; Tonkin, A.M.; Pedersen, T.R.; Schwartz, G.G.; Olsson, A.G.; Colhoun, H.M.; Kronenberg, F.; et al. Baseline and on-statin treatment lipoprotein (a) levels for prediction of cardiovascular events: Individual patient-data meta-analysis of statin outcome trials. Lancet 2018, 392, 1311–1320. [Google Scholar] [CrossRef]
- Schandelmaier, S.; Briel, M.; Saccilotto, R.; Olu, K.K.; Arpagaus, A.; Hemkens, L.G.; Nordmann, A.J. Niacin for primary and secondary prevention of cardiovascular events. Cochrane Database Syst. Rev. 2017, 6, CD009744. [Google Scholar] [CrossRef]
- Fogacci, F.; Ferri, N.; Toth, P.P.; Ruscica, M.; Corsini, A.; Cicero, A.F.G. Efficacy and Safety of Mipomersen: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Drugs 2019, 79, 751–766. [Google Scholar] [CrossRef] [PubMed]
- Gencer, B.; Mach, F. Potential of Lipoprotein (a)-Lowering Strategies in Treating Coronary Artery Disease. Drugs 2020, 80, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, Q.; Wang, Y.; Gao, P.; Chen, D. The effect and safety of anacetrapib in the treatment of dyslipidemia: A sys-tematic review and meta-analysis. Postgrad. Med. 2018, 130, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.J.; Ruotolo, G.; Brewer, H.B.; Wang, M.D.; Liu, L.; Willey, M.B.; Deeg, M.A.; Krueger, K.A.; Nissen, S.E. Evacetrapib alone or in combination with statins lowers lipoprotein (a) and total and small LDL particle concentrations in mildly hypercholesterolemic patients. J. Clin. Lipidol. 2016, 10, 519–527. [Google Scholar] [CrossRef]
- Afanasieva, O.I.; Ezhov, M.V.; Razova, O.A.; Afanasieva, M.I.; Utkina, E.A.; Pokrovsky, S.N. Apolipoprotein (a) phenotype determines the correlations of lipoprotein (a) and proprotein convertase subtilisin/kexin type 9 levels in patients with potential familial hypercholesterolemia. Atherosclerosis 2018, 277, 477–482. [Google Scholar] [CrossRef]
- Chan, D.C.; Watts, G.F. The Promise of PCSK9 and Lipoprotein (a) as Targets for Gene Silencing Therapies. Clin. Ther. 2023, 45, 1034–1046. [Google Scholar] [CrossRef]
- Yu, Z.; Hu, L.; Sun, C.; Wang, Z.; Zhang, X.; Wu, M.; Liu, L. Effect of Different Types and Dosages of Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors on Lipoprotein (a) Levels: A Network Meta-analysis. J. Cardiovasc. Pharmacol. 2023, 81, 445–453. [Google Scholar] [CrossRef]
- Fogacci, F.; Yerlitaş, S.İ.; Giovannini, M.; Zararsız, G.; Lido, P.; Borghi, C.; Cicero, A.F.G. Sex X Time Interactions in Lp(a) and LDL-C Response to Evolocumab. Biomedicines 2023, 11, 3271. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Fogacci, F.; Zambon, A.; Toth, P.P.; Borghi, C. Efficacy and safety of inclisiran a newly approved FDA drug: A systematic review and pooled analysis of available clinical studies. Am. Heart J. 2022, 13, 100127. [Google Scholar] [CrossRef]
- Qu, K.; Ma, X.F.; Li, G.H.; Zhang, H.; Liu, Y.M.; Zhang, K.; Zeng, J.F.; Lei, J.J.; Wei, D.H.; Wang, Z. Vitamin C down-regulate apo(a) expression via Tet2-dependent DNA demethylation in HepG2 cells. Int. J. Biol. Macromol. 2017, 98, 637–645. [Google Scholar] [CrossRef]
- Jenner, J.L.; Jacques, P.F.; Seman, L.J.; Schaefer, E.J. Ascorbic acid supplementation does not lower plasma lipoprotein (a) concentrations. Atherosclerosis 2000, 151, 541–544. [Google Scholar] [CrossRef]
- Bostom, A.G.; Hume, A.L.; Eaton, C.B.; Laurino, J.P.; Yanek, L.R.; Regan, M.S.; McQuade, W.H.; Craig, W.Y.; Perrone, G.; Jacques, P.F. The effect of high-dose ascorbate supplementation on plasma lipoprotein (a) levels in patients with premature coronary heart disease. Pharmacotherapy 1995, 15, 458–464. [Google Scholar] [CrossRef]
- Zeman, M.; Vecka, M.; Perlík, F.; Staňková, B.; Hromádka, R.; Tvrzická, E.; Širc, J.; Hrib, J.; Žák, A. Pleiotropic effects of niacin: Current possibilities for its clinical use. Acta Pharm. 2016, 66, 449–469. [Google Scholar] [CrossRef] [PubMed]
