Objective Voice Analysis in Partial Deafness: Comparison of Multi-Dimensional Voice Program (MDVP) and VOXplot Results
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barsties v. Latoszek, B.; Mayer, J.; Watts, C.W.; Lehnert, B. Advances in Clinical Voice Quality Analysis with VOXplot. J. Clin. Med. 2023, 12, 4644. [Google Scholar] [CrossRef] [PubMed]
- Maryn, Y.; Morsomme, D.; De Bodt, M. Measuring the Dysphonia Severity Index (DSI) in the program Praat. J. Voice 2017, 31, 644.e29–644.e40. [Google Scholar] [CrossRef]
- Keung, L.C.; Richardson, K.; Sharp Matheron, D.; Martel-Sauvageau, V. A Comparison of Healthy and Disordered Voices Using Multi-Dimensional Voice Program, Praat, and TF32. J. Voice 2024, 38, 963.e23–963.e38. [Google Scholar] [CrossRef] [PubMed]
- Nicastri, M.; Chiarella, G.; Gallo, L.V.; Catalano, M.; Cassandro, E. Multidimensional Voice Program (MDVP) and amplitude variation parameters in euphonic adult subjects. Normative study. Acta Otorhinolaryngol. Ital. 2004, 24, 337–341. [Google Scholar] [PubMed]
- Maryn, Y.; Weenink, D. Objective dysphonia measures in the program Praat: Smoothed Cepstral Peak Prominence and Acoustic Voice Quality Index. J. Voice 2015, 29, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Lovato, A.; De Colle, W.; Giacomelli, L.; Piacente, A.; Righetto, L.; Marioni, G.; de Filippis, C. Multi-Dimensional Voice Program (MDVP) vs Praat for assessing euphonic subjects: A preliminary study on the gender-discriminating power of acoustic analysis software. J. Voice 2016, 30, 765-e1. [Google Scholar] [CrossRef]
- Amir, O.; Wolf, M.; Amir, N. A clinical comparison between two acoustic analysis softwares: MDVP and Praat. Biomed. Signal Process Control 2009, 4, 202–205. [Google Scholar] [CrossRef]
- Ko, H.J.; Woo, M.R.; Choi, Y. Comparisons of voice quality parameter values measured with MDVP, Praat and TF32. Phon. Speech Sci. 2020, 12, 73–83. [Google Scholar] [CrossRef]
- Yoo, J.Y.; Jeong, T.Y.; Jang, T.Y.; Ko, D.H. A correlation study among acoustic parameters of MDVP. Praat and Dr Speech. Speech Sci. 2003, 10, 29–36. [Google Scholar]
- Maryn, Y.; Corthals, P.; De Bodt, M.; Van Cauwenberge, P.; Deliyski, D. Perturbation measures of voice: A comparative study between Multi-Dimensional Voice Program and Praat. Folia Phoniatr. Logop. 2009, 61, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.A.; Nagy, A. Fundamental Frequency and Jitter Percent in MDVP and PRAAT. J. Voice 2023, 37, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Batthyany, C.; Barsties, v.; Latoszek, B.; Maryn, Y. Meta-analysis on the Validity of the Acoustic Voice Quality Index. J. Voice 2022, 38, 1527.e1–1527.e19. [Google Scholar] [CrossRef]
- Pattel, R.R.; Sundberg, J.; Gill, B.; Lã, F.M. Glottal airflow and glottal area waveform characteristics of flow phonation in untrained vocally healthy adults. J. Voice 2022, 36, 140.e1–140.e21. [Google Scholar] [CrossRef] [PubMed]
- Maryn, Y.; Roy, N.; De Bodt, M.; Van Cauwenberge, P.; Corthals, P. Acoustic measurement of overall voice quality: A meta-analysis. J. Acoust. Soc. Am. 2009, 126, 2619–2634. [Google Scholar] [CrossRef]
- Van Lierde, K.; Moerman, M.; Van Cauwenberge, P. Comment on the results of voice analysis. Acta Oto-Rhino-Laryngol. Belg. 1996, 50, 345–351. [Google Scholar]
- Van Lierde, K.; Moerman, M.; Vermeersch, H.; Van Cauwenberge, P. An introduction to computerized speech lab. Acta Oto-Rhino-Laryngol. Belg. 1996, 50, 309–314. [Google Scholar]
