The Effect of Sex on the Remimazolam Dosage Required for Successful i-gel Supraglottic Airway Insertion with Remifentanil in Non-Paralyzed Patients: An Up-and-Down Sequential Allocation Trial
Abstract
1. Introduction
2. Materials and Methods
Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kilpatrick, G.J. Remimazolam: Non-Clinical and Clinical Profile of a New Sedative/Anesthetic Agent. Front. Pharmacol. 2021, 12, 690875. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, Y. Efficacy and Safety Profile of Remimazolam for Sedation in Adults Undergoing Short Surgical Procedures. Ther. Clin. Risk Manag. 2022, 18, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.C.; Hung, K.C.; Illias, A.M.; Chiu, C.C.; Yu, C.H.; Lin, C.M.; Chen, I.W.; Sun, C.K. The use of remimazolam versus propofol for induction and maintenance of general anesthesia: A systematic review and meta-analysis. Front. Pharmacol. 2023, 14, 1101728. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Hu, P.; Jiang, J. Metabolite characterization of a novel sedative drug, remimazolam in human plasma and urine using ultra high-performance liquid chromatography coupled with synapt high-definition mass spectrometry. J. Pharm. Biomed. Anal. 2017, 137, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.M. Remimazolam: Pharmacological characteristics and clinical applications in anesthesiology. Anesth. Pain Med. 2022, 17, 1–11. [Google Scholar] [CrossRef]
- Lohmer, L.L.; Schippers, F.; Petersen, K.U.; Stoehr, T.; Schmith, V.D. Time-to-Event Modeling for Remimazolam for the Indication of Induction and Maintenance of General Anesthesia. J. Clin. Pharmacol. 2020, 60, 505–514. [Google Scholar] [CrossRef]
- Oh, J.; Park, S.Y.; Lee, G.Y.; Park, J.H.; Joe, H.B. Effective dose of remimazolam co-administered with remifentanil to facilitate I-gel insertion without neuromuscular blocking agents: An up-and-down sequential allocation trial. BMC Anesthesiol. 2023, 23, 81. [Google Scholar] [CrossRef]
- Pleym, H.; Spigset, O.; Kharasch, E.D.; Dale, O. Gender differences in drug effects: Implications for anesthesiologists. Acta Anaesthesiol. Scand. 2003, 47, 241–259. [Google Scholar] [CrossRef]
- Choi, J.J.; Kim, J.Y.; Lee, D.; Chang, Y.J.; Cho, N.R.; Kwak, H.J. Male patients require higher optimal effect-site concentrations of propofol during i-gel insertion with dexmedetomidine 0.5 mug/kg. BMC Anesthesiol. 2016, 16, 20. [Google Scholar] [CrossRef]
- Kim, M.K.; Lee, J.W.; Jang, D.J.; Shin, O.Y.; Nam, S.B. Effect-site concentration of remifentanil for laryngeal mask airway insertion during target-controlled infusion of propofol. Anaesthesia 2009, 64, 136–140. [Google Scholar] [CrossRef]
- Schuttler, J.; Eisenried, A.; Lerch, M.; Fechner, J.; Jeleazcov, C.; Ihmsen, H. Pharmacokinetics and Pharmacodynamics of Remimazolam (CNS 7056) after Continuous Infusion in Healthy Male Volunteers: Part I. Pharmacokinetics and Clinical Pharmacodynamics. Anesthesiology 2020, 132, 636–651. [Google Scholar] [CrossRef] [PubMed]
- Glass, P.S.; Bloom, M.; Kearse, L.; Rosow, C.; Sebel, P.; Manberg, P. Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil in healthy volunteers. Anesthesiology 1997, 86, 836–847. [Google Scholar] [CrossRef] [PubMed]