- Yari, Z.; Tabibi, H.; Najafi, I.; Hedayati, M.; Movahedian, M. Effects of soy isoflavones on serum lipids and lipoprotein (a) in peritoneal dialysis patients. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1382–1388. [Google Scholar] [CrossRef] [PubMed]
- Simental-Mendía, L.E.; Gotto, A.M.; Jr Atkin, S.L.; Banach, M.; Pirro, M.; Sahebkar, A. Effect of soy isoflavone supplementation on plasma lipoprotein (a) concentrations: A meta-analysis. J. Clin. Lipidol. 2018, 12, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Surma, S.; Sahebkar, A.; Banach, M.; endorsed by the International Lipid Expert Panel (ILEP). Low carbohydrate/ketogenic diet in the optimization of lipoprotein (a) levels: Do we have sufficient evidence for any recommendation? Eur. Heart J. 2023, 44, ehad635. [Google Scholar] [CrossRef] [PubMed]
- Brandt, E.J.; Brandt, D.J.; Desai, N.R.; Spatz, E.S.; Nasir, K.; Mani, A. Association of vitamins, minerals, and lead with lipoprotein (a) in a cross-sectional cohort of US adults. Int. J. Vitam. Nutr. Res. 2023, 93, 99–110. [Google Scholar] [CrossRef]
First Author, Year of Publication | Patients | Interventions | Main Result |
---|---|---|---|
Kiortsis et al., 2001 [18] | Healthy obese (n = 62) | 6-week low-energy diet | 17.6% Lp(a) reduction in subjects with Lp(a) > 20 mg/dL only |
Berk et al., 2017 [19] | Obese and Type 2 diabetes (n = 131) Obese (n = 30) Type 2 diabetes (n = 26) Obese managed with bariatric surgery (n = 26) | 4-month low-energy diet or bariatric surgery | Lp(a) increase in subjects undergoing low-energy diet, 14% Lp(a) decrease in subjects treated with bariatric surgery |
Berk et al., 2022 [20] | Overweight/Obese patients (n = 293) | 7-week low-energy diet followed by Roux-en-Y gastric bypass) and 52-week follow-up (surgery group) (n = 82) 59-week low-energy diet and exercise program (lifestyle group) (n = 77) 20-week low/very low energy diet (lifestyle cohort) (n = 134) | Lp(a) increase in after low/very low energy diet, 48% Lp(a) decrease after surgery |
Gomez-Martin et al., 2018 [21] | 40 obese women | 1-year follow-up after laparoscopic Roux-en-Y gastric bypass (n = 20) or sleeve gastrectomy (n = 20) or conventional treatment with diet and exercise (n = 20) | No change in Lp(a) plasma level in any group |
Paredes et al., 2020 [22] | 702 obese patients (372 without metabolic syndrome) | 1-year follow-up after vertical sleeve gastrectomy | 10% decrease in Lp(a) levels in metabolic syndrome only |
Scholl et al., 2020 [23] | Single case report of a normoweight subject | Very low carb ketogenic diet during physical training | 26–39% decrease in Lp(a) levels |
Ebbeling et al., 2022 [24] | 164 overweight/obese subjects with mixed dyslipidaemia | 20-week weight loss diet containing 20% proteins plus different amounts of carbohydrates and saturated fatty acids (20–21% vs. 40–14% vs. 60–7%) | 15% decrease in Lp(a) levels in the low-carbohydrate diet group only |
Cipryan et al., 2022 [25] | 91 overweight subjects | High-intensity interval training program (n = 22) vs. high-intensity interval training program and very low-carb/high fat diet (n = 25) vs. very low carb/high fat (n = 22) vs. standard management | No effect of any treatment on Lp(a) plasma level) |
First Author, Year of Publication | Patients | Interventions | Main Result |
---|---|---|---|
Najjar et al., 2018 [30] | 31 Overweight/obese with LDL-C > 100 mg/dL | 4-week plant-based diet | 16% Lp(a) plasma level reduction |
Bamberger et al., 2017 [34] | 194 healthy subjects | 8-week regimen of 43 g of walnuts daily vs. standard diet | No change in Lp(a) plasma level in any group |
Nora et al., 2023 [35] | 29 overweight or obese individuals | 16-week consumption of either 42.5 g/day of mixed nuts (cashews, almonds, macadamia nuts, Brazil nuts, pecans, pistachios, walnuts, and peanuts) or 69 g/day isocaloric pretzels | No change in Lp(a) plasma level in any group |