- Dixon, P.R.; Feeny, D.; Tomlinson, G.; Cushing, S.; Chen, J.M.; Krahn, M.D. Health-Related Quality of Life Changes Associated with Hearing Loss. JAMA Otolaryngol. Head Neck Surg. 2020, 146, 630–638. [Google Scholar] [CrossRef]
- Evans, M.; Deliyski, D. Acoustic voice analysis of prelingually deaf adults before and after cochlear implantation. J. Voice 2007, 21, 669–682. [Google Scholar] [CrossRef]
- Moeller, M.; Hoover, B.; Putman, C.; Arbataitis, K.; Bohnenkamp, G.; Peterson, B.; Stelmachowicz, P. Vocalizations of infants with hearing loss compared with infants with normal hearing: Part I-Phonetic Development. Ear Hear. 2007, 28, 605–627. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudian, S.; Aminrasouli, N.; Ziatabar Ahmadi, Z.; Lenarz, T.; Farhadi, M. Acoustic Analysis of Crying Signal in Infants with Disabling Hearing Impairment. J. Voice 2019, 33, 946.e7–946.e13. [Google Scholar] [CrossRef] [PubMed]
- Myszel, K.; Skarzynski, P.H. Changes in the voice and speech in patients after cochlear implantation. Analysis of selected literature. Now. Audiofonol. 2018, 7, 19–24. [Google Scholar]
- Baudonck, N.; Van Lierde, K.; D’haeseleer, E.; Dhooge, I. Nasalence and nasality in children with cochlear implants and children with hearing aids. Int. J. Pediatr. Otorhinolaryngol. 2015, 79, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Chatterjee, I.; Kumar, S. Laryngeal Aerodynamics in Children with Hearing Impairment versus Age and Height Matched Normal Hearing Peers. Otolaryngology 2013, 2013, 394604. [Google Scholar] [CrossRef]
- Delgado-Pinheiro, E.M.; Bonbonati, J.C.; Rodrigues dos Santos, F.; Gradim Fabron, E.M. Voice of hearing impaired children and adolescents and hearing peers: Influence of speech auditory perception on vocal production. CoDAS 2020, 32, e20180227. [Google Scholar] [CrossRef] [PubMed]
- Nunez-Batalla, F.; Vasile, G.; Carton-Corona, N.; Pedregal-Mallo Menendez de Castro, M.; Guntin Garcia, M.; Gomez-Martines, J.; Carro Fernandez, P.; Llorente-Pendas, J.L. Vowel production in hearing impaired children: A comparison between normal-hearing, hearing-aided and cochlear implanted children. Acta Otorrinolaringol. Esp. 2019, 70, 251–257. [Google Scholar] [CrossRef]
- Saki, N.; Bayat, A.; Nikakhlagh, S.; Zamani, P.; Khaleghi, A.; Karimi, M.; Dastoorpoor, M. Acoustic Voice Analysis in Postlingual Deaf Adult Cochlear Implant Users: A Within-Group Comparison Study. J. Voice 2022, 36, 439-e1. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Liang, F.; Liu, J.; Liang, M.; Zhang, X.; Chen, W.; Zheng, Y. Acoustic and Aerodynamic Analyses of the Voice of Prelingually Deaf Young Men After Cochlear Implantation. J. Voice 2021, 35, 838–842. [Google Scholar] [CrossRef]
- Myszel, K.; Szkielkowska, A. Quality of voice in patients with partial deafness. J. Voice 2022, 38, 1531.e5–1531.e11. [Google Scholar] [CrossRef] [PubMed]
- Myszel, K.; Szkiełkowska, A. Effect of Partial Deafness on Voice in Children. J. Voice, 2024; Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Myszel, K.; Szkielkowska, A.; Krasnodebska, P. Partial Deafness Cochlear Implantation Improves Voice Quality in Children. J. Commun. Disord. 2024, 12, 277. [Google Scholar]