- Drage, M.; Nunez, J.; Vaughan, R.; Asai, T. Jaw thrusting as a clinical test to assess the adequate depth of anaesthesia for insertion of the laryngeal mask. Anaesthesia 1996, 51, 1167–1170. [Google Scholar] [CrossRef] [PubMed]
- Krzych, Ł.J.; Pluta, M.P.; Putowski, Z.; Czok, M. Investigating Association between Intraoperative Hypotension and Postoperative Neurocognitive Disorders in Non-Cardiac Surgery: A Comprehensive Review. J. Clin. Med. 2020, 9, 3183. [Google Scholar] [CrossRef] [PubMed]
- Dixon, W.J. Staircase bioassay: The up-and-down method. Neurosci. Biobehav. Rev. 1991, 15, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Choi, S.C. Sequential method of estimating the LD50 using a modified up-and-down rule. J. Biopharm. Stat. 1994, 4, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Gorges, M.; Zhou, G.; Brant, R.; Ansermino, J.M. Sequential allocation trial design in anesthesia: An introduction to methods, modeling, and clinical applications. Paediatr. Anaesth. 2017, 27, 240–247. [Google Scholar] [CrossRef]
- Dilleen, M.; Heimann, G.; Hirsch, I. Non-parametric estimators of a monotonic dose-response curve and bootstrap confidence intervals. Stat. Med. 2003, 22, 869–882. [Google Scholar] [CrossRef]
- Payton, M.E.; Greenstone, M.H.; Schenker, N. Overlapping confidence intervals or standard error intervals: What do they mean in terms of statistical significance? J. Insect Sci. 2003, 3, 34. [Google Scholar] [CrossRef]
- Polverino, M.; Polverino, F.; Fasolino, M.; Ando, F.; Alfieri, A.; De Blasio, F. Anatomy and neuro-pathophysiology of the cough reflex arc. Multidiscip. Respir. Med. 2012, 7, 5. [Google Scholar] [CrossRef]
- Canning, B.J. Anatomy and neurophysiology of the cough reflex: ACCP evidence-based clinical practice guidelines. Chest 2006, 129, 33S–47S. [Google Scholar] [CrossRef] [PubMed]
- Spina, D.; McFadzean, I.; Bertram, F.; Page, C. Peripheral mechanisms II: The pharmacology of peripherally active antitussive drugs. Pharmacol. Ther. Cough 2009, 187, 155–186. [Google Scholar]
- Soh, S.; Park, W.K.; Kang, S.W.; Lee, B.R.; Lee, J.R. Sex differences in remifentanil requirements for preventing cough during anesthetic emergence. Yonsei Med. J. 2014, 55, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Joe, H.B.; Kim, J.Y.; Kwak, H.J.; Oh, S.E.; Lee, S.Y.; Park, S.Y. Effect of sex differences in remifentanil requirements for the insertion of a laryngeal mask airway during propofol anesthesia: A prospective randomized trial. Medicine 2016, 95, e5032. [Google Scholar] [CrossRef]
- Minto, C.F.; Schnider, T.W.; Egan, T.D.; Youngs, E.; Lemmens, H.J.; Gambus, P.L.; Billard, V.; Hoke, J.F.; Moore, K.H.; Hermann, D.J.; et al. Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology 1997, 86, 10–23. [Google Scholar] [CrossRef]
- Buchanan, F.F.; Myles, P.S.; Cicuttini, F. Patient sex and its influence on general anaesthesia. Anaesth. Intensive Care 2009, 37, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Leonowens, C.; Ivaturi, V.D.; Lohmer, L.L.; Curd, L.; Ossig, J.; Schippers, F.; Petersen, K.U.; Stoehr, T.; Schmith, V. Population pharmacokinetic/pharmacodynamic modeling for remimazolam in the induction and maintenance of general anesthesia in healthy subjects and in surgical subjects. J. Clin. Anesth. 2020, 66, 109899. [Google Scholar] [CrossRef] [PubMed]