Mueller et al., 2003 [37] | 25 healthy women | 3-week coconut oil-based high fat diet vs. coconut oil-based low-fat diet vs. diet rich in mono- and polyunsaturated fatty acids | Lp(a) reduced by 17 mg/L after coconut-oil intake, but increased by 25 mg/dL after intake of unsaturated long-chain fatty acids |
Loganathan et al., 2022 [38] | 40 healthy women | 4-week comparison of the effect of palm oil, cocoa butter, extra virgin olive oil as the main oil | No change in Lp(a) plasma level in any group |
Clevidence et al., 1997 [42] | 58 healthy subjects | 6-week comparison of the effect of high-fat diets (fatty acids = 39–40% of total energy) characterized by oleic (16.7% of energy); trans (3.8% of energy); high trans (6.6% of energy as trans-monoenes); saturated (16.2% of energy) | 8–11% decrease in Lp(a) plasma levels with high saturated fatty acids diets; 5% Lp(a) levels in subjects with higher Lp(a) at the baseline with the high trans-diet |
Almendingen et al., 1995 [43] | 31 young men | 3-week effect of partially hydrogenated fish oil, partially hydrogenated soybean oil, and butterfat | Lp(a) plasma level increase with all diets, but larger with hydrogenated fats-enriched diets. |
Chisholm, et al., 1996 [44] | 49 hypercholesterolemic subjects | 6-week effect of butter or an unsaturated margarine used for cooking or spreading in a reduced fat diet | No change in Lp(a) plasma level in any group |
Tholstrup et al., 2004 [49] | 16 young healthy men | 5 test fats dominated by (approximately 43% g/kg) stearic, palmitic, oleic, C18:1 trans, or linoleic acid incorporated into meals (1 g fat/kg body weight) after a 12-h fast in random order on different days, separated by 3-week washout periods | Lp(a) plasma levels increased after each fat except oleic and C18:1 trans; oleic, C18:1 trans intake was associated with less area under the plasma Lp(a) concentration curve |
Food Item | L-Carnitine (mg/100 gr Serving) | Food Item | L-Carnitine (mg/100 gr Serving) |
---|---|---|---|
Meat products | Dairy products | ||
Beef steak | 64.6–87.5 | Yogurt, regular (3.2% fat) | 12.5 |
Pork (muscle) | 13–53.5 | Milk 2–4% fat | 2.3–2.9 |
Chicken | 10–10.4 | Cheese | 1.4–1.8 |
Butter | 0.85 | ||
Fish | Chicken egg | ||
Salmon (cooked) | 5.8 | Whole | Not evaluated |
Cod (Atlantic) | 1.8 | Egg Yolk | 0.8 |
Egg white | 0.3 |
Food Item | CoQ10 (mg/100 gr Serving) | Food Item | CoQ10 (mg/100 gr Serving) |
---|---|---|---|
Meat products | Dairy products | ||
Beef steak | 1.61–3.65 | Yogurt, regular (3.2% fat) | 0.07–0.11 |
Pork (muscle) | 2.43–4.11 | Milk 2–4% fat | 0.07–0.12 |
Chicken | 1.4–2.1 | Cheese | 0.12–0.13 |
Butter | 0.71 | ||
Fish | Chicken egg | ||
Salmon (cooked) | 0.43–0.76 | Whole | 0.07–0.37 |
Cod (Atlantic) | 0.37 | Egg Yolk | Not evaluated |
Egg white | 0.52 |
High Lp(a) Only | High Lp(a) + High LDL | High Lp(a) + High LDL + High TG | |
---|---|---|---|
Cigarette smoking stop | ↓↓ | ↓↓ | ↓↓ |
Physical activity | Intense | Moderate | Moderate-to-Intense |
Body weight | ↓↓ | ↓ | ↓↓ |
Alcohol intake | ↑ | ↓ | ↓↓ |
Saturated fatty acids | ↑ | ↓ | ↓ |
Unsaturated fatty acids | - | ↑ | ↑ |
Trans fatty acids | ↓↓ | ↓↓ | ↓↓ |
Ultraprocessed foods | ↓↓ | ↓↓ | ↓↓ |
Whole foods | ↑ | ↑ | ↑ |
Vegetables | ↑ | ↑ | ↑ |
Dietary supplements | Coenzyme Q10, flaxseed, curcumin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fogacci, F.; Di Micoli, V.; Sabouret, P.; Giovannini, M.; Cicero, A.F.G. Lifestyle and Lipoprotein(a) Levels: Does a Specific Counseling Make Sense? J. Clin. Med. 2024, 13, 751. https://doi.org/10.3390/jcm13030751
Fogacci F, Di Micoli V, Sabouret P, Giovannini M, Cicero AFG. Lifestyle and Lipoprotein(a) Levels: Does a Specific Counseling Make Sense? Journal of Clinical Medicine. 2024; 13(3):751. https://doi.org/10.3390/jcm13030751
Chicago/Turabian StyleFogacci, Federica, Valentina Di Micoli, Pierre Sabouret, Marina Giovannini, and Arrigo F. G. Cicero. 2024. "Lifestyle and Lipoprotein(a) Levels: Does a Specific Counseling Make Sense?" Journal of Clinical Medicine 13, no. 3: 751. https://doi.org/10.3390/jcm13030751