- Uloza, V.; Barsties, V.; Latoszek, B.; Ulozaite-Staniene, N.; Petrauskas, T.; Maryn, A. A comparison of Dysphonia Severity Index and Acoustic Voice Quality Index measures in differentiating normal and dysphonic voices. Eur. Arch. Otorhinolaryngol. 2018, 275, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Barsties, v.; Latoszek, B.; Kim, G.H.; Delgado-Hernandez, J.; Hosokawa, K.; Englert, M.; Neumann, K.; Hetjens, S. The validity of the Acoustic Breathiness Index in the evaluation of breathy voice quality: A Meta-analysis. Clin. Otolaryngol. 2021, 46, 31–40. [Google Scholar] [CrossRef]
- Jayakumar, T.; Benoy, J.J. Acoustic Voice Quality Index (AVQI) in the measurement of voice quality: A systematic review and meta-analysis. J. Voice 2022, 38, 1055–1069. [Google Scholar] [CrossRef]
- Barsties, v.; Latoszek, B.; Maryn, Y.; Gerrits, E.; De Bodt, M. The Acoustic Breathiness Index (ABI): A Multivariate Acoustic Model for Breathiness. J. Voice 2017, 31, 511.e11–511.e27. [Google Scholar] [CrossRef]
- Swidzinski, P.; Pruszewicz, A.; Obrebowski, A.; Woznica, B.; Swidzinski, W. Analiza akustyczna w zaburzeniach głosu i mowy. Otolaryngol. Pol. 1999, 53 (Suppl. S30), 559–563. [Google Scholar]
- Wiskirska-Woznica, B. Kompleksowa Ocena Głosu w Schorzeniach Organicznych i Czynnościowych Krtani. Ph.D. Thesis, Akademia Medyczna w Poznaniu, Poznań, Poland, 2002. [Google Scholar]
- Eskenazi, I.; Childers, D.; Hicks, D. Acoustic correlates of voice quality. J. Speech Hear. Res. 1990, 33, 298–306. [Google Scholar] [CrossRef]
- Dejonckere, P.; Remacle, M.; Fresnel-Elbaz, E.; Woisard, V.; Crevier-Buchman, I.; Millet, B. Differentiated perceptual evaluation of pathological voice quality: Reliability and correlations with acoustic measurements. Rev. Laryngol. Otol. Rhinol. 1996, 117, 219–224. [Google Scholar]
Acoustic Measure Abbreviation | Definition |
---|---|
HNR (dB) (harmonic-to-noise ratio) | Describes the base 10 algorithm of the ratio between the periodic energy and noise energy multiplied by 10 HNR |
PPQ5 (%) (jitter of the five-point period perturbation quotient) | Describes the average absolute difference between a period and the average of it and its four closest neighbors divided by the average |
CPPS (dB) (smoothed cepstral peak prominence) | Describes the distance between the first harmonic peak and the point with equal quefrency on the regression line through the smoothed cepstrum |
GNE (glottal-to-noise excitation ratio) | Describes the glottal-to-noise excitation ratio with a maximum frequency of 4500 Hz |
H1H2 (dB) (difference between the first and second harmonics in the spectrum) | Describes the difference between H1 and H2 to localize the first peak and determine F0 |
HF noise (dB) (high frequency noise) | Describes the relative level of high-frequency noise between the energy from 0 to 6 kHz and energy from 6 to 10 kHz |
HNR-D (dB) (harmonic-to-noise ratio from Dejonckere and Lebacq) | Describes the harmonic emergence of the spectral display comprised within the frequency bandwidth between 500 Hz and 1500 Hz |
Slope (dB) (general slope of the spectrum) | Describes the difference between the energy within 0–1000 Hz and the energy within 1000–10,000 Hz of the long-term average spectrum |
Tilt (dB) (tilt of the regression line through the spectrum) | Describes the difference between the energy within 0–1000 Hz and the energy within 1000–10,000 Hz of the trendline through the long-term average spectrum |