- Wiltshire, H.R.; Kilpatrick, G.J.; Tilbrook, G.S.; Borkett, K.M. A placebo- and midazolam-controlled phase I single ascending-dose study evaluating the safety, pharmacokinetics, and pharmacodynamics of remimazolam (CNS 7056): Part II. Population pharmacokinetic and pharmacodynamic modeling and simulation. Anesth. Analg. 2012, 115, 284–296. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, L.; Cao, L.; Chen, M.; Zhang, W. Effect of gender factor on potency of remimazolam inhibiting responses to laryngeal mask airway insertion. Chin. J. Anesthesiol. 2021, 95, 1109–1111. [Google Scholar]
- Lenzmeier, B.; Moore, R.L.; Cordts, P.; Garrett, N. Menstrual cycle-related variations in postoperative analgesia with the preemptive use of N-methyl D-aspartate antagonist ketamine: A pilot study. Dimens. Crit. Care Nurs. 2008, 27, 271–276. [Google Scholar] [CrossRef]
- Erden, V.; Yangn, Z.; Erkalp, K.; Delatioglu, H.; Bahceci, F.; Seyhan, A. Increased progesterone production during the luteal phase of menstruation may decrease anesthetic requirement. Anesth. Analg. 2005, 101, 1007–1011. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Chen, X.; Feng, Y.; Shen, Y.; Feng, Z.; Bein, B. Propofol EC50 for inducing loss of consciousness is lower in the luteal phase of the menstrual cycle. Br. J. Anaesth. 2014, 112, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Leslie, K.; Sessler, D.I.; Schroeder, M.; Walters, K. Propofol blood concentration and the Bispectral Index predict suppression of learning during propofol/epidural anesthesia in volunteers. Anesth. Analg. 1995, 81, 1269–1274. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Singh, H.; White, P.F. Electroencephalogram bispectral analysis predicts the depth of midazolam-induced sedation. Anesthesiology 1996, 84, 64–69. [Google Scholar] [CrossRef] [PubMed]
- McKay, I.D.; Voss, L.J.; Sleigh, J.W.; Barnard, J.P.; Johannsen, E.K. Pharmacokinetic-pharmacodynamic modeling the hypnotic effect of sevoflurane using the spectral entropy of the electroencephalogram. Anesth. Analg. 2006, 102, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Doi, M.; Morita, K.; Takeda, J.; Sakamoto, A.; Yamakage, M.; Suzuki, T. Efficacy and safety of remimazolam versus propofol for general anesthesia: A multicenter, single-blind, randomized, parallel-group, phase IIb/III trial. J. Anesth. 2020, 34, 543–553. [Google Scholar] [CrossRef]
- Wei, A.; Ma, S.; Dou, Y.; Wang, X.; Wu, J.; Zhou, S.; Deng, Y.; Liu, X.; Li, D.; Yang, M. The safety and efficacy of remimazolam tosylate combined with propofol in upper gastrointestinal endoscopy: A multicenter, randomized clinical trial. PLoS ONE 2023, 18, e0282930. [Google Scholar] [CrossRef]
- Stasiowski, M.J.; Dulawa, A.; Krol, S.; Marciniak, R.; Kaspera, W.; Niewiadomska, E.; Krawczyk, L.; Ladzinski, P.; Grabarek, B.O.; Jalowiecki, P. Polyspikes and Rhythmic Polyspikes During Volatile Induction of General Anesthesia With Sevoflurane Result in Bispectral Index Variations. Clin. EEG Neurosci. 2023, 54, 289–304. [Google Scholar] [CrossRef]
- Choi, B.M.; Lee, J.S.; Kim, K.M.; Bang, J.Y.; Lee, E.K.; Noh, G.J. Frequency and characteristics of patients with bispectral index values of 60 or higher during the induction and maintenance of general anesthesia with remimazolam. Sci. Rep. 2023, 13, 9992. [Google Scholar] [CrossRef]