PSD (ms) (period standard deviation) | Describes the variation in the standard deviation of periods in which the length of the sample is important for a valid computation of the standard deviation |
Jitter local (%) | Describes the average difference between successive periods divided by the average period |
Shimmer (%) | Describes the absolute mean difference between the amplitudes of successive periods divided by the average amplitude |
Shimmer local (dB) | Describes the base 10 logarithm of the difference between the amplitude of successive periods multiplied by 20 |
Acoustic Measure Abbreviation | Definition |
---|---|
Jita (µs) (absolute jitter) | Describes the absolute change of F0 period |
Jitt (%) (jitter percent) | Describes the relative variability of F0 |
RAP (%) (relative average perturbation) | Describes the relative average perturbation (relative change of F0 with a smoothing factor of 3 periods) |
PPQ (%) (pitch period perturbation quotient) | Describes the relative change of F0 with a smoothing factor of 5 periods |
sPPQ (%) (smoothed pitch period perturbation quotient) | Describes the relative short and long term changes of F0 with a smoothing factor of 1–199 periods |
ShdB (dB) (shimmer in dB) | Describes the relative change of amplitude from period to period (in decibels) |
Shim% (shimmer percent) | Describes the relative change of amplitude from period to period (in percent) |
APQ (%) (amplitude perturbation quotient) | Describes short term changes of amplitude from cycle to cycle with a smoothing factor of 11 periods |
sAPQ (%) (smoothed amplitude perturbation quotient) | Describes the relative changes of amplitude with a smoothing factor of 1–199 periods |
vAm (%) (peak amplitude variation) | Describes the relative standard deviation of amplitude from cycle to cycle |
NHR (noise-to-harmonic ratio) | Describes the average ratio of non-harmonic energy of the spectrum in 1500–4500 Hz to its harmonic energy in 70–4500 Hz |
VTI (voice turbulence index) | Describes the average ratio of non-harmonic energy of the spectrum in 2800–5800 Hz to its harmonic energy in 70–4500 Hz |
SPI (soft phonation index) | Describes the average ratio of harmonic energy of the spectrum in 70–1600 Hz to its harmonic energy in 1600–4500 Hz |
FTRI (%) (F0 tremor intensity index) | Describes the ratio of frequency of the most intensive modulating component (tremor) to F0 of the sample |
ATRI (%) (amplitude tremor intensity index) | Describes the ratio of average amplitude of modulating components in 30–400 Hz to average maximum amplitude |
DVB (%) (degree of voice breaks) | Describes the ratio of the total time of voice breaks to the total length of the voice sample |
DSH (%) (degree of subharmonics) | Describes the ratio of the number of subharmonic tones to the total number of F0 periods |
DUV (%) (degree of voiceless) | Describes the relative number of non-harmonics (without F0) in a total voice sample |
Average in PD Patients | Standard Deviation | Average in Control Group | Standard Deviation | p-Value | |
---|---|---|---|---|---|
Slope (dB) | −14.55 | 4.50 | −12.72 | 3.28 | p < 0.05 |
Tilt (dB) | −10.52 | 1.30 | −7.71 | 1.36 | p < 0.05 |
HNR-D (dB) | 18.48 | 1.82 | 31.79 | 3.6 | p < 0.05 |
HNR (dB) | 13.85 | 4.03 | 23.91 | 2.27 | p < 0.05 |
Shimmer (%) | 7.95 | 3.21 | 1.86 | 1.25 | p < 0.05 |
Shimmer (dB) | 0.80 | 0.25 | 0.27 | 0.37 | p < 0.05 |
CPPS (dB) | 6.26 | 1.49 | 19.21 | 1.47 | p < 0.05 |
Jitter local (%) | 1.40 | 0.68 | 0.21 | 0.11 | p < 0.05 |
Jitter ppq5 (%) | 0.65 | 0.33 | 0.14 | 0.07 | p < 0.05 |
GNE | 0.95 | 0.03 | 0.89 | 0.06 | p < 0.05 |
HF Noise | 1.26 | 0.23 | 1.38 | 0.34 | p > 0.05 |
H1H2 | 3.15 | 2.36 | 1.53 | 2.46 | p < 0.05 |
PSD | 0.84 | 0.67 | 0.38 | 0.57 | p > 0.05 |
AVQI | 4.96 | 0.80 | 0.35 | 0.67 | p < 0.05 |
ABI | 6.24 | 0.89 | 1.23 | 0.48 | p < 0.05 |
MDVP | VOXplot | |||||||
---|---|---|---|---|---|---|---|---|
Partial Deafness | Control | p Value | Partial Deafness | Control | p Value | |||
Hoarseness | Jitt % | 1.84 | 0.40 | <0.05 | Shim% | 7.95 | 1.86 | <0.05 |
vF0 | 8.4 | 0.74 | <0.05 | Shim dB | 0.8 | 0.27 | <0.05 | |
Shim dB | 0.73 | 0.27 | <0.05 | HNR | 13.85 | 23.91 | <0.05 | |
APQ | 6.41 | 1.8 | <0.05 | Slope | −14.55 | −12.72 | <0.05 | |
NHR | 0.2 | 0.12 | <0.05 | Tilt | −10.52 | −7.77 | <0.05 | |
SPI | 10.31 | 8.72 | >0.05 | CPPS | 6.26 | 19.21 | <0.05 | |
VTI | 0.06 | 0.04 | >0.05 | AVQI | 4.96 | 0.35 | <0.05 | |
Breathiness | Shim dB | 0.73 | 0.27 | <0.05 | Jitter% | 1.4 | 0.21 | <0.05 |
APQ | 6.41 | 1.8 | <0.05 | Shim dB | 0.8 | 0.27 | <0.05 | |
NHR | 0.2 | 0.12 | <0.05 | GNE | 0.95 | 0.89 | <0.05 | |
SPI | 10.31 | 8.72 | >0.05 | H1H2 | 3.15 | 1.53 | <0.05 | |
NSH | 0.55 | 0 | <0.05 | PSD | 0.84 | 0.38 | >0.05 | |
ABI | 6.24 | 1.23 | <0.05 |
MDVP parameters correlating with hoarseness | VOXplot parameters correlating with hoarseness | Intraclass correlation coefficient (ICC) |
vF0, Jitt%, Shim dB, APQ, NHR, SPI, VTI | Shim%, Shim dB, HNR, Slope, Tilt, CPPS | 0.56 |
MDVP parameters correlating with breathiness | VOXplot parameters correlating with breathiness | Intraclass correlation coefficient (ICC) |
Shim dB, APQ, NHR SPI, NSH | Jitter%, Shim dB, GNE, H1H2, PSD | 0.47 |
Parameter | G | R | B | A | S | |
---|---|---|---|---|---|---|
MDVP | Jitt % | - | 0.24 | - | 0.24 | - |
vF0 | 0.68 | 0.29 | 0.38 | - | 0.3 | |
Shim dB | 0.74 | - | 0.46 | - | - | |
APQ | 0.25 | - | 0.20 | - | - | |
NHR | - | - | 0.78 | 0.24 | 0.4 | |
SPI | 0.24 | - | 0.28 | 0.24 | - | |
VTI | - | 0.26 | - | 0.26 | 0.29 | |
NSH | - | 0.27 | 0.88 | 0.4 | - | |
VOXplot | Shim% | 0.49 | - | 0.46 | 0.47 | 0.38 |
Shim dB | 0.34 | 0.4 | 0.23 | 0.51 | - | |
HNR | 0.46 | 0.24 | - | 0.26 | - | |
Slope | 0.30 | - | 0.32 | - | 0.25 | |
Tilt | 0.47 | - | 0.44 | - | 0.35 | |
CPPS | 0.47 | 0.24 | - | 0.39 | - | |
Jitter% | - | 0.43 | - | 0.42 | - | |
GNE | 0.50 | 0.26 | 0.35 | 0.34 | 0.3 | |
H1H2 | 0.67 | - | 0.46 | - | 0.45 | |
PSD | - | 0.39 | - | 0.34 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myszel, K. Objective Voice Analysis in Partial Deafness: Comparison of Multi-Dimensional Voice Program (MDVP) and VOXplot Results. J. Clin. Med. 2024, 13, 7631. https://doi.org/10.3390/jcm13247631
Myszel K. Objective Voice Analysis in Partial Deafness: Comparison of Multi-Dimensional Voice Program (MDVP) and VOXplot Results. Journal of Clinical Medicine. 2024; 13(24):7631. https://doi.org/10.3390/jcm13247631
Chicago/Turabian StyleMyszel, Karol. 2024. "Objective Voice Analysis in Partial Deafness: Comparison of Multi-Dimensional Voice Program (MDVP) and VOXplot Results" Journal of Clinical Medicine 13, no. 24: 7631. https://doi.org/10.3390/jcm13247631
APA StyleMyszel, K. (2024). Objective Voice Analysis in Partial Deafness: Comparison of Multi-Dimensional Voice Program (MDVP) and VOXplot Results. Journal of Clinical Medicine, 13(24), 7631. https://doi.org/10.3390/jcm13247631