Parameters | Men (n = 28) | Women (n = 27) | p Value |
---|---|---|---|
Age (years) | 41.5 (29.5, 49.0) | 50.0 (35.5, 54.0) | 0.206 |
Weight (kg) | 77.2 ± 9.6 | 61.5 ± 6.9 | <0.001 |
Height (cm) | 173.9 ± 6.9 | 159.1 ± 5.5 | <0.001 |
BMI (kg/m2) | 25.9 (24.0, 27.1) | 24.6 (22.3, 26.1) | 0.072 |
ASA PS class | 0.701 | ||
I | 21 (75.0) | 18 (66.7) | |
II | 7 (25.0) | 9 (33.3) |
Parameters | Men (n = 28) | Women (n = 27) | p Value |
---|---|---|---|
Modified Dixon’s up-and-down method | |||
ED50, mg/kg | 0.28 ± 0.02 | 0.18 ± 0.02 | <0.001 |
Isotonic regression method | |||
ED50 (83% CI), mg/kg | 0.30 (0.27–0.32) * | 0.20 (0.15–0.23) | |
ED95 (95% CI), mg/kg | 0.35 (0.34–0.35) * | 0.29 (0.25–0.30) |
Time | Men (n = 14) | Women (n = 14) | p Value |
---|---|---|---|
Mean arterial pressure | |||
T0 | 101.00 ± 11.86 | 108.07 ± 17.80 | 0.227 |
T1 | 90.43 ± 15.85 * | 88.79 ± 13.27 * | 0.769 |
T2 | 85.50 ± 12.79 * | 82.21 ± 14.12 * | 0.524 |
T3 | 83.14 ± 12.11 * | 79.71 ± 12.65 * | 0.470 |
T4 | 80.64 ± 12.04 * | 79.36 ± 11.56 * | 0.775 |
T5 | 85.07 ± 12.90 * | 82.29 ± 13.60 * | 0.583 |
T6 | 86.93 ± 15.15 * | 88.00 ± 15.70 * | 0.856 |
Heart rate | |||
T0 | 68.93 ± 13.20 | 68.64 ± 10.95 | 0.951 |
T1 | 75.14 ± 14.39 * | 68.79 ± 9.24 | 0.176 |
T2 | 73.43 ± 10.39 | 63.43 ± 9.40 * | 0.013 |
T3 | 72.64 ± 10.72 | 62.29 ± 9.86 * | 0.013 |
T4 | 75.50 ± 11.59 * | 63.36 ± 10.80 * | 0.008 |
T5 | 78.07 ± 10.09 * | 67.50 ± 9.04 | 0.007 |
T6 | 77.57 ± 9.58 * | 68.79 ± 10.21 | 0.027 |
Bispectral index | |||
T0 | 96.86 ± 1.29 | 94.14 ± 3.46 | 0.011 |
T1 | 61.79 ± 9.46 * | 61.36 ± 12.29 * | 0.918 |
T2 | 60.64 ± 6.42 * | 64.07 ± 10.58 * | 0.309 |
T3 | 58.50 ± 5.60 * | 63.21 ± 8.61 * | 0.098 |
T4 | 56.86 ± 4.66 * | 64.50 ± 8.77 * | 0.008 |
T5 | 58.36 ± 4.65 * | 65.57 ± 7.67 * | 0.006 |
T6 | 56.71 ± 5.54 * | 61.86 ± 7.85 * | 0.056 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, J.-Y.; Park, S.-Y.; Moon, J.-Y.; Park, J.-H.; Joe, H.-B. The Effect of Sex on the Remimazolam Dosage Required for Successful i-gel Supraglottic Airway Insertion with Remifentanil in Non-Paralyzed Patients: An Up-and-Down Sequential Allocation Trial. J. Clin. Med. 2024, 13, 670. https://doi.org/10.3390/jcm13030670
Oh J-Y, Park S-Y, Moon J-Y, Park J-H, Joe H-B. The Effect of Sex on the Remimazolam Dosage Required for Successful i-gel Supraglottic Airway Insertion with Remifentanil in Non-Paralyzed Patients: An Up-and-Down Sequential Allocation Trial. Journal of Clinical Medicine. 2024; 13(3):670. https://doi.org/10.3390/jcm13030670
Chicago/Turabian StyleOh, Ju-Yeon, Sung-Yong Park, Jung-Yoon Moon, Ji-Hyun Park, and Han-Bum Joe. 2024. "The Effect of Sex on the Remimazolam Dosage Required for Successful i-gel Supraglottic Airway Insertion with Remifentanil in Non-Paralyzed Patients: An Up-and-Down Sequential Allocation Trial" Journal of Clinical Medicine 13, no. 3: 670. https://doi.org/10.3390/jcm13030670
APA StyleOh, J.-Y., Park, S.-Y., Moon, J.-Y., Park, J.-H., & Joe, H.-B. (2024). The Effect of Sex on the Remimazolam Dosage Required for Successful i-gel Supraglottic Airway Insertion with Remifentanil in Non-Paralyzed Patients: An Up-and-Down Sequential Allocation Trial. Journal of Clinical Medicine, 13(3), 670. https://doi.org/10.3390/jcm13